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Chapter 1

Abstract

The objectives of this paper are the next:

1. Provide an introduction to the document classification and clustering tasks
and techniques and systematise them.

2. Choose two classification methods which can create usable results for hu-
mans, and analyse their effectiveness.

3. Analyse the ability of these methods to learn about other documents with-
out repeating the whole learning process.

4. Implement a test system to compare the base and the adaptive methods
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Chapter 2

Background Research

2.1 Introduction

The large amount of data which has to be processed by the project implies data
mining techniques, thus to understand what the program could do the reader
has to be aware to the concepts of these methods.

2.1.1 The Concept Of Data Mining

[2] If we want to understand the concept of the Data Mining we have to know
the background of the causative theories.

Nowadays we have very much information in local databases and on the
Internet. The aggregation of this information usually made by a relational
database system, which has it’s roots in the early 1980s. This large amount
of data can not reach it’s original aim to get knowledge from it, because the
relational database systems are query oriented and for the best performance
the data have to stored in normalised form. Normalisation made to decrease
the redundancy and simplify updating of data. But it make the needed data
fragmented, and if we want to collect the results of a complex query then we
have to walk through unnecessary relations to connect the requested elements.
The normalisation causes slowly reveal-able relations. Furthermore the person
who does not know the actual database management system’s specialities the
query writing could be difficult. The relations contains a lot of data which seem
to be unimportant for the query but without these data we can not get to our
needs.

Accordingly a simply usable data management layer becomes necessary.
This layer is intended to use anyone who want to gather information from
the database, so it should be easily understandable and fast. Because the col-
lected data, which is stored in the database system, are for decision support
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usually. These facts lead to On-Line Analytical Processing (OLAP) technique.
Nowadays it is the other big branch of the database systems, which usually
cooperates with the legacy transaction based systems. These systems usually
based on data cube model which is specially designed to store large amount of
data which can be accessed in every context. The OLAP technique developed
for the users. But if we want to know how it is working we need to know the
concept of the data warehouses, which is usually in the background. But if we
need to interact with an OLAP system as an information engineer we need to
know a lot more about this hidden thing. The data warehouses contains data
from heterogeneous sources which are filtered and checked to prove the best
composition of the information gathered from there. Because the main aim
is to be fast in execution of complex queries, we make data available in every
context thus these techniques uses the storage capacities wastefully.

Information lie not only in certain data values, but in the meaning of these
series of values. And at last we have arrived: the data mining is a method set
which is able to find background information or coherency of a large data set.
To retrieve the information from the system we should use artificial intelligence
methods. Nowadays the data mining integrates artificial intelligence to achieve
its aims, because it contains learning and knowledge representation methods
which was developed in the last 40 years.

2.1.2 The Process Of Data Mining

This process has several stages which are strongly connected with the opera-
tions of OLAP systems. These are data loading, filtering and standardisation
procedures which was developed for each newly deployed data warehouse or
OLAP system. And these systems are the lower layers of a data mine, so the
performance of the data mining applications depends on the preparation of the
sources of these applications. The main property of an adequate data warehouse
is to be sparing and extensible any time.

Unlike the users of the legacy database systems, the data mining applications
usually have to analyse the whole database for a simple query, so the data
warehouse behind the application should be the smallest which could satisfy
the possible requests. For this reason we can achieve high efficiency with the
data set’s reduction which can be made by a deviance analyser or a similarity
searcher. These methods are basically for throwing out the elements which can
not add more information for the system or which make the system unstable.
The other way to get the results faster is to calculate the aggregated values
in every possible context, so when a new query is running it can use these
previously calculated values. But a data cube could have a lot of viewing point
which contains hardly more information than others, so we can leave these
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aggregated values to be calculated when they are needed. Then the knowledge
extraction could be easier and faster.

The main phase of data mining begins after the preparation of data, and
this phase usually based on statistical methods which could be hid behind some
artificial intelligence technique. These methods have several aims which are
listed here [4]:

Cluster analysis is to find any natural group structure of a currently undif-
ferentiated data set. Usually this uses a distance function to determine
the borders of the newly defined groups. There we could use unsuper-
vised learning methods such as: self organising neural networks (SOM),
FP growth trees.

Classification: this technique’s goal is to categorise elements. This categori-
sation is based on a sample set, which was filled with special manually
categorised elements. During the preparation methods supervised learning
could be used, such as back propagation and Hopefield neural networks,
inductive learning methods (like decision trees, case based reasoning), etc.

Prediction: this technique’s aim is to get future trends and data with using
the data distribution in time, so the data cube have to be accessed through
the dimension of time.

Deviation analysis: The purpose of deviation analysis is to find extremities
in the data set which could be used for special dissection.

Exploration of associative rules: this technique’s goal is to find causality
between specific data elements. With this method we can identify events,
attributes or entities which implicate others in the same transaction or
time period.

So at the end of the process we get highly filtered concentrate of information
which can reveal unknown facts about the data set.

2.2 Machine Learning

[8] Machine learning algorithms used to gather concept descriptions from pre-
pared examples with background knowledge which usually a man made simpli-
fication of the learning algorithm about the current problem. These algorithms
can be grouped by three criteria defined by Michie in 1988 on “3rd European
working session on Learning”:
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1. Weak criterion: The system uses sample data to generate an updated
basis for improved performance of subsequent data.

2. Strong criterion: weak criterion is satisfied. Moreover, the system can
communicate its internal updates in explicit symbolic form.

3. Ultra-strong criterion: strong criteria is satisfied. Moreover, the system
can communicate its internal updates in an operationally effective sym-
bolic form.

Every learning system satisfies the weak criterion. Only the algorithms
which are able to give symbolic form of the learned concepts can satisfy the
strong one. If the symbolic description of the concepts easily usable by people
then the system which produced this satisfies the ultra-strong criteria. It means
that if it found a description then we do not need to use the system to analyse
the subsequent data because a person can do on an effective way.

2.2.1 Knowledge Representation

The computer has to learn concepts because the interacting people usually do
not know anything about the background of the GUIs. So the computer has to
know about concepts through examples and background knowledge. So it needs
a knowledge representation model which both the computer and its users can
understand. AI researchers has defined several models to satisfy these needs.
Here are some examples:

Zero order logic (ZOL), or propositional calculus: the knowledge is rep-
resented as conjunction of Boolean constraints that stand for the individ-
ual features. For example here is a simple representation of an English
person:

EnglishPerson ⇐ ComesFromUK ∧ SpeaksEnglish

This representation method has low descriptive power because it is difficult
to capture in this way complex concepts encountered in daily life.

Attributional logic: This type of representation is only an extension of ZOL’s
notation so attribute logic has low expressiveness like ZOL. The boolean
constraints of the ZOL become multi value variables which make the
knowledge clearer than the simpler ones in the ZOL. Examples are often
presented in a table where each row represents an example and column
stands for an attribute. See table 2.1 on page 10 as an example.
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Predicate logic based techniques are other representation methods which
has more descriptive power for example which are based on predicate logic
such as horn clauses like clauses in the Prolog language. These techniques
are the base of second order logic and explicitly constrained languages
which sometimes enables recursion in the predicates. With these possi-
bilities the concepts can be easily described for the computer, but using
these rules could be expensive.

Alternative representations: The most popular alternative non logic based
representation method is using Minsky’s frames. But in special cases
abstract mathematical structures like grammars and finite automata could
lead towards the target on a fast way.

If the information stored on one of this ways, the writer of the program could
develop a system which satisfies the ultra-strong criterion of machine learning
applications (see section 2.2 on page 6).

2.3 Classification

[4] If somebody wants to decide which group is the best for an object then it is a
classification problem. Classification is everywhere you can find it for instance in
the biology - as Council, Monsieur Arronax’s best colleague, categorise species
around the newly explored depths of the world on the deck of the Nautilus - or
in the chemistry. Classification is not a new concept. Lot of mathematicians
work on it in the whole twentieth century and before. But it is forgotten time to
time so each rediscovery gives to it a new notation system. But today computers
can be used for best results in complex problems. The classification problems
could be solved by artificial intelligence techniques mostly which are based on
a compound of many mathematical theories for example statistics.

Usual classification methods based on attributional logic (see section 2.2.1
on page 7), so the definition which is described below based on this fact. Here
are the definitions of classification’s basic principles:

[1] An attribute (ai ∈ A where i = 1, 2 . . . W ) is a measurable property of
an entity. Every attribute has a possible value set (vai,j ∈ Vai

), so an entity
(−→εk = (va1,k, . . . vaW ,k)) is a vector in the attribute space. A class (ol ∈ O) is a
user defined concept for example in this paper we used such classes as politics
and economics. With these classes we can define a new vector space: Ω which
shows the attended classes so the lth dimension of this space should be 1 if ol is
present or 0 else.

With these basic states we can define a classifier or a classification rule as
the following function(d):
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−→
Rk = d(−→εk ) where

−→
Rk = (rk,1, . . . rk,C) ∈ Ω (2.1)

Usually the classification rules derived from examples (Ξ = {ξ1, . . . , ξE}),
these are entities with a special attribute which shows the man made classifica-

tion values for its owner: ξm = {−→εm,
−−−−→
Rk,MM}

2.3.1 Adaptability

After the learning phase of the classification rules it could be necessary to extend
the base of the learning. The usual classifiers are for learning a constant base,
so if it change the costly learning has to be started again from the beginning.
Thus there is a need for adaptability or incremental learning capability in these
methods. There are two methods of extending the learning set, the first acts
immediately when a misclassification occurs. The other uses a threshold value
for the misclassification rate and acts after the misclassification rate risen above
this vale.

If a classifier has used like this it easily can lead to a messy classification
rule, because it contains some rules from the early stages of its life which should
be thrown out when becomes too old or misleading. After throwing out some
misleading examples the classifier has to be relearned. So it causes the same
problem described above. Which could be solved the inverse method of that.

