
AUTOMATIC GRID SERVICE DEPLOYMENT

Gabor Kecskemeti1, Gabor Terstyanszky2

1:MSc, Research Assistant and PhD student;2:PhD,Reader
1,2:University of Westminster

Abstract

This article provides an overview of the current Grid Service deployment
problems and proposes a general multi layer architecture for service
deployment solutions based on the previously published specialised and
partially defined ones. From the architectural point of view a service
could be a legacy code wrapped to a service oriented environment, a Web
service or a Grid service.

1. TODAY'S GRID

1.1 Closely-Coupled Grid

Nowadays there are several possibilities to access the powers of the high throughput
computing by creating virtual organisations with the help of a Grid middleware
software ([1]) such as gLite, Globus([3]), Gridbus, Legion or UNICORE. These
virtual organisations have a great disadvantage during their expansion phase,
because all of the newly joint members has to follow the rules and policies laid
down by the founders of the VO. These policies are strict rules about the site,
resource and service descriptions provided by the partners. There is a usual
language with predefined conditional statements to help the resource brokering and
scheduling algorithms to optimise the resource usage based on cost and time from
both the Grid user and the resource (or service) provider point of view. The Grid
middleware based solutions are generalised enough to provide services for resources
which provide processing power, some services, their storage capabilities etc.. The
usual price of this general approach is the large footprint of the grid middleware.

1.2 Loosely-Coupled Grid

Before Grid middleware were developed the applications, which were pretended to
use on large scale computer systems, have to be designed on a failure tolerant and
effective way because these applications should utilise free computing cycles either
on personal computers loosely connected to the network with usually low bandwidth
solutions. A typical example for this scenario is the Seti@Home project. The users
of this project can provide their computer's resources to analyse information
gathered by radio telescopes throughout the world looking for signals from an extra
terrestrial life form. There is a new initiative lead by the IBM called world
community Grid to create a common infrastructure for projects like the Seti@Home.
These projects have community support because they are dealing with problems
what people are aware of thus they could become widespread. The vendors of these

projects have to provide their computing applications for as much plattform as
possible. These applications are developed to add the user's computer to a specially
designed Grid system on a user preferred manner and platform. To exploit the idle
computing cycles of the world there is an emerging demand to provide a system
which can use the lonely home and office computers without overloading them like
these projects but on a general approach like the previously shown Grid middleware
systems.

2. NECESSITY OF THE SERVICE DEPLOYMENT

Both the closely- and loosely coupled Grid installations are quiet homogeneous
today because the strict central administration. The administrators select the Grid
middleware, the necessary libraries, the description conventions and etc. to be used
on each site. When it is time to extend this strictly administered Grid with joining to
an other Grid installation the first step of the integration is to handle the
inhomogeneity. So far systems using the same middleware could suffer problems
when a new job is submitted or a new service has to be deployed on the newly
formed Grid etc. . Deployment issues could occur quiet frequently on all kind of
Grids, the following list will provide some introduction to cases when the
deployment is necessary.

2.1 Deploying new Grid services

When a system designer makes a Grid service available the service should contain
some information in its deployment description about the required tasks and
dependencies. These dependencies and tasks partially can be identified by an
automatic agent the Grid Service Deployment Helper (GSDH). For example,
sometimes the software developers have problems to identify the hidden
dependencies of a new application. The GSDH can help them to publish the
application with its dependencies as a Grid service using the description language
available on the target Grid.

2.2 Migrating existing Grid services

In this scenario there is an existing service which can't process more requests
because the site where it is executed is overloaded. The service should be deployed
on a site with less load and some of the requests to the original service should be
redirected to the newly deployed service. This case should be a totally automated
one because the Execution Planning Services has to investigate the available sites
about their willingness to accept the service which should be deployed on them.
This kind of load balancing demands a simple way to checkpoint an instance of a
Grid service in order to transfer it to the selected site. ([2])

2.3 Grid Systems integration

If the two joining Grid systems can be more effective when some of their services
are installed on both of them to lower the communication overhead, then an
automated deployment could be necessary for the services affected with this

communication overhead problem. When the two systems start to cooperate network
traffic monitoring is important to identify the services which are heavily used on
both systems, and if all the legal statements are clarified about the transition then the
automated transfer or deployment should be started. The automation here should
translate between the different site description languages and should provide the
deployment critical information and it has to install the proper environment on the
new Grid to provide the selected service there too. ([9])

3. A DEPLOYMENT SUBSYSTEM

3.1 Requirements

There are the following requisites that a deployment system which is capable to
handle all the previously described scenarios must fulfil.
● Reliability: Grid services are stateful services thus they have a lifecycle. During

a deployment of a service other Grid services should not be affected at all, their
behaviour should not change while there is an ongoing deployment and their state
should not change just because the underlying Grid middleware is accepting a
new Grid Service. But some service containers have to be restarted when a new
service is added so the already instantiated Grid services would lose their states
and their clients would suffer from service availability problems. A proper
Deployment Subsystem should solve this issue. ([8])

● Security: [7] Trustfulness is a basic concept nowadays in the world of the Grid
technologies. An installed service should not execute malicious code or defect
systems on any other ways. In today's Grid this is not an issue because the
administrators or the people who are responsible for service deployment can
check the new Grid service before deployment and if the requirements of the
software looks problematic or the person who requested the service is untrusted
the service would not be deployed. In a heterogeneous Grid environment where
the Grid players are not known to each other the automation of the deployment
has to be aware of the future secure execution.

