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Abstract Manual deployment of an application usually requires expertise both about the
underlying system and the application. To support on demand service deploy-
ment or self healing services this paper describes an extension the Globus
Workspace Service [12]. This extension includes creating virtual appliances
for Grid services, service deployment from a repository, and influencing the ser-
vice schedules by altering execution planning services, candidate set generators
or information systems.
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1. INTRODUCTION

In this paper deployment is defined as a composite task. It starts with the
selection of the site where further deployment steps take place. Then follows
with the installation of the application’s code, which is configured to match
its new environment later on. After the initial configuration of the application
the activation step enables its usage. The next deployment steps are closely
related to system maintenance, and they are initiated later in the application’s
lifecycle. Adaptation is used when the application has to be reconfigured while
it is running. Meanwhile other maintenance steps are always preceded by
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deactivation, which disables the usage of the application temporarily. The two
deactivation dependent steps are the update and the decommission. The update
changes the application’s code, which is usually followed by a configuration
step before the application can be active again. Meanwhile the decommission
removes all the unnecessary application code and removes the application
permanently from the site.

Nowadays application deployment is done by system administrators, be-
cause researchers usually cannot deal with their applications (e.g. BLAST [1],
CHARMm [14], GAMESS-UK [10]) complex deployment requirements. As
a result in a system where the deployment tasks have to be done manually
the researchers have to run their applications on those sites where they were
installed by an administrator. Even if these researchers could have deployed
these applications, site policies in production Grid environments usually do not
allow users to deploy new applications. Therefore, they should ask the site
administrators to install and configure the applications, they need.

If users have the source codes and they are able to compile these, they have
binaries of the applications, which can be staged to the executor site elimin-
ating the deployment. However, this solution has several drawbacks. First
the drawback for the user is that the application has to be compiled for every
site. Also the application usually cannot make network connections with the
outside world - e.g. to a database. Finally, the submission has to prepare the
executor environment for the application every time. The second drawback
is the increased network traffic for the frequent full execution environment
submissions. And further drawbacks appear on the system administrator’s side
where every new application is a possible danger to the system, because ad-
minstrators have limited control over this code. Therefore, a single submission
could affect other executions.

As Grid moves towards service-orientation trusted applications are exposed
as services on the sites, and the users can only execute these services. As a
result grid sites disable the “regular” execution of applications, on the other
hand they provide service interfaces for their users. Users can access the
deployed applications on the different sites through these interfaces. Installing
a new application in a service-oriented Grid consists of two main steps. First
deploying the application, installing its dependencies, configuring it, preparing
network connections, etc. Then providing a service-oriented interface to access
the application and deploy the interface on a Grid service container.

This service interface could be either a generic or specific one. The generic
interface is provided by a Grid middleware (e.g. OGSA-BES implementations
and JSDL repositories) or other generic application wrappers (e.g. AHE [5],
GEMLCA [6], gFac [11]). The specific interface is specific to the application
and written by either the application developers or by the user community.
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Manual deployment of the application usually requires expertise both about
the underlying system and the application. In several cases it cannot be done
without the assistance from the system administrators. There is a need for a
solution that can perform deployments without any specific expertise. This
solution should also act between the limits set up by the system administrators.
These kind of solutions are called automatic service deployment systems and
they can both deploy the application and activate the service interface for further
uses. There are two major approaches for automatic deployment: service-
oriented and non-service-oriented solutions. The service-oriented solutions
operate at service container level. Therefore they are not capable to handle
the background application’s management tasks. The non-service-oriented
solutions manage the service container as a common software component on
which the currently deployed software depends.

Automatic service deployment could be based on virtualisation. The new
hardware architectures give more and more support for virtualisation. There-
fore, the software also has to tackle this issue by automating deployment tasks
of virtual appliances of Grid services. This paper defines virtual appliances
(VA) as a single application and its service interfaces with all of their de-
pendencies (including the supporting OS) in a virtual machine image. Grid
researchers have already developed some solutions in this area, for example:
the XenoServer plattform [15], the Workspace Service (WS) [12] for Globus
Toolkit 4 [7].