Each classification algorithms has specialities to solve the incremental learn-
ing problem, so these will be discussed on their sections.

2.3.2 Bayesian Classifiers

[4] The Bayesian classifiers use simply probabilities to estimate
−→
Rk. The concept

of these routines is to reduce the total error of classification. So the program

has to choose the most probable
−→
Rk if it has to classify −→εk . So let start with a

simple example:

An Example

There are two horses (Sunray and Steamer) in a race whose has a chance to win,
and their chances are: P (Sunraywins) = 0.7 and P (Steamerwins) = 0.3. If we
has to classify this case, and we has the next class: o1 = “Horse wins”, then our
classifier must have to give this answer when A = {Horse} and −→εk = {Sunray}:
−→
Rk = (1). But we know that Sunray has problems on rainy days so its winning
chance will be the next: P (Sunraywins|rainy) = 0.2. When the attribute
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space contains the weather variable the decisions which has to be made by the
classifier should be described like in table 2.1.

Case Horse Weather Horse wins
#1 Sunray Sunny true
#2 Sunray Rainy false
#3 Steamer Sunny false
#4 Steamer Rainy true

Table 2.1: Attributional logic, theoretical output of the horse race

The Classification Rule

In table 2.1 the Bayes rule showed its form: the classifier should choose the
class with the biggest conditional probability depending on the attributes of
the actual entity.

rk,l =

{
1 if P (ol|−→εk ) = maxj P (oj|−→εk )
0 else

(2.2)

But this rule is a dead end if we have a big attribute space which makes
much bigger k values than the computers can evaluate this expression. So the
−→εk has to be thrown out from the condition, for this reason we need to use the
Bayes theorem:

P (ol|−→εk ) =
P (−→εk |ol) · P (ol)

P (−→εk )

To get the easiest form of the classifier this assumption has to be made
about the independence of the attributes (Before this assumption this kind of
classifiers are the best because the maximisation of the conditional probabilities,
see section 1.5 of [1].):

P (−→εk |ol) =
W∏
i=1

P (vai,k|ol)

And the final form of the Naive Bayesian classifier :
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NBCR(k, l) =
W∏
i=1

P (vai,k|ol) · P (ol)

MNBCR(k) = max
j

NBCR(k, j)

rk,l =

{
1 if NBCR(k, l) = MNBCR(k)
0 else

(2.3)

Results With Multiple Classes

Text documents usually has more class memberships because the class defini-
tions are overlapped, so the result has to be altered to show this:

rk,l,NB =

{
1 if NBCR(k, l) ≥ MNBCR(k) · µ
0 else

(2.4)

In equation 2.4 the µ ∈ (0, 1] is used to make a limit for the acceptable
probability difference of the classes from the class with the maximal probability.
As you can see we can’t extract any information from this classifier which could
help the people because the rules which they have to apply are pretty much.
Thus these rules have to contain every ai,oj combination which means there are
C ·W rules.

Adaptability

The Bayesian classifiers could be up-to-date easily, because only some of the
probabilities, which is bothered by the newcomer, ought to be recalculated.

Applications

The applications of this classification method are widespread, but there are some
examples in [4] which show how to use Bayesian classifiers when the distribution
of the examples are known or can be effectively guessed. These methods using
Fisher’s iris data to categorise the species of iris, and for practical purposes
transistor gain and noise information to decide which freshly produced transistor
is good. In this fields the Bayesian classifiers are really usable, because the
examples are in normal distribution.

2.3.3 Decision Trees

[3] In the early 1960s the computer scientists formed a new tree based learning
system with the basis of cognitive psychology. This system is based on a the
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divide and conquer method similar to the simplification and concept detection
technique of a human mind so it can be easily understandable by everybody
not like the other classification techniques. Then Hunt Marine and Stone de-
fined their Concept Learning System (CLS) as the implementation of the newly
invented technologies. The algorithm consists of three simply defined different
steps:

1. Pick a criterion which separates the set on the best way.

2. Make the separation with this criterion.

3. Go back to the 1st step with each separated set until this set becomes an
unique definition.

The techniques which are applying the CLS algorithm usually based on
attribute logic, and the criterions are about to separate the sets by the attribute
values. Thus this paper contains information only about the attribute based
concept learning systems.

The decision tree is a cycle free graph which has nodes to support decisions.
A branch of the tree represents a precedence relationship between the connected
nodes. The weight of a branch is an element of the attribute value set (Vai

) of
origin node of the branch. In the tree the attributes are represented as nodes
with as many branches originating from this as the cardinality (|Vai

|) of the
value set of the actual attribute. The last building block of the tree is the class
node which is leaf in every context and shows the result of the classification.
When the trees have drawn the attributes are in rounded boxes, the branches
are arrows with the actual criterion and the classes are simple boxes.

�� ���� ��a1,1

va1,1,1
hhhhhhhhhh

tthhhhhhhhhh va1,1,2

��
va1,1,3

VVVVVVVVVV

**VVVVVVVVVV�� ���� ��a2,2

va2,2,1
{{{

}}{{
{

va2,2,2

EEE

""E
EE

�� ���� ��a2,3

va2,3,1
{{{

}}{{
{

va2,3,2

CCC

!!C
CC

�� ���� ��a2,4

va2,4,1
yyy

||yyy
va2,4,2

CCC

!!C
CC

o1
�� ���� ��a3,5

va3,5,1
xxx

||xx
x

va3,5,2

DDD

!!D
DD

o2 o3
�� ���� ��a3,6

va3,6,1
zzz

}}zzz
va3,6,2

FFF

""F
FF

o4

o4 o5 o6 o2

Figure 2.1: Simple decision tree
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Usage

[8] There are two possibilities to use this tree to classify a newcomer entity,
these are listed here:

The top-down method: The computer could use the tree as a person. To do
this it should go through steps shown by figure 2.2.

�� ���� ��Start //Make the root
node actual.

��
The result is

the actual class
of this node.

��

Check the actual
node is an
attribute.

Falseoo

True ��

Make the new
node actual.

oo

�� ���� ��Stop

Set the actual
value to the value
of the newcomer’s

attribute like
the actual node.

//
Go through the
branch with the

actual value.

OO

Figure 2.2: Top-down usage of decision trees

The bottom-up method: Logical expressions could be made from a tree, and
when a newcomer arrives the classifier just need to check which expression
is true and this is the result. An expression have to be built with each
path from the root to a leaf. This has to contain all nodes and values
which was touched until the leaf. The decision tree on figure 2.1 could
be described like table 2.2 which shows 2 different methods of making

o1 ⇐ a1,1 = va1,1,1 ∧ a2,2 = va2,2,1

o2 ⇐ a1,1 = va1,1,2 ∧ a2,3 = va2,3,1

o2 ⇐ a1,1 = va1,1,3 ∧ a2,4 = va2,4,1 ∧ a3,6 = va3,6,2

o3 ⇐ a1,1 = va1,1,2 ∧ a2,3 = va2,3,2

o4 ⇐ (a1,1 = va1,1,3 ∧ a2,4 = va2,4,2)∨
(a1,1 = va1,1,1 ∧ a2,2 = va2,2,2 ∧ a3,5 = va3,5,1)

o5 ⇐ a1,1 = va1,1,1 ∧ a2,2 = va2,2,2 ∧ a3,5 = va3,5,2

o6 ⇐ a1,1 = va1,1,3 ∧ a2,4 = va2,4,1 ∧ a3,6 = va3,6,1

Table 2.2: Figure 2.1 represented by logical expressions
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expressions: Because o2 and o4 have multiple appearances in the tree, and
these appearances might join with a logical “or” operator otherwise the
leaves with same classes are in different expressions.

The expression list, which contains only one row per class, is the Classifi-
cation Rule (d(−→εk )) of the decision tree based classifiers.

If a man has the graph or the logical expressions he could easily classify a
newcomer, thus this classification technique fulfils the ultra-strong criteria of
the machine learning (see section 2.2 on page 6). Although tree created by a
machine could be very large one, so the trees must be prepared while the tree
are growing. (See page 16 for further information.)

Construction

[1] To implement the CLS (see on page 12) some extra steps needed which
are exactly defined in the TDIDT (Top Down Induction of Decision Trees) or
ID3 (Itemised Dichotomizer 3 ) algorithm. Each separation in the CLS make a
series of nodes which are connected to the actual attribute with it’s values. The
node with unique definition becomes a class descriptor ( ol ) others implicate
another decisions thus they are attributes (

�� ��ai ). The separation criterion says

that attribute (ac) should be chosen to make the disjoint set of examples which
has the same value on the chosen attribute Ξvac,j

= {ξm|vac,m = vac,j} (see figure
2.3 on page 15). The rule works as a function (Φ(ai, Ξ)) with two parameters,
the first is the attribute what is supposed to chose, the second is the example
set which should be separated. It has to satisfy these criteria ([8]):

1. The function reaches its maximum when all subsets are homogeneous. In
this case the information about the attribute value is sufficient to decide
whether the example is positive or negative.