3.2 Proposed Architecture

1. Classifier: [5] However a service deployment can be done without any use of a
classifier the Grid should not be overloaded with requests to identify the sites
which are capable to host the service. In order to lower the number of discovery
requests existing site descriptions should be classified with the help of an
ontology built to eliminate the differences between the heterogeneous site
descriptions. Some experimental ontology have been built already by other

Figure 1: Overview

projects to support the Execution Planning System of Globus.

2. Dependency checker: When a service has been written the developer makes
some presumptions about the execution environment. These are usually hard
coded parts of the application thus it is hard to detect them. The author may
assume the application is running in a strict directory structure with some files in
them, or there is another usual assumption about the shared libraries present on
the system. This is an optional part again because the system can use the men
made descriptions so the reviewed deployment system implementations left it out.
And there could be hidden dependencies which set back the results of this service
for example there could be some references for other files or network connections
through locally initiated communications. The dependency detector has at least
two options to identify the necessary system resources, files and environment for
a particular service:
● Black box method: Run the application with some testing data which affect all

the features of it to gather the runtime dependencies such as the files to be
used, network connections during the execution or the environment variables
need to be set up.

● Code analyser: Analyse the binary (or if the source is available then them)code
of the application to look for its dependencies. Some software systems has a

Figure 2: Classification

Figure 3: Service activity monitoring

restricted license which may prohibit disassembling the code thus this way
should be an optional one.

3. Description comparator: [6] This is the second most important task during the
deployment process. Thus, all the existing systems contain at least a partial
implementation of it. After the classifier identified the sites, which might be
capable to host the Grid service, and the dependency checker built the list of the
service dependencies the system has to compare the minimum requirements
composed by the user, who would like to use the service, and the capabilities of
the possible hosting systems. It is preferable to chose a site which are most likely
capable to execute the service and the deployment and execution costs times are
in the scope of the user's needs. This part should provide a single site to be used
because the deployment subsystem should not wait for human interaction to
choose between the different results, and this is the part when all the necessary
information are available to make an optimal decision.

4. Dependency installer: This task should prepare the sandbox (the easiest way to
isolate the newly deployed executables for the security requirement) on the
selected location. The sandbox should contain all the necessary libraries (these
libraries can have an installer which has to be collected by the automated
deployment system and used during the building of the sandbox), classes,
executables and so on. If the service uses an outgoing network request to
communicate with other applications and the site has a strict policy on its
firewalls the system has to install a proxy at each side of the network to make the
network communications through a secure and enabled channel.

5. Deployer: Since automatic deployment systems exist this is a cruical part to
implement with fulfiling at least the reliability requirement. The deployer
depends on the container the Grid middleware is running on. For example the
basic Globus container has to be restarted if a new service is added which is not a
preferred solution. There are existing approaches:
● Adaptive Grid service: [9] The AGS solution can deal with the original Globus

container because it extends its functionality with a new classloader to provide
a sandbox for the newly deployed service and the possibility to add the
implementation of the new service without restarting.

● Tomcat based solutions: [6] A service oriented Grid middleware might have
been installed on an Axis enabled Tomcat which already has a runtime
deployment functionality. The only task what the system has to perform here is

Figure 4: Dependency installation and service deployment

to separate the execution of the newly deployed service from the other services
enough to fulfil the security criterion of the Deployment Subsystem.

4. OUTLOOK

With providing this system to the public the people can easily install a future Grid
middleware based software on their computer and when they are not using it they let
other people do it. The person with an idle computer can make some earnings with
lending his/her computer for Grid users, and of course he/she can use the
underlaying Grid system for his/her purposes. For example when a user just
recorded a home video about a family occasion he/she can edit and transform the
video and audio streams with the power of the Grid easily. (There could be some
services which are dealing with transitions on the partitions of the video and so on.)

REFERENCES

[1] Parvin Asadzadeh, Rajkumar Buyya, Chun Ling Kei, Deepa Nayar, and
Srikumar Venugopal: Global grids and software toolkits: A study of four grid
middleware technologies. Technical Report, 2004.
[2] R. Buyya, S. Date, Y. Mizuno-Matsumoto, S. Venugopal, and D. Abramson:
Composition and on demand deployment of distributed brain activity analysis
application on global grids. In New Frontiers in High- Performance Computing:
Proceedings of the 10th International Conference on High Performance Computing,
2003.
[3] Ian Foster, Carl Kesselman, and Steven Tuecke: The anatomy of the grid. Intl J.
Supercomputer Applications, 2001. Enabling Scalable Virtual Organizations.
[4] Robert Haas: Service Deployment in Programmable Networks. PhD thesis,
Swiss Federal Institute of Technology, 2003.
[5] Gabor Kecskemeti: Comparison of Adaptive Classification Methods. Master's
thesis, University of Miskolc, Department of Information Technology, 2004.
[6] Matthew Smith, Thomas Friese, and Bernd Freisleben: Hot service deployment
in an ad hoc grid environment. ICSOC04, 2004.
[7] Matthew Smith, Thomas Friese, and Bernd Freisleben: Towards a
serviceoriented ad hoc grid. ISPDC/HeteroPar, 2004.
[8] Ai Ting, Wang Caixia, and Xie Yong: Dynamic Grid Service Deployment, 2004.
[9] Jon B. Weissman, Seonho Kim, and Darin England: Supporting the Dynamic
Grid Service Lifecycle, 2004.