The paper is organised on the following way. Section 2 discusses related
works, Section 3 introduces some of the most relevant issues which could
be solved the by the deployment architecture proposed in Section 4, then
Section 5 describes an advanced virtual appliance creation service, and Section
6 provides solutions to alter an an execution schedule to include deployments,
finally Section 7 concludes this work.

2. RELATED WORKS

WS [12] (workspace service) as a globus incubator project supports wide
range of scenarios. These include virtual workspaces, virtual clusters and
service deployment ranging from installing a large service stack like ATLAS,
to deploying a single WSRF service. For service deployment purposes the
Virtual Machine (VM) image of the service should be available. The WS is
designed to support several virtual machines - XEN [3], VMWare, VServer -
to accomplish its task.

The XenoServer open platform [15] is an open distributed architecture based
on the XEN virtualization technique. It is aiming for global public computing.
The platform provides services for server lookup, registry, distributed storage
and a widely available virtualization server.



428 Book Title

VMPlants [13] project proposes an automated virtual machine configuration
and creation service heavily dependent on software dependency graphs. This
project stays within cluster boundaries.

These solutions are focusing on the deployment process itself and do not
leverage their benefits on higher levels like automation. As an opposite the
solution presented in this paper is focusing on possible extensions on the current
deployment systems. The proposed architecture integrates the openness of the
XenoServer platform, the widespread virtual machine support of the Workspace
Service, and the DAG based deployment solution presented by the VMPlants.
This paper also introduces higher-level services supporting the service lifecycle
on grid architectural level.

3. ISSUES OF A VIRTUALIZATION BASED
DEPLOYMENT SYSTEM

On demand deployment and self healing services are among the most import-
ant improvements automatic service deployment could add to the deployment
process. With on-demand deployment the applications are transferred, installed
and configured on the target site prior their execution. The deployment could
be initiated by a broker or an advance reservation system. As these systems
aggregate the invocation requests, they have an overview on the level of de-
mand. After the initiation step, the application’s code is transferred either from
a repository or from the location the requester specifies. Repositories can be the
source of trust for the system administrators who usually do not trust arbitrary
code. Therefore on demand deployment uses either centralised or distributed
repositories. Centralised repositories store all the required and dependent soft-
ware packages in the same location with their configuration. In distributed
repositories, packages are spread around the Grid. Distributed repositories
could store pre-packaged software components and they have references to
their dependencies. Alternatively software components could be distributed
around the Grid using replication solutions.

The newly deployed software components might interfere with the already
deployed ones. For example the software installed might need outgoing net-
work connections, therefore on every local hardware resource (e.g. disks,
network, processing power) the service should have strict limitations accord-
ing to the service level agreements. If malfunction occurs in a Grid service
and the source of malfunction can be identified the service can reconfigure or
reinstall the affected components. Service faults can be recognized through
advance fault prediction or active service calls. Advance fault prediction uses
component monitors to determine their misbehaviour. Active service calls can
return regular output messages or fault messages. If the service response is a
fault message the service should identify the cause of the fault which could be
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internal or external. In case of internal causes the component causing the fault
should be repaired. If the service responds with a regular response message the
response has to be validated against the semantics of the service and violations
should be reported back to the service initiating the self-healing process.

The service deployment with virtualisation can support both the on-demand
deployment and the self-healing services in a secure way even at the site level.
Using virtualisation techniques, a software repository for on-demand deploy-
ment should hold the virtual appliances of the services. Requirements against
the hosting environment should also be stored together with the virtual appli-
ances because the virtual appliances are virtualisation technique (e.g. Xen,
VMVare, VirtualPC) dependent. Virtual machines could also provide restrict-
ive domains for the deployed software in them. Therefore the limitations -
e.g. outgoing network bandwidth, IP address - declared in the service level
aggreements of the site can be enforced via the virtualisation software. In
order to support self-healing, virtual appliances should be distributed in several
packages - a base package, and delta packages. The base package is a minimal
and roboust package on which the delta packages are built. It should con-
tain the necessary components to configure, install further components of the
application before their execution, and it should be capable to reinstall these
components when malfunction arises. The delta packages should represent
those software components which the self healing service is able to repair. The
delta packages should be distributed with their individual configuration details
in order to support on-demand reconfiguration.