2. The function reaches its minimum when 50% of the examples in each of
the subsets are positive and 50% are negative.

3. The function should be steep when close to the extremes and flat when in
the 50%-50% region.

So the separation criterion of the CLS could be this: pick the attribute
with the biggest separation value (ac = {aj|Φ(aj, Ξ) = maxai

Φ(ai, Ξ)}). At
last here is a possible definition of the separation value on the basis of entropy
(E(Ξ) = −

∑
l pol

log pol
, where pol

=
∑|Ξ|

k=1 rk,l,MM/|Ξ|):

Φ(ai, Ξ) = E(Ξ)−
|Vai |∑
j=1

|Ξvai,j
|

|Ξ|
· E(Ξvai,j

) (2.5)
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k a2 a3 rk,1

#9 1 0 0
k a2 rk,1

#8 0 1

k a1 a2 a3 rk,1

#1 1 1 3 1
#2 2 0 0 0
#3 2 0 3 0
#4 2 0 0 1
#5 2 0 3 0
#6 1 1 3 1
#7 1 0 2 0
#8 1 0 0 1
#9 0 1 0 0
#10 1 1 1 1

a1=0

;;

a1=1 //

a1=2
//

//
//

//
//

/

��/
//

//
//

//
//

//
//

//
//

//

k a2 a3 rk,1

#1 1 3 1
#6 1 3 1
#7 0 2 0
#8 0 0 1
#10 1 1 1

a3=0����

@@������������

a3=1 //

a3=2
>>

>>

��>
>>

>>
>>

>>
>>

>

a3=3

��

k a2 rk,1

#10 1 1

k a2 rk,1

#7 0 0

k a2 rk,1

#1 1 1
#6 1 1

k a2 a3 rk,1

#2 0 0 0
#3 0 3 0
#4 0 0 1
#5 0 3 0

a3=0 //

a3=3
HH

##H
HH

HH
H

k a2 rk,1

#2 0 0
#4 0 1

k a2 rk,1

#3 0 0
#5 0 0

Figure 2.3: Separation of an example set
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Specialities For Build Up

The tree has almost done, but there are some problems which has to be worked
out. First of all the algorithm has to have scenarios for special cases.

• When the decision tree is growing there is a problem which appear on
a regular basis: If there are no more attributes which can be used for
separation, the tree should end with a class (ol) which has the biggest
probability (pol

) in the actual example set. There is an example in figure
2.3 on the branch of a1 = 2 and a3 = 0 for this problem. The other
solution for this trouble is because the definition of the classification rule
enables more than one returning classes, with the usage of µ what was
defined in equation 2.4, the class node should store more than one class
which have bigger probabilities than µ ·maxl p(ol).

• The other not too usual problem is here: there are some cases when there
are more than one attribute (AS = {ac1, . . . , acS}) with the biggest Φ
value on a certain example set. In that occasion the tree could be built
on two ways and when it finished one of the ways which gives smaller
accuracy when tested with the whole example set should be thrown out.
But it needs more work to do, so the implementation could be simpler if
a randomly chosen attribute from AS will be the separator.

The tree has finished, but it could be messy because the decisions made
near the leaves are based only some examples which could be noisy. Thus the
unlimited growing has to be stopped with threshold values which are determined
by a data engineer. These threshold values could be for example: the minimum
value of separation Φmin or the minimal cardinality of the example set. When
the watched values decreasing below these numbers the growth of the tree must
stopped and the rule with no attributes should be used which is defined above
these lines. There are other methods of tree pruning which are not discussed
here because these are transforming the tree after the CLS finished, but there
are a lot of examples in chapter 3 of [1].

Results With Multiple Classes

However the basic classifier may give a vector form Ω (see formula 2.1 on page
9) with more ones, this effect will appear when the builder of the tree was not
certain about the outcome of the classification (see the second paragraph of
the section before). If Φ reaches 0 then it means all of the examples about the
actual decision has the same man made classification vector, thus the tree is not
needed to grow bigger on this branch. This will stop the meaningless growing
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of the tree but the information amount which could be gathered from the tree
is the same.

There is an other solution which can provide more accurate results on a
costly way: there should be a tree for every class and its negation in the Ω.

Adaptability

The decision tree based classifiers has much bigger problems to implement in-
cremental learning, but if the splits of the example sets are stored then the
newcomer just easily can stored in these sets and for the correct trees the split-
ting rule should be calculated on the new sets. This could cause the rebuilding
of the whole tree but the recalculation only needed on big depths usually. There
is a rough but fast method too that stores the newcomer in the affected parts
of the tree and on the class node it just changes the probabilities of the classes
so it could cause a new outcome of the classification.

Applications

The applications of this classification technique usually concentrating on the
fact that the tree could be usable by a human being, so they usually using a few
attributes to build the tree. The usage of these trees started by the American
army to recognise six ship classes using their radar range profiles, this pattern
recognition works like the number recognition problems which demonstrates the
pruning techniques in the book [1].

The 5th part of [8] describes some interesting usage of the decision trees and
other classification techniques which helps the medical practice. These effective
methods of medication are not accepted by the most of the health experts
because they are not too flexible, and the decision trees can’t express to much
information because of the pruning techniques used to make it human readable.

2.3.4 AQ Learning

This classification method is the opposite of the decision tree based classifiers,
because these begin with generalised rules and specialise them until it fits all of
the examples. This was designed in 1969 by Michalski who is one of the editors
of [8]. The goal of this method to make decision rules like in table 2.2 on page
13 thus the usage of the rules could be the same like the bottom-up method of
the decision trees.
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Rule finding

1. Divide all examples into the subsets (Ξi, 1 ≤ i < CC where Ξi 6= ∅) with

same
−−−−→
Rj,MM .

2. Chose one example (ξk) from Ξi.

3. Generalise its characteristics until the generalisation does not affects any

other
−−−−→
Rj,MM . Calculate all of the independent generalisations which are

called together the star.

4. According to some preference criterion select the best rule in the star.
The preference criterion could select the rule which covers the maximal
number of examples from Ξi, or the most general rule in the star but each
classification problem should have its own.

5. If this rule jointly with all previously generated rules covers all examples
then stop, otherwise chose an other example from one of the subsets and
repeat the steps from 3.

With a noisy example learning set this method will stop too early so the
rules will be too specialised which shows the bottleneck of this technique. To
solve the problem there is a second tier designed on the top of the AQ learner
which drops the not too important rules.

Adaptability

With this method the adaptability can be solved easily because the newcomer
has to be passed through the previously defined steps, and these rules, which
generalised from them, have to be joined to the actual rule set.

2.3.5 Accuracy

[1] [4] Before a classification rule (d) becomes applied it needs to pass some sim-
ple tests about its accuracy. But what is accuracy in the field of classification?
The accuracy rating (θk) of −→εk ’s classification should be calculated one of on
these ways:

Ok,d,F = {ol|rk,l,d = rk,l,MM}
θk,d,0 = |Ok,d,F |/C

(2.6)
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Ok,d = {ol|rk,l,d = 1}
Ok,MM = {ol|rk,l,MM = 1}
Ok,d,S = Ok,d ∩Ok,MM

θk,d,1 =

{
|Ok,d,S|/|Ok,MM | if |Ok,MM | > |Ok,d|
|Ok,d,S|/|Ok,d| else

(2.7)

The second rating is much more strict than the first because the first one
understates the errors when there are a lot of classes (θk,0 ≥ θk,1.)

Then to qualify the classifier several −→εk is needed, but these entities must
satisfy some basic rules, for example they should be independent from the ex-
ample set, but they should be with the same probability distribution. The
solution is far from ideal, because an independent set of testing entities with
infinite cardinality is needed. Usually collecting examples is very costly because
the classification made by a specialist. Thus the example set, which is provided
for learning, is used for these tests too. But another techniques needed to make
the example set independent from the tests.

The first measure of the accuracy (Θ) could be misleading with a little
example set, because after the learning the accuracy is estimated by the classi-
fication of the example set thus the average accuracy of this estimate could be
larger than it would be with a real testing set. This technique usually called
re-substitution estimate:

ΘR(d) =
E∑

i=1

θi,d/E (2.8)

The obvious way of checking the accuracy is to separate the example set into
a larger and a smaller subset and learn with the larger one, then check with the
smaller. This usually called the test sample estimate (Θts). But both sets have
to have the same probability distribution, so the elements of each set are picked
from the example set randomly.

Θts(d) =
K∑

i=1

θi,dE−K
/K (2.9)

The extremity of the test sample estimate has only one test entity. This
leads to the leave-one-out estimate (Θlvo), which says learn the example set
without only one entity, and check its accuracy rating, then do this again with
all of the entities of the example set, and at last calculate the average of the
accuracy ratings. This accuracy value costs more, but with small example sets
this is the simply way to get closer to the real one:
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Θlvo(d) =
E∑

i=1

θi,dΞ\ξi
/E (2.10)

2.4 Attribute reduction

[6] Prior to using a classification algorithm in document classification, its inputs
must be prepared. This preparation creates a small attribute set from the large
data mine of the example set with full of possible attributes (Amax, |Amax| ≈
∞), for example terms. The number or the instance of the terms are easily
collectable, but it is hard to manage the huge number of terms, so the available
terms must be filtered out before they become attributes. This preventive fil-
tering is called relevance analysis. Thus an importance value (ρ(ai)) is added
to every term , this value depends on the actual term’s class or the example set.
Then only those terms will be used which have greater relevance value than a
minimal reference (ρmin).

Now we can define the attribute reduction as follows:

A = {ai|(ρ(ai) > ρmin) ∧ (ai ∈ Amax)} (2.11)

These methods need statistically representative occurrence numbers for the
processed terms. Every term can be transformed to fulfil this condition with
a thesaurus. A term with a relatively rare occurrence can be generalised using
the thesaurus, so it could be relevant with other generalised terms on the same
field.

2.4.1 Entity Based

This sort of importance value calculation uses the fact that a term is present
in the actual entity or not. The calculation using the relative frequencies of
the appeared terms per class (pl(ai|ol)). The calculated value should be the
indicator of the importance, so the relative frequencies are not about a simple
term. An aggregation has to make the value available for a term. This aggre-
gation could be an average function, but a dispersion function could show the
differences, thus this can show that a term could be a really good separator of
the classes. Here is the formula of the entity based relevance value:

PSij = {ai|(vai,k > 0) ∧ (rk,j,MM = 1)}
p(ai|oj) =

|PSi,j |PC
k=1 |PSi,k|

ρE(ai) = Dl(p(ai|ol))

(2.12)
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2.4.2 Frequency Based

The method above is more widely usable than these and below, because these
are for attributes like document’s terms which have an occurrence value as
attribute value. This means these methods only usable when the attributes’
values from N+. This type of relevance calculation has 3 genres, which are the
next:

Class based: This calculation works similar to the entity based, because it uses
the relative frequencies of the occurrence of a term by class (PSij ∼ Nij).

Nij =
∑

rk,j,MM=1

vai,k

ρC(ai) = max
k=1...C

Nik∑C
j=1 Nij

(2.13)

Term based: This calculation is the most simple of all because it has an in-
dependent value, the number of all terms in all documents, from ai at the
denominator. And it uses the Nij defined in equation 2.13:

ρT (ai) =

∑C
j=1 Nij∑W

k=1

∑C
l=1 Nkl

(2.14)

Term Frequency Inverse Document Frequency: [5] This method applied
generally for relevance calculation because its flexibility. The idea behind
this technique is to keep down the attributes with extremely high occur-
rences. The two frequency based techniques defined before are the victims
of these attributes, because they make these terms unbeatable, so some
really useless terms (like “a” or “the” or a more complex one: “of the”)
will lead the list of relevant attributes.

This technique is a product of two measures. The first is the term fre-
quency (TFi) and this should transform the occurrence values of a term
into a number. The second is the inverse document frequency (IDFi)
which is in the product to lower the first member’s effect when the term
is common in other entities too.

Both members could be computed on multiple ways. For example the TFi

may be the one of the frequency dependent calculations defined above.
This paper will use simply solutions, like these:

TFi = maxj vai,j

IDFi = log(1 + EPC
j=1 |PSij |

)

ρTI(ai) = TFi · IDFi

(2.15)
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2.4.3 Applications

These techniques seem like the techniques just used with others, but sometimes
these could be enough because the provided relevance values are usable to weight
entities without using more technique. These techniques was the base of the
WebWatcher application which provides a keyword based search engine for a
website and it is described in [8].

When these techniques become servants the user of them not just a classifier
it could be for example an associative rule finder too. This was the main
idea of the FACT system ([8]) which can effectively explore associations in
text documents which are described with relevant keywords provided by some
attribute reduction technique.



Chapter 3

Design and Implementation

3.1 The Program

The problems described in the previous chapter were solved with a program
which has 3 main parts. These parts have unique interfaces which suit to each
phase of data mining. Thus a newly developed method can be added to it later
easily.

1. part is the loader. This part is the service of the example and testing
entities thus it is the source of the information.

2. part is for the dimension reduction of Amax. It uses the relevancy values to
rank the terms in the example set. Although these routines can calculate
the importance values for terms, the algorithm to find terms in the doc-
uments is more complicated, therefore it is not detailed in this paper. In
these routines only words will be used. For example the a-priori algorithm
can be used for detecting the frequent word sets.

3. part is the classifier. To reach its aim it needs a helper class which de-
scribes the examples with the entities and with their man made classifica-
tion. The two classifier which was chosen for implementation is the ID3,
and the Bayesian. The ID3 was chosen because the human readable rule
set which could be generated from it. The Bayesian classifier was chosen
because this could be the base of the comparison of accuracy, and speed.
The other methods usually not used for text categorisation so this is the
main reason of the decision about them.

Figure 3.1 on page 24 shows the layered structure of the project based on
the parts described above and the relations between the specific layers. On this

23
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figure you can see that adaptability is only a little extension of the classifiers
because an adaptive classifier uses the recycled parts of their predecessors.

The project was implemented in Java because of the inhomogeneity of the
possible machines to run, so a little knowledge about this language needed to
understand this chapter of the paper, but it usually based on standard object
oriented programming techniques.

Adaptive classifier
C l a s s i f i e r

Filter - Dimension reduction
E x a m p l e s o u r c e
Database1

. . . DatabaseN

Figure 3.1: The layered structure of the project

3.2 Example source

The DataService is an abstract Java class which provides access to an example
set in the memory, thus the extension of the class is just about the constructor
which can conjoin the memory with the origin of the examples. Nowadays there
are computers with a big amount of memory, but in some cases the program
could run out of the memory space. It could be the bottleneck of the data mine
so the extension should be more radical if it happens. With this extension only
some of the examples could be loaded in the same time and the others could be
on the disk or in the database until they needed.

The mining techniques need to go through all of the examples as mentioned
in section 2.1.2 on page 5, thus if it is possible the data should be stored in
the memory for faster learning times. After the learning only the classification
rule (d()) is needed and the other ones like the dataservice could be released.
Therefore the learning time could be a secondary option after accuracy which
usually depends on the number of the correctly assorted learning examples. But
the service usually just load the examples and do not do anything to correct
the distribution of these data.

Before the data is stored in the memory the loader in the constructor of a
descendant has to make a decision about the actual example. If the example
could be misleading for the classifiers it should be skipped. But these skips
need precaution, because the learning will begin after this operation and a bad
decision here may lead a dead end to find the best classification rule.
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The database, where the examples are stored originally, has different struc-
ture from this class needs, because the data which the program use has another
goals too and usually these exist before the users decided to find out the classifi-
cation rule about this. Thus the constructor has to transform the data and this
takes long time. When searching for the best classinfication rule the dataservice
should used several times which could be in different runs, so there is a need for
faster loading times. This could be achieved by transforming the database to
fit our needs immediately, or the program can make a mirror about the sources
locally and this will stored as its need. The Java gives the best solution for this,
so the DataService was implemented on this way. The solution is the serializa-
tion capability of Java. Each extension of this Java class should be serializable
to reduce the loading times with the ObjectInputStream.

3.2.1 Representation of the examples

The set implemented as an indexed list so each example (ξk) has the index in
the program like on this sheet (k). An example have to get its description about
the attributes and the man made classifications. In this phase the attributes
come from the Amax, and each entity has different dimensions, because some of
the attributes are missing from the actual example.

The man made classifications can make a fork in the implementation, be-
cause there are more than one possibilities to describe these. The simply so-
lution gives exactly one man made classification per example, therefore the
example which belongs multiple classes need a workaround to describe. This
could be made on two ways. The first way clones the example several times to
make one for each class where its belongs. This way has the next disadvantages:
It makes the learning set of the classifier confusing because the same entity has
multiple class definitions; and an example with many man made classifications
keep down the other ones which has only one or two. The second way solves
these problems, but on an expensive way. Namely this technique holds only one
man made classification per class but it has to decide which one. The disad-
vantages of this method are the next: it reduces the examples for the classes;
and it is usually chose a random class form the man made classification list
to categorize the example, meanwhile it should make the class distribution like
before to get correct results from the classifier which would learn the examples
generated with this method.

The only satisfactory solution is to have a list of the man made classifications
for each example. But it has disadvantages, because usually the classification
techniques defined to use or return only one class per example, so these need
some work on it to support multiple classes for their input and output. The
previous sections gives some hints about results with multiple classes see pages
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11 and 16 to know how these methods work.
All of the class description techniques implemented and replaced by the next

one during the incremental development of the DataService class, now the Doc-
ument class, which is defined in the DataService to represent the examples, has

three properties: the Name which identifies it, the ClassList (
−−−−→
Rk,MM) which

stored for every examples as it defined in the previous paragraph, and the Ter-
mOccurrences which shows the occurrance numbers of certain attributes from
Amax in the actual document. See figure 3.7 on page 42 for more information
about these classes.

An instance of the Document class will occupy about 2 times bigger amount
of memory than the entity is copied to the memory without separating it to
attributes. Before using these classes it is needed to check that the entities
would fit into the memory else none of the constructors defined below could do
its job.

3.2.2 The descendants and their constructors

These classes has only functions to implement their constructors easier. There-
fore these are not necessary to understand the concepts of the system’s bulding
blocks. There is 2 implementations available this time which are different only
the way of they are fetching the data from its source.

Usually the data sources contains information in little pieces, and the ex-
ample retreival only available on their basis. These pieces are smaller than a
document and contains information only about one man made classification but
they have an identifier about the document which has them. The Name value
of the Document is used to store this identifier, and later all of the information
pieces come to its document through that. Thus the Name have to be a unique
identifier in all of the example sources because they could have set operations
which uses these values too. The Name value can be interpreted easily in both
implementation.

Unfortunately most of the attribute reduction techniques has problems with
frequent words1. There is a simple technique which significantly increases the
preciseness of the classification’s results but its need more help from the users.
When the data is prepared and ready to load to the system its need some
steps before the learning. The database has to be loaded and then a filtering
technique has to be used to find the best attributes which describes the diversity
of the examples. The technique usually fails first because it is bothered some
really frequent word which does not mean anything in the current context. The

1These constructors load only words as terms and do not contain any solution to find
frequent word sets to achive better results in filtering and classification
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user can collect the stowaways and make a set of terms from them. After that
the whole procedure from the beginning could be repeated, but the constructor
have to know about these terms through the paramater which called MissMe
and MissList, because during the loading they can be filtered out. This should
be repeated until none of the actual language’s frequent terms appearing in the
list of the relevant terms. Usually every language has some really frequent word
these can be collected and stored in separate files. Then if a new data mine has
to be extracted the user just simply gives its language and the filter should do
its work on the right way.

The two descendants reveal different ways of gathering information, the first
one is based on filesystem managed by the operating system. This one easily
can be extended to gather information from the Internet for example follow
links and analyse hyper text files. The second one is much closer to OLAP
systems because it use SQL to retrieve the examples from a DBMS software.

DirsToFacts

There are two ways to initialize a DataService through a filesystem these are
different only in the notation system in their parameters. When the DirsToFacts
is constructed the file names and the classes comes from different places but the
background are the same in both cases. The first parameter of the two different
constructors are described here:

• The first constructor gets only a string on this parameter, and this string
describes a directory which is the root of the directory structure where
the documents are categorized by directories. The root directory has to
get as many directory as many classes are in the O set. These directories
should contain only files (as entities (−→εk )), because the subdirectories of
the directories, which represent classes, are ignored. These files has the
name which will stored in the Name field of their Document class. If a
there are files with the same name in other subdirectories of the root dir,
then the second and more appearence of the file are ignored and only the
class name, which is the name of the subdirectory where it was found, will
be stored.