4. AUTOMATIC SERVICE DEPLOYMENT

This paper proposes the extension of the deployment system of the Virtual
Workspace Service (WS) with the following two new services, which solve the
issues identified by Section 3.

Automated Virtual Appliance Creation Service (AVS). This service sup-
ports deployment by creating virtual appliances of Grid services. The virtual
appliances should be stored in an appliance repository, for example in the Ap-
plication Contents Service [9] (ACS). The ACS provides a simple interface
for managing Application Archives (AA) [9], which holds both the application
packages and their configuration. The WS should access the contents of the
service by using the endpoint references provided by the ACS for each AA.
The virtual appliances (or service images) should be minimized because the
repository may hold large number of virtual appliances, and because smaller
sized appliances could be delivered faster to the target site. As a result, a
virtual appliance shrinker should optimize the appliance’s archive, even if it
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is using different virtual machine image formats of the different virtualization
techniques.

Scheduler Assistant Service (SAS). The SAS helps to define the sites
where the service can be installed. It should also support selection among
these sites, the SAS should be used together with the OGSA [8] Execution
Planning Service (EPS), more precisely, it’s Candidate Set Generators (CSG).
CSG can define scheduling candidates for sites, which are capable of deploying
a service in a reasonable time. EPS could resolve schedules with deployment
on following ways. First with schedule-driven deployment the EPS has to insert
extra deployment jobs in the schedule, which install and configure the service
on the specified site. The second way to resolve schedules is the container-
managed deployment technique, where the EPS does not need to deal with the
deployment tasks, because on an unknown service call the service container
should deploy the service from the repository.

The new services are shown in operation using XEN on Figure 1, which
can be split to two phases: virtual appliance creation and service deployment
phase.

Phase I - Virtual appliance creation. In step (1) the client asks the
AVS to store the Domain M’s VM image of Grid site A with a Grid service
in it in an AA instance. In this step the client is an entity wishing to publish
a Grid service as a virtual appliance - e.g. Grid service developer, or Grid
scheduler who has made schedules for a Grid service already deployed on a
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site but not available in any repositories. Then in step (2) AVS generates a basic
virtual appliance from the XEN [3] Domain M. If its size can be decreased,
the service shrinks (or optimizes) the virtual appliance. Which is followed by
step (3) where the AVS stores the base appliance and the delta packages in an
Application Archive (AA) instance, and adds the configuration and dependency
information to support later deployment requests. Finally in step (4) the AVS
acknowledges the virtual appliance ( or image) creation by sending its ACS
End Point Reference (EPR) to the client.

Phase II - Service Deployment from a repository. This phase might not
directly follow the virtual appliance creation phase, but it can be repeated as
many times as required and it is always preceded by the single execution of
phase I. Step (5) is the first step of this phase, where the client asks the virtual
workspace service to deploy the VM image using the ACS EPR returned by
the previous phase. In this step the client is an entity having an ACS EPR,
e.g. a regular user initiating a deployment, a Grid broker trying to load balance
between sites. Then step (6) follows with the WSFactory request to the ACS
in order to provide the application archive (AA) instance and its configuration
details (including the configuration of the Virtual Workspace). As a result the
VM image is transferred to the Grid Site B in step (7). Then in step (8) the
WS creates a virtual workspace according to the configuration using the VM
image embedded in the AA instance. The endpoint of the created workspace is
returned in step (9). Finally in step (10) the client forwards any further service
requests to the re-deployed Grid service on Site B. If necessary it manages
the VM instance through the previously received EPR (VM termination and
configuration changes).

The Automated Virtual Appliance Creation Service and the Scheduler As-
sistant Service are described in Section 4 and Section 5, respectively.