• The second constructor has nothing to discover just do the dirty work
because it has in its parameter a map which shows the entities, as keys of
the map, and its class set, as values, too. So it just load the file what is
described in the key, then makes the document with the attribute vector
comes from the file and copies the class set which it has had jet from the
value. Here the Name of the Document will be the filename described in
the key without its pathname if it contains one.
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The class contains a static servant function which could be usable for the
other parts of the data mine. This function loads all of the words of its param-
eter’s file and returns with their occurrence values as they would be attributes.
The name of this function is SzoSzamol and it could be used for loading the
word list to miss for the needed language.

SQLToFacts

This class uses Oracle Net8 component and the Java’s JDBC driver for this
component to reach the local copy of the Reuters news agency’s database at
the University of Miskolc. This database has the ER modell which has shown
on the figure 3.2. When it is initiated the next query will run automatically on
the server:

πdescription,title,word,occurrence

(words in ./words in.itemid=doc.itemid

(doc bip ./(doc bip.itemid=docuemt.itemid)∧(doc bip.code=bip.code)

(document ./type=′T′ (bip))))

The database has 2586 (E) documents categorised into 123 (C) classes, so it
is usual that an entity has more than one man made classification. The number
of appeared words in the whole example set is 24527 (|Amax|).

Document

ItemID

BIP

Words_in

Title

Headline

BylineStoryDate

doc_bip

Type Code

Description

Word

Occurrance

Doc_rel

Figure 3.2: The ER model of the database
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3.2.3 The ways of gathering examples from the source

Figure 3.1 on page 24 shows two ways to reach the examples. The first way is
usually used by the filtering class which needs the whole example set to search
the relevant terms so these classes will use the raw example set. The second
way is a little bit different because the filtering has effects only on the entities,
and its man made classifications will be in the same form as they are loaded.
Thus the DataService has three methods to do these things:

getRawDoc(k): With this function the filter program will simply have the kth

example represented by an instance of the Document class.

myClass(k): With this function the classifier or the accuracy checker could

get the
−−−−→
Rk,MM .

myAttribs(k,A): This function has the most complex source code, because it
transforms the stored entities from the attribute space Amax to A which
should come from the filter. Here each attribute in A has a limitation
about its value which helps the program to return attribute values like
the classifier awaits for. Its a really rarely used function because it is
needed only when the A set was defined outside of a filtering method, but
this is usual when the attribute value sets were designed by the user.

3.2.4 Set operations with more sources

Each classifier has a learning example set which is represented by a DataService
object. To get the optimal classification rule this object should be as big as it
can, but before it becomes confusing. But a DataService object mainly for only
one source, so there is a need for join the examples from different sources in one
service. And here comes the role of the Name property of the Document class,
because two DataService objects will have a union where no examples with the
same identifier.

The test sample accuracy estimate which is described on page 19 needs to
separate the example set to a learning and a test sample part. To support this
estimate the DataService class has a special function which initialises a new one
with some of its elements. The new size (E1) of the original example set has
to be defined. So the new one’s size will be the next: E2 = E − E1. After the
operation each set must have the probability distribution like the original one,
to fulfil this criterion the program need to select the elements of the new set at
least randomly from the original set. To compare two classifiers with Θts each
running of this procedure has to use the same random seed.
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The leave one out estimate (Θlvo) needs every example to be separated from
the example set once while it is on progress. To do it fast the system needs a
function to separate only one but randomly accessed element from the example
set. This function should be used when a newly arrived example is learned by
an adaptive classification method because if something change (for example the
filter) the set will be up to date during the relearning.

3.3 Filtering

The scenario of the dimension reduction of the entities has two phases. The
first phase generates the list of the relevant terms (or attributes). This list will
contain all of the attributes from Amax so this needs to calculate relevance values
(ρ(ai)) for every element of Amax and then the attributes in the list should be
ordered by these (ρ) values. After the initial phase, which is solved by the
constructors and the relevanciaSzamitas() function, an example could be asked
from the filter, and the answer will be an entity from the space of the NL most
important attributes which are on the head of the list.

These are the main objectives of the RelevanceCalculator class. But it should
be extended because it is not contain any calculation methods, because it is the
frame for their descendants which usually implement the relevance calculation
method only in the relevanciaSzamitas() function. Thus it is only for operating
with the list of the attributes:

getAttribs(): This function will retrieve the first NL attributes from the list.
This could be useful when the user want to decide which terms should
be throwed out during the loading of the example set. Because if the list
contains terms, which seem not too important just too frequent, could be
collected and passed to a DataService.

getFilteredDoc(): This function has the same goal like the one which was
defined in DataService and called myAttribs(), but this is much faster
because it assumes the maximal value of the attributes and it uses the NL

long head of the list of the relevant attributes so it has some limitations
and some advantages. This is usually called by a classifier not a user
created program because the classifier needs filtered learning examples to
finish the building of the classification rule as fast as possible, and it can
not build any attribute list to increase its accuracy.

getLevel(), setLevel(): These functions are to handle the NL = |A| = W
value.
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toString(): This will produce a string with a comma separated list of the
ordered attributes from Amax. This is useful when the calculation method
should be checked, it provides a basic method to do it. But the string
which comes from this function could be extremely long because of the
big cardinality of Amax.

3.3.1 Connection between the filter and the classifiers

Classifiers highly depends on the A, and the Filtering classes could easily change
that. It should be ambiguous output when a classifier gets entities from a
different attribute space than it learned from. So this should be stopped. There
are some techniques doing this, but this paper will focus a basic and an advanced
method only. Here they are:

Multi-threaded listener: First of all with this method the system needs a
new thread for checking the filters. If a filter changes its state the clas-
sifiers — based on it — should rebuild their classification rule. But if
the filter changed nobody should access the classifier, because it could be
faulty, thus the program needs synchronisation techniques to stop using
the rule until its becomes good. This technique spreads the needed code
to the whole system, and it makes the code heavily maintainable. And
the biggest disadvantage of this technique is the next: it consumes the
CPU for checking sets every time, when it is not needed too.

Event driven listener: The modern operating systems are event driven usu-
ally, because this brings the solution near to its cause, so its concentrating
the code around the changes. In this case the only thing which can change
the A is the function called setLevel(). Thus it is needed to inform all of
the involved objects. Each object must say if its involved when it begins
to use the A provided by the filter which will change the behaviour of
the setLevel() function because it will be costly if many classifiers using
its filter. But this is the only way to anticipate the messy classification
results.

The easiest method to defend the classifier is to write the documentation
about the setLevel() more precise. But if the user forgot the explicitly needed
learning when it applies setLevel() then it would cause unexpected results.

Therefore the implementation uses the event driven listener technique, which
needs the ability to tell the filter about the newly involved classifiers. This
ability has implemented in the function named addReLearnListener() which
has a pair to remove the not classifiers which are not depending from the filter
anymore, this function is called removeReLearnListener().
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3.3.2 The descendants

Take the example set

uukkkkkkkkkkkkkkkkk
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more terms?
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no

���� ���� ��Stop

Figure 3.3: The flowchart of the Entity based filtering

All descendants of the RelevanceCalculator class have to implement the
relevanciaSzamitas() method which should rank all of the terms of the learning
example set while the constructor is running. Table 3.1 shows the implemented
filtering methods costs, their efficiency will be discussed later in section 4.2.1
on page 4.2.1. To see how attribute reduction works read section 2.4 starts on
page 20. To see how these connected to each other and the other parts of the
project check figure 3.7 on page 42. The cost functions was calculated from the
flowcharts of the actual descendant, the figure 3.3 shows flowchart of the most
involute filtering method.
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Relevance calcu-
lation method

Class of its imple-
mentation

Cost function

Entity based (ρE) FileBasedRelevance O(|Amax| · (E + 3) · C)
Class based (ρC) LocalRelevance O(|Amax| · E · C)
Term based (ρT ) GlobalRelevance O(|Amax| · E)
TF-IDF (ρTI) TF IDFRelevance O(|Amax| · E · 2)

Table 3.1: Relevance calculation methods and their cost functions

3.4 The classifiers

3.4.1 Basics

The classifiers have many relatives, but everything begins with two interfaces.
The first one defines the classifier and the other one provides the listener which
is needed to use the event driven (see section 3.3.1 on page 31) programming
thechnique.

The Classifier interface

All of the classifiers has the example set in a special form which is described
in the classifiers basic interface. The elements of this representation are Fact
objects which has entities from A. The classifier has the right to hold this set
to make its work easier, but usually its just memory waste after the learning
finished.

The interface called Classifier specifies two functions too. The first one is
for the main aim of this paper because it is for applying the classification rule
defined in section 2.1 on page 9. This is the product of the learning implemented
in the descendants. The output of the classification differs a little from the
definition, because it will provide only the names of the classes which seems to
be appeared in the newcomer.

The other function defined because the ultra-strong criterion of Mitchie (see
section 2.2 on page 6). The classification rule should be printable if a per-
son could use it so it has to be implemented to help the user make its own
classifications with the computer generated rule.

The ReLearnable interface

The interface called ReLearnable is the other basic for classifiers. This is not
needed for every classifier, but it is for comfortable use of the implementation.
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This interface has only one function which could ensure with the usage of ad-
dReLearnListener() that the filter is the same like the one during the learning.

The AbstractClassifier class

On the basis of these two interfaces here comes some real program, which will
do something. The AbstractClassifier class do a couple of things to make the
writing of a classifier easier. This will make the dirty work about the ReLearn-
able interface, because it tells the filter, which comes as a parameter in the
constructor, that the newly created object is involved about its changes.

It contains a function to generate the learning example set with Fact objects.
Here it contacts the filter and gathers the entities in the A attribute space and
it also contacts with the example source to collect the man made classifications
of these entities. The examples without any relevant terms2 in their entity, will
be excluded from the learning set.

This contains a get and setMargin function to operate the values which was
defined in section 2.3.2 on page 11 as µ. This is a commonly used parameter
to get multiclass results. It is usable in Bayesian classifiers and of course in
decision tree based classifiers too.

At last there is a method which helps to check the accuracy of the classifier
with calculating of the accuracy rating (see formula 2.7 on page 19) of the
recently classified entity. The implemented accuracy rating calculation method
applies the function with θk,d,1. This function do not do any classification so
the user has to provide the result of the classification rule (Ok,d) and the man
made classification (Ok,MM) for the kth entity.

3.4.2 Bayesian classifiers

The implementation of this classifier could be done on several ways, the fastest
way is to store all of the conditional probabilities needed by the classification
rule in the memory. But to enable adaptability these probabilities has to be
changed thus extra information has to be stored about the examples. The origi-
nal solution should be replaced by a new one which is not about the conditional
probabilities but the values to calculate them. Every time when an attribute
(ai) appears the program will note (Ni =

∑E
k=1 vai,k) it with an additional infor-

mation about which classes(ol) were active (Ni,l =
∑

k=1...E,rk,l,MM≡1 vai,k) when
the term appeared. All examples will be counted too on two different ways with
their classes (Nl

∑E
k=1 rk,l,MM) and without them (this means E).

2These terms are stored in A after filtering Amax
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The implemented constructor’s cost function will be the next:

O(EW + W + EWC + EC + WC) → O(EWC) (3.1)

The way of the constructor’s implementation determines the technique to
follow when the classification rule has to be applied. This could be a simple
calculation based on the conditional probabilities which were defined in equation
2.4. Or it should calculate the needed conditional probabilities every time when
it has to classify a newcomer. This calculation based on the values made by the
constructor:

NBCR(k, l) = E−1Nl

∏
i,vai,k>0

Ni,l/Ni (3.2)

The cost function of the classification is the next:

O(W + WC + C) → O(WC) (3.3)

The only function which has not appeared yet is the toString. Writing out
the conditional probabilities of every class and attribute pair is a waste of time
because the person who has to use it would be frustrated with the big amount
of data. The output should be readable by somebody so only the values Ni,
Ni,l, and Nl will be displayed, and with small attribute and class numbers it
could be usable.

Adaptability

The stored values makes it easy to implement the adaptive classifier based on
the Bayes rule because the implementor need to adjust the Ni, Ni,l and Nl values
correctly. Adaptation of these values to the new environment could change the
results of the classification because of the equation 3.2. The cost function of
learning a newcomer is the next: O(1).

The interface which shows this classifier is an adaptive one has the name
CanGrow . If this is implemented the class will have a new function to learn a
new example.

3.4.3 Decision tree based classifiers

All of these classifiers using decision trees so they have got common parts to
manage the tree which parts are defined in the basic ID3 class. If the tree had
built the result would have used on the same way independently from the actual
implementation. These were the common design patterns during the set up of
these classifiers.



CHAPTER 3. DESIGN AND IMPLEMENTATION 36

These classifiers could handle non binary attributes, and with these the
generated trees could be easier to read and use by a person, but these are
equivalent in knowledge representation so the program asks the filter to deliver
only binary attributes.

[1] The decision trees usually apply attributes with finite value set. If there
are some attributes with infinite value possibilities then the builder has to find
out how to separate their value sets to finite subsets and the tree’s decisions
will about which subset contains the actual value (see figure 3.4). There could
be an extension like this one and the tree should be usable after this extension
builds up the tree.
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��   ''

�� ���� ��a5
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Figure 3.4: Possible usage of an infinite value set

The building blocks of the tree

A node from the decision tree represents an attribute or a class distribution.
These will be stored in a NodeDescriptor object as a string or an occurrence
map. To describe a tree the branches has to be stored somewhere. There are two
ways to describe a branch of the tree. The first make a set of pairs with nodes
these pairs defines a branch between the affected nodes. This representation is
hardly useful because the tree should be accessed through the nodes and in this
representation one node will be available as many times as many connections
it has. To avoid this problem all of the branches begins from a node should
be described locally thus if a node represents an attribute it has to contain
branches to the next attributes in the tree too. With this storage method each
node should be accessed through another except the root which has to be stored
in a special place because every method using the tree start with it.

These are the main concepts during the design of the NodeDescriptor class.
This class has an attribute (ai) storage called Name which is null if the node has
to represent class distribution. The class distribution stored in the Occurrences
member of the class which is a TreeMap with Class Names (ol) as keys and
occurrence numbers (Nl) as values. At last the branches are stored in the
Children member which has the attribute values (vai

) as keys and nodes with
the same value in its examples as values.
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To implement adaptability now only the class distribution could be changed
when a wrongly classified newcomer has to be learned. The [1] describes the
nodes of decision trees as a group of examples with the same value on specific
attributes. So these examples should be stored also in the node and then the
changes has to be made on these sets which make it possible to rebuild the wrong
parts of the tree. This will be stored as a Vector of Facts named ActualDocs.
Check figure 2.3 on page 15 to know how it could be represented.

Usage of the tree

The usage with the nodedescriptor’s actual implementation is really simple be-
cause if a node contains an attribute then the program has to check the entity
which has to be classified to identify the actual value of the attribute and go
to the next node which stored with that key. And after that the program has
to be recurse with this function until it find a class distribution to become the
result. The cost function of this recurse function will be the next:

O(W + W + C + C) → O(W ) (3.4)

The other application of the decision tree is to gather the classification rule
in a human readable form. The program could be draw the tree to the display
but it is not too usable, so it should be transformed to if-then rules for every
class. To get this rule set the tree has to be used backwards from the leaves
to the root because every leaf has to be used to produce the correct set. The
recursion function defined above should be applied to reach each leaf of the tree.
And the decisions needed to reach a leaf should be written to the output. The
decision trees made by an extension of this class should be well pruned to be
useful for humans.

Cost function of the construction

The constructor make the decision tree during its operation. Every recursion
of the CLS produces a node (to see how check section 2.3.3 on page 12). To
calculate the cost function of the basic ID3 algorithm there are some measures
which are used only here, these are the next:

• The Ei is the cardinality of the example set of the actual (ith) iteration.

• The Wi is the cardinality of the attribute set of the actual iteration.

• The Vmax is the average cardinality of the attribute value sets. (Vmax =
1
W

∑W
j=1 |Vaj

|)
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All of the cost functions holds the next measures and it has usual relations
like this: Vmax � C � W � E (therefore Vmax and C could be neglected if
they are not multipliers of the others). Any iteration of the ID3 has the same
recursive cost function where Ri is the ith iterative step: Ri = EiC + WiVmax +
WiEi +WiC(2Ei +Vmax)+Ei +VmaxRi+1. The whole cost of the iterations could
be calculated as follows: O(R0). This cost function has two limits, which are
these:

The best case: The builder find a split which separates the examples into
homogeneous subsets in the first iteration. If that happens the second
iteration becomes formal because it would identify the case that all of
its examples belongs to only one class which will transform the R1 into
the next degenerate form: R1 = E/VmaxC. This case has the next cost
function:

O(2EC+WVmax+WE+WC(2E+Vmax)+Vmax+E) → O(EWC) (3.5)

So the best case of the ID3 is the usual case of the Bayes (3.1). This
case means that the attribute which is chosen first is the class identifier
itself with another name, so it is not too usual. There is a real vestige of
this function which usually appears when the actual node becomes a class
distribution, this has the cost function like R1 and its called R∗. This can
be evolved from R1 using the example set of the actual iteration instead
of the whole.

The worst case: The tree could be built with all of the possible nodes, which
means all of the attributes used from the root to the leaves (R∗ → 0).
The cost of this case will be calculated below.

In each iteration the values of our measures of the actual steps can be
defined like this: Wi = W − i, Ei = E/(Vmax)

i. After the Kth step all of
the attributes has built in the tree thus W −K = 0 ⇒ W = K. So every
attribute value has to get at least an example which leads to the following
equation: E/(Vmax)

K ≥ 1 ⇒ K = logVmax
E. With these assumptions the

cost of the iterations of the worst case could be calculated as follows:

Ri = EC/(Vmax)
i + (W − i)Vmax+

(W − i)E/(Vmax)
i + C(W − i)(2E/(Vmax)

i + Vmax)+
+Vmax + E/(Vmax)

i + VmaxRi+1 →
→ (C + (W − i)(1 + C) + 1)E(Vmax)

−i + VmaxRi+1

R0 ≈
∑K

i=0(W − i)EC = EC
∑W

i=0 W − i

And at last here is the cost function of the worst case:

O(R0) = O(EW 2C) (3.6)
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Adaptability

The probability based classification (ID3withProbability class) uses the rough
method of making adaptability for decision tree based classifiers which method
was defined in section 2.3.3 on page 17. Thus the newcomer has to be clas-
sified to know which node contains the class distribution for it, after that the
distribution has to be regenerated with the new example to modify the class
distribution of the branch used during the classification. Therefore the cost
function of newcomer’s the learning is the same like the classification’s cost:
O(W ). But usually the ID3 generates trees with few examples on the leaves, so
the relative frequencies of the classes could be far from their probabilities. To
solve this problem the basic ID3 contains conditions about to make a leaf im-
mediately when they become true (these conditions evolved from the CLS itself
for example when the system run out of attributes a new leaf has to be created).
These conditions can be modified in the extensions, thus this extension has to
change them before the tree has built. The simply extension of these condi-
tions has to stop the growing of the tree when there are not enough examples
to calculate the proper relative frequencies. See section 2.3.3 on page 16 for
more information about statistically few examples. The setStatisticallyFew()
and getStatisticallyFew() methods are to control the required cardinality of the
example set (Ei,min) to check for a new attribute node.

The probability based method will build a tree like the original ID3 if the
Ei,min = 1 but any other cases (Ei,min > 1) the tree could be different. This
method will leave the structure of the tree untouched, so no new nodes will be
defined, only the leaves will change. The construction of the tree with Ei,min will
stop the growing of the tree after L = K− logVmax

Ei,min iterations which means
the cost function of this extensions’ construction will be the next: O(EWLC).