5. AUTOMATIC VIRTUAL APPLIANCE CREATION
SERVICE (AVS)

The Automatic Virtual Appliance Creation Service creates and stores virtual
appliances in an ACS repository [9] to make the appliances available for WS.
The service is built on the ACS-WS interface, which enables deployment in
Grids. The interface should enable WS to deploy virtual appliances retrieved
as AA instances from an ACS repository. The AA instances store the virtual
appliances and their states. The state of the virtual appliance is composed of
WS resource properties and VM configuration parameters. This service has
the following functionality:
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Creating virtual appliances. The AVS service implements AVS-WS in-
terface. The first implementation of this service uses the XEN Virtual Machine
[3]. The service provides four operations. First, it generates an AA instance.
Secondly, the service instructs the XEN VM to make a disk and memory image
of the domain and store these images in the AA instance. Thirdly, it collects
a VM setup, such as XEN domain specific setup and if exists, the network
shaping setup for the Domain 0 VM and convert these parameters into WS
resource properties. Finally, it uploads the state of the VM image to the AA.

Optimizing virtual appliances. To minimize the size of virtual appliances,
they should be shrinked. Efficient image shrinking can be achieved by active
fault injection, which is a flexible dependency detection algorithm. After
the image shrinking process each WSRF (Web Services Resource Framework)
service should be validated against the developer provided tests. The subsystem
dependencies detected during the shrinking process should be stored for future
use, for example in a CDL [4] (Configuration Description Language) document
or in a model driven deployment descriptor.

Repackaging the appliance. The service builds deployment DAGs [13]
to define deployments. These DAGs are built on top of configuration and
installation nodes. Each DAG starts from a base virtual appliance - which is
replicated over the Grid sites. The base virtual appliance is a non functional
virtual appliance capable of holding further packages required for the service.
The optimal selection of the base appliance is crucial, because the system has
to make compromises between transfer time (deliver a complete VA from a
remote location) and on site deployment time (construct the required VA from
more accessible pieces on site).

Identifying base appliances. The AVS regularly analyzes the AAs in the
repository and checks the similarities of their deployment DAGs [13]. The

Figure 2. Service Deployment DAGs
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similarities mean common roots in the DAGs. Figure 2 presents multi package
(Px) deployment strategies for 2 services (Sx). The dashed packages are the
similar deployment tasks in the two deployments. If the similar items exceed a
system-level threshold, then the common nodes can be stored in a base virtual
appliance (BVa). This base appliance is going to be spread over the Grid by
replication. Finally, the Application Archives used for building the base virtual
appliance has to be revised. The archives should build on this newly created
base appliance. The deployment of an archive built on a base appliance is
composed of two phases: first the base appliance is deployed, and then this
base appliance is started in a self-healing state. During the self-healing process
the BVa installs and configures the missing packages for healthy operation.

6. SCHEDULER ASSISTANT SERVICE (SAS)

This service is built on an ACS repository [9] which is usually prepared by
the AVS. It’s task to define a schedule for executing service requests taking
into consideration sites where service deployments are feasible. If the already
deployed services are busy (or in a degraded state), then it checks whether any
other Grid sites can deliver the service with a new deployment.

OGSA-EPS [8] has two main connections with the outside world: the Can-
didate Set Generators, and the Information Services (IS). In order to influence
the schedules the EPS makes, the assistant service could be installed on any of
the following components or on their combination:

Candidate Set Generators. The scheduler assistant generates extra can-
didate sites for execution. These sites are the ones where the requested services
have not been deployed.

Execution Planning Services. The scheduler assistant queries the CSG to
retrieve the list of sites, which can handle the service request and which can
deploy the service in a given time period. If no site can deliver the requested
service, then the EPS makes a decision upon the results of the second query
and adds two separate entries to the schedule - the deployment task, and the
service call.

Information Services. The scheduler assistant generates virtual entries
in the information services. Since both the CSG and the EPS heavily rely on
the IS the assistant can include information which might alter their decision.
This information states service presence on sites where the service is not even
deployed. The QoS information stored in the virtual entries are degraded
to represent the latency the deployment would cause before serving the first
request. This solution has serious problems compared with the previous two
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ones. The IS has to be filled with the full service site matrix, which could
increase query times and load on the IS nodes. Non-realistic information is
introduced in the information systems this might affect some systems.