The other way holds the tree in the same condition like the original ID3
does. This means it has to change the structure of the tree whenever it is
needed. This extension of the original ID3 called ID3withReconstructTree, and
it extends the class described above to use the limitation of the example sets.
With this technique the newly arrived example will be stored in all of their
affected separations and if a separation changes the attribute which has to be
used for the next one then the tree have to be rebuilt from that separation.
The cost function of the construction an object extended like this is the same
as the probability based one, because it is not bothered. But the learning of a
newcomer becomes more costly than that, because this starts at O(W ) and it
could be like the construction of the whole tree if the attribute of the root node
changes. Usually it is near to its smaller bound.
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3.5 System wide diagrams
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Figure 3.5: The data flow diagram of the project
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Chapter 4

Testing and Results

4.1 Testing

After each implemented classifier there was two or three tests on it. The filter
was replaced with a class which provides 4 words from the example set, and these
words was chosen by hand. The decision trees and the conditional probabilities
was calculated by hand with this 4 attribute for a little example from section
11.4 in [2] and for a smaller and a bigger database. And the last step was the
comparison of the decision trees made by hand and by the computer. If these
are the same then its passed on the test and it can be used on the comparison.

4.1.1 Origo

The small database was stored on a file-system to demonstrate the abilities of
the DirsToFacts, and it contains 180 articles from the Hungarian web portal
named [Origo]. These articles has gathered in two part the first was collected
in march 2003 on the same day, and the second in may 2003 on the same day
too. The different time of the collecting try to ensure the independence of
the data. In these examples the entities has only one man made classification

(|
−−−−→
Rk,MM | = 1). The categories was the most interested categories by the portal’s

visitors based on the page impression data published by the site:

• Crime

• Economy

• Entertainment

• European Union

43
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• News from Hungary

• Politics

• Sport

• Technology

• World news

4.1.2 Skipped Words

The first runs of the filtering method was used for to collect the highly frequent
words of the databases which have to be missed. These words are the most
frequent words of a language usually. The next words was skipped during the
loading phase in the results section:

Hungarian a, az, azonban, azt, be, csak, ez, ezt, mint, még, sem, de, ki, olyan,
kell, volt, mert, több, után, fel.

English a, about, after, also, all, an, and, are, as, at, be, because, been, be-
tween, but, by, can, could, did, down, for, four, from, had, has, have, he,
her, his, if, in, into, is, it, its, just, m, may, more, much, next, no, not, on,
one, only, or, other, out, over, s, she, since, some, such, than, that, there,
three, their, they, this, to, two, u, up, was, we, well, were, when, where,
which, while, who, will, with, would.

Some of the frequent words are not too frequent in these examples to fox
the filters so these are not listed here.

4.1.3 Fighting against the cost function

E learning phase required to calculate the leave-one-out accuracy estimate, and
one learning phase could be finished after 31 seconds. There are two ways to
make this method faster. The first way is easy because less attributes have to
be used, but it leads inaccurate results so to calculate this estimate each phase
should run on a different machine because these are independent phases (The
University of Miskolc has eleven Sun Blade 100 machines to reach the Oracle
server which provides the Reuters database and these machines could be the
base of the execution). Thus the program needs parallelisation which can be
solved on different ways, and here is a list about three of them:
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Handwork: This technique is the easiest, because the processes are started by
a man and the running parameters provided when the process is started
can separate the results of the system.

NFS based: This technique use the capability of the network file system which
makes available the files written locally. The parameters are continuously
updated by the actual process which changes its state, and to provide the
separate results it should occupy a slice of the work.

RMI based: This technique are based on the Java Remote Method Invocation
algorithm which makes the file-system based communication unnecessary,
and with a correctly designed service the clients can gather a job, which
leads a process-farm structure.

Parallel system tool: This technique mixes the first two method and a tool
has to be used to make the processes automatically and gather their results
to the host machine.

The program has an implementation about the NFS based method which
calculates the independent iterations on different computers and each computer
has the right to change the central file which stores the identifier of the last job.
The results will be collected in an other file.

4.2 Results

The Origo database contains only one man made classification per entity, and
there are nine classes in it. So the accuracy of the random generator (dR())
should be the next:

Θ(dR) =

(
9

1

)−1

= 0.1̇

The Reuters database contains 3 man made classifications per entity on
average, and these were chosen from 123 different class. So the accuracy of the
random generator should be the next:

Θ(dR) ∈
[(123

3

)−1

, 123−1 · 3−1
]

= [3.3 · 10−6, 2710 · 10−6]

The [Origo] database was collected for testing purposes because the Reuters
database is too large. Thus the two best filtering methods, the differences
between accuracy ratings and the best margin (µ) value should be selected
before the comparison of the classifiers started on the Reuters database.
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4.2.1 Deciding the test bed for the Reuters DB

Comparison of the Filtering methods

The effectiveness of filtering methods was checked with both of the base clas-
sifiers on the [Origo] database, and the best two filtering method should be
the Entity based and the TF-IDF which shows unmatched face of its powers
because it could be near in accuracy both the Entity based and the Term based
filtering methods depends on the classifier and the accuracy checker technique.
The figure 4.1 shows the general differences with the most precise accuracy Θlvo

which was defined in equation 2.10.
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Figure 4.1: The difference between the filtering methods

The other frequency based filtering method have problems not just about
their efficiency, but they cause big decision trees too which takes more time to
understand. The size of the decision tree could be characterised by the number
of its leaves. The next table shows an example where the ID3 has the [Origo]
database to learn and twenty attributes was chosen by the filters.

Filter Leaves
Entity Based 29
Class Based 13
Term Based 120

TF-IDF 49

The class based filter provides too special terms as attributes because these
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terms usually contained only one example and this makes unusable of the clas-
sifiers based on this filter.

Comparison of the Accuracy values

With the best filtering method and with the basic ID3 classifier the three ac-
curacy calculating techniques were tested. The test sample technique was used
with the two third of the [Origo] database as learning examples, and the other
part was the base of the calculation. The figure 4.2 shows how misleading the
resubstitute accuracy values are. And the test sample estimate (Θts ,see 2.9)
seems good enough to test the accuracy of the classifiers learned the Reuters
database because it is near the most accurate accuracy value which was defined
in section 2.3.5: the leaving-one-out estimate (Θlvo).
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Figure 4.2: The difference between the accuracy values

Deciding the best margin (µ) value

The [Origo] database contains only one man made classification per entity which
means this decision can not be made using this source, and the comparison of
the classifiers has to contain information about the dependency of the µ too.

4.2.2 Comparison of the classifiers

Here the test sample estimate used with 2/3 of the examples for learning and
the others for checking the accuracy. The TF-IDF attribute reduction method
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gives the same results as before because it provides averagely 5 percent less
accurate results than the Entity based one. The entity based (ρE) method was
used on figure 4.3
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Figure 4.3: Comparison of the classifiers

After that the margin (µ) was subsequently changed from 0 to 1 when the
W was 110, to check the dependency of the accuracy. Which shows that the ID3
collects valuable information on the leaves of the tree because if all of the classes
used from a leaf the accuracy increased dramatically. The Bayesian classifier
has the same effect but usually its results has their maximum when the margin
is near to 0.5. The figure 4.4 shows the typical behaviour of these classifiers.

At last the statistically few (see 3.4.3 on page 39) extension of the ID3 gives
a simple chance to build the tree faster and make it usable when adaptability
comes. If this parameter changes the accuracy falls behind the acceptable levels
so it is not usable without the learning ability. See figure 4.5 for the results.
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Figure 4.4: Comparison of the classifiers
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Figure 4.5: The effect of the statistically few extension
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4.2.3 Comparison of the adaptive classifiers

The adaptability was defined for faster learning times when the users are not
satisfied with the results of the current classifier and they want to add more
examples to increase its accuracy. Because the whole learning set has to be
learned again which could be a really long procedure. The simulation of this
event was really simple, only one third of the examples was used for learning and
after that other one third of the examples was used for extending the knowledge
of the classifiers. After the extension the last one third of the examples was
used to test the accuracy with the usual test sample estimate. The time and
the results was checked with W = 110, and table 4.1 shows them.

Classifier Learning time Accuracy(Θts)
ID3withProbability 14.7s 7.59%

ID3withReConstructTree 7 hrs 20.5 %
BayesWithLearn 5.4s 21.4%

ID3 2days 20.5%
Bayes 1.4hr 21.4%

Table 4.1: Comparison of adaptive classifiers

These results are based on the fact that the statistically few setting has to
be prohibited because the relatively small amount of examples.



Chapter 5

Conclusion and Perspective

5.1 Completed objectives

All of the objectives defined in the abstract solved. And some causative prob-
lems had been analysed too.

5.2 Identified problems

Similarly CLS, the Bayesian algorithm throws out the attributes which do not
add more information. With a too high number of attributes neither of the
implemented algorithms can do the learning in expected time. The CLS based
classifiers’ learning times are increasing dramatically when some attributes are
added confirming the O(W 2) cost function.

The example output in appendix A shows a decision tree transformed to
decision rules. On this output the typical problems of the decision trees are
appearing. The pruning can be easily done because there are so many branches
with join-able parts. The other easily realisable problem is about the source
because it provides a lot of words in their inflexioned forms so usually the
classifier or the filter notice these words analogy.

5.3 Fields of possible applications

The main application field of this project could be the big categorised document
search engines like Yahoo, where this tool could help the people whose made
the most of the categorisation process by hand before. But it could be a not
too smart search engine too like the WebWatcher.
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[7] Nowadays using e-mail could be more and more frustrating because the
increasing number of the spam letters. These could be throwed out automat-
ically by learning and using these classifiers which makes easier life. The web
browsers could contain a parental lock based on this technique too because the
pages which should not be seen by our child contains specific terms.