Installation of the assistant service or services next to an OGSA-EPS enabled
site depends on the grid policies. The assistant will be able to cooperate with
an existing EPS as a CSG or an IS source, or it can offer a new, enhanced EPS
on deployment enabled Grids.

The CSG assistant is a distributed, ontology-based adaptive classifier, to
define a set of resources on which a job can be executed. The CSG can build
its classification rules using the specific attributes of the local IS. Each CSG
may have a feedback about the performance of the schedule made upon its
candidates in order to further improve its classification rules using a semi-
supervised learning. The CSGs build a P2P network and the EPS’s candidate
nomination request might spread over the neighboring CSGs for refinement -
the request is sent when the quality of the current candidates is below a certain
limit. When a new Grid with a CSG is deployed it inherits the rules of the
neighboring classifiers at the startup. A SAS extended CSG has three interfaces
to interoperate with other CSGs and the EPS. The P2P network formed by CSGs
has two interfaces. The first P2P interface manages the ontology of different
ISs by sharing the classifier rules and the common ontology patterns distributed
as an OWL schema. While the second P2P interface supports distributing the
decision-making process, and the resulting candidate set can be sent directly to
the EPS without traversing through peers. The third interface lays between the
EPS and the CSGs to support the supervised learning technique of the CSGs -
the EPS reports the success rate of the received candidate set to the originator.

The EPS assistant has different implementations depending on how the other
parts of the SAS are deployed. If both the CSG assistant and the EPS assistant
are deployed then the EPS can make smarter decisions. After receiving the
candidate site-set the EPS estimates the deployment and usage costs of the
given service per candidate. To estimate the deployment costs the EPS queries
the WS with an ACS endpoint reference, which identifies a particular virtual
appliance. The usage costs also include, for example the cost of the inter-service
communications - e.g. if a service is deployed closer to its dependencies then the
costs decrease. Therefore, the EPS estimates the change in the communication
cost between the affected endpoints (e.g. it checks for latencies and available
bandwidth). The SAS has a plug-in based architecture in order to support
different agents discovering different aspects of the deployment. If the EPS
assistant is deployed without the CSG assistant then the EPS could generate
deployment jobs on overloaded situations, these deployment jobs are simple
service calls to the Virtual Workspace Service with the proper ACS EPR.

The IS assistant provides information sources on sites which can accept ser-
vice calls after deployment. The SAS calculates the necessary metrics specified
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by the GLUE schema [2] - like EstimatedResponseTime, WorstResponseTime -
for each site in the Grid according to the local service availability, and publishes
them in the ServiceData entry.

The SAS-enabled Grid services build on the fact that the ACS EPR is
available for the services. Deployments use this EPR to initiate the installation
process on the selected site. Therefore, the most crucial point in the system is
the place of the repository reference. The SAS can collect the reference from
various locations. First it can collect from the standard service repository, the
UDDI, which can hold metadata for each service, if this metadata is a valid
ACS EPR the SAS uses it for deployments. Secondly the SAS can also collect
the EPR from the GLUE-Schema. The schema specifies Service entries per
site, and every service entity has a ServiceData map, which holds key value
pairs for extended use of the schema’s information. One of the ServiceData
objects in the per service description should be the ACS EPR. Finally the most
commonly available service description in the web services world is the WSDL.
It can be customized and further extended as described in the W3C standards.
The WSDL can describe which virtual appliance was used for instantiating the
service by including an ACS EPR element after the service element the WSDL.
As a consequence both the GLUE schema and the UDDI is supported without
the extensions on them, because they both hold references to the WSDL the
service conforms with.

7. CONCLUSION AND FUTURE WORK

This paper defined an infrastructure on which an automated service de-
ployment solution can build on. It has covered the lifecycle of service and
application deployment from the packaging to the execution. In the future
the interface of the self healing virtual appliance has to be further developed
to support local and system wide malfunction alerts, and self monitoring sys-
tems. Also the SAS should be extended towards seamless integration with
other execution management subsystems in OGSA like CDDLM [4].
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