5.4 Further developments

5.4.1 Parallel Computing

The base theory of CLS makes the ID3 ideal to make parallel programs with
it, and its main disadvantage could disappear. Because the separations of the
example set could be calculated on different computer so the final tree would
be available after each node has finished.

5.4.2 Missing features

• The ID3 could have better results if separate trees would have built for
each class.

• The tree could have built with more branches on a simple value and these
branches could be weighted like a neuron’s input. So the finished learning
leads a tree which has branches to strengthen if good classification was
made. The tree will work like a neural network with this technique.

• The tree should have the ability to make continuous and non binary at-
tributes. [1]

• To make the tree human readable some off-line pruning method should
be implemented which will change the tree after the learning phase. [1]

• With using an attribute thesaurus the terms of the examples could be
easily analysable by the filter and this leads better classification results.
[6]

• All of the adaptability based on the fact that the attribute set can not
change, but usually the attribute set will be the first when the change
seems unavoidable. Thus the attribute set should be changeable behind
the scenes.

• Visualisation of the decision trees, because these are easier to use, than
the rule sets provided now.
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Notation index

ai The ith attribute
A The attribute set
W The cardinality of A

vai,j A possible value of the ai

Vai The value set of the ai−→εk An entity. A vector from the attribute space.
ol A class identifier
O The set of classes
Ω Classification result space
d() A classification rule
−→
Rk An element of Ω
rk,l The classification result for −→εk about the class ol.−−−−→

Rk,MM A man made classification.
Ξ An example set
E The cardinality of the learning example set.
ξm An element of Ξ. This connects −→εk to

−−−−→
Rk,MM

µ The limit for multi-class result
Φ Separator function for CLS
θk The accuracy rating of −→εk ’s the classification

Θ(d) The accuracy of the d classification rule
ΘR The redistribution estimate of the accuracy
Θts The test sample estimate of the accuracy
Θlvo The leave-one-out estimate of the accuracy
Amax The set of the possible attributes
ρ(ai) The importance value of an attribute from Amax

ρE Entity based relevance calculation function
ρC Class based relevance calculation function
ρT Term based relevance calculation function
ρTI TF-IDF relevance calculation function
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Appendix A

Example output of the ID3

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=0 and sex=0 and olds=0
and iss=0 and intermonth=0 and dutroux=0 and soymeal=0
and bushels=0 and cbot=0 and melissa=0
then

P(COMMODITY MARKETS)=0.3333333333333333
P(MARKETS)=0.3333333333333333
P(SOFT COMMODITIES)=0.3333333333333333

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=0 and sex=0 and olds=0
and iss=0 and intermonth=0 and dutroux=0 and soymeal=0
and bushels=0 and cbot=0 and melissa=1
then

P(COMMODITY MARKETS)=0.5
P(MARKETS)=0.5

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=0 and sex=0 and olds=0
and iss=0 and intermonth=0 and dutroux=0 and soymeal=0
and bushels=0 and cbot=1 and cwt=0 and bushel=0
then

P(COMMODITY MARKETS)=0.3103448275862069
P(CORPORATE/INDUSTRIAL)=0.034482758620689655
P(MARKETS)=0.3103448275862069
P(REGULATION/POLICY)=0.034482758620689655
P(SOFT COMMODITIES)=0.3103448275862069

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=0 and sex=0 and olds=0
and iss=0 and intermonth=0 and dutroux=0 and soymeal=0
and bushels=0 and cbot=1 and cwt=0 and bushel=1
then

P(COMMODITY MARKETS)=0.3333333333333333
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P(MARKETS)=0.3333333333333333
P(SOFT COMMODITIES)=0.3333333333333333

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=0 and sex=0 and olds=0
and iss=0 and intermonth=0 and dutroux=0 and soymeal=0
and bushels=0 and cbot=1 and cwt=1
then

P(CAPACITY/FACILITIES)=0.07142857142857142
P(COMMODITY MARKETS)=0.21428571428571427
P(CORPORATE/INDUSTRIAL)=0.07142857142857142
P(DOMESTIC MARKETS)=0.07142857142857142
P(MARKETS)=0.21428571428571427
P(MARKETS/MARKETING)=0.07142857142857142
P(PRODUCTION/SERVICES)=0.07142857142857142
P(SOFT COMMODITIES)=0.21428571428571427

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=0 and sex=0 and olds=0
and iss=0 and intermonth=0 and dutroux=0 and soymeal=0
and bushels=1 and cbot=0 and bushel=0
then

P(CAPACITY/FACILITIES)=0.05128205128205128
P(COMMODITY MARKETS)=0.28205128205128205
P(CORPORATE/INDUSTRIAL)=0.07692307692307693
P(MARKETS)=0.28205128205128205
P(PRODUCTION/SERVICES)=0.02564102564102564
P(SOFT COMMODITIES)=0.28205128205128205

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=0 and sex=0 and olds=0
and iss=0 and intermonth=0 and dutroux=0 and soymeal=0
and bushels=1 and cbot=0 and bushel=1
then

P(COMMODITY MARKETS)=0.3333333333333333
P(MARKETS)=0.3333333333333333
P(SOFT COMMODITIES)=0.3333333333333333

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=0 and sex=0 and olds=0
and iss=0 and intermonth=0 and dutroux=0 and soymeal=0
and bushels=1 and cbot=1
then

P(COMMODITY MARKETS)=0.3333333333333333
P(MARKETS)=0.3333333333333333
P(SOFT COMMODITIES)=0.3333333333333333

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=0 and sex=0 and olds=0
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and iss=0 and intermonth=0 and dutroux=0 and soymeal=1
and cbot=0
then

P(COMMODITY MARKETS)=0.2631578947368421
P(CORPORATE/INDUSTRIAL)=0.05263157894736842
P(EXTERNAL MARKETS)=0.05263157894736842
P(MARKETS)=0.2631578947368421
P(MARKETS/MARKETING)=0.05263157894736842
P(PRODUCTION/SERVICES)=0.05263157894736842
P(SOFT COMMODITIES)=0.2631578947368421

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=0 and sex=0 and olds=0
and iss=0 and intermonth=0 and dutroux=0 and soymeal=1 and cbot=1
then

P(COMMODITY MARKETS)=0.3333333333333333
P(MARKETS)=0.3333333333333333
P(SOFT COMMODITIES)=0.3333333333333333

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=0 and sex=0 and olds=0
and iss=0 and intermonth=0 and dutroux=1
then

P(GOVERNMENT/SOCIAL)=0.5
P(INTERNATIONAL RELATIONS)=0.5

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=0 and sex=0 and olds=0
and iss=0 and intermonth=1
then

P(COMMODITY MARKETS)=0.3333333333333333
P(ENERGY MARKETS)=0.3333333333333333
P(MARKETS)=0.3333333333333333

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=0 and sex=0 and olds=0
and iss=1
then

P(BONDS/DEBT ISSUES)=0.14285714285714285
P(CORPORATE/INDUSTRIAL)=0.2857142857142857
P(EQUITY MARKETS)=0.14285714285714285
P(FUNDING/CAPITAL)=0.14285714285714285
P(MARKETS)=0.14285714285714285
P(PRODUCTION/SERVICES)=0.14285714285714285

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=0 and sex=0 and olds=1
then

P(CRIME, LAW ENFORCEMENT)=0.2
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P(DOMESTIC POLITICS)=0.2
P(GOVERNMENT/SOCIAL)=0.4
P(SPORTS)=0.2

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=0 and sex=1 and dutroux=0
then

P(CRIME, LAW ENFORCEMENT)=0.25
P(EUROPEAN COMMUNITY)=0.25
P(GOVERNMENT/SOCIAL)=0.5

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=0 and sex=1 and dutroux=1
then

P(CRIME, LAW ENFORCEMENT)=0.5
P(GOVERNMENT/SOCIAL)=0.5

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=1 and bushel=0
and intermonth=0
then

P(COMMODITY MARKETS)=0.3076923076923077
P(CORPORATE/INDUSTRIAL)=0.019230769230769232
P(ENERGY MARKETS)=0.28846153846153844
P(EQUITY MARKETS)=0.019230769230769232
P(MARKETS)=0.3269230769230769
P(METALS TRADING)=0.019230769230769232
P(PRODUCTION/SERVICES)=0.019230769230769232

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=1 and bushel=0
and intermonth=1
then

P(COMMODITY MARKETS)=0.3333333333333333
P(ENERGY MARKETS)=0.3333333333333333
P(MARKETS)=0.3333333333333333

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=0 and nymex=1 and bushel=1
then

P(COMMODITY MARKETS)=0.2
P(ENERGY MARKETS)=0.2
P(MARKETS)=0.2
P(METALS TRADING)=0.2
P(SOFT COMMODITIES)=0.2

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=0 and yastrzhembsky=1
then
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P(BIOGRAPHIES, PERSONALITIES, PEOPLE)=0.05555555555555555
P(DOMESTIC POLITICS)=0.4444444444444444
P(GOVERNMENT/SOCIAL)=0.4444444444444444
P(WAR, CIVIL WAR)=0.05555555555555555

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=1 and revs=0
then

P(ACCOUNTS/EARNINGS)=0.3125
P(ANNUAL RESULTS)=0.0625
P(CORPORATE/INDUSTRIAL)=0.3125
P(PERFORMANCE)=0.3125

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=0
and shrs=1 and revs=1
then

P(ACCOUNTS/EARNINGS)=0.3333333333333333
P(CORPORATE/INDUSTRIAL)=0.3333333333333333
P(PERFORMANCE)=0.3333333333333333

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=1
and sex=0
then

P(CRIME, LAW ENFORCEMENT)=0.2857142857142857
P(DEFENCE)=0.14285714285714285
P(GOVERNMENT/SOCIAL)=0.42857142857142855
P(INTERNATIONAL RELATIONS)=0.14285714285714285

If shr=0 and borrower=0 and unaudited=0 and verified=0 and scandal=1
and sex=1
then

P(CRIME, LAW ENFORCEMENT)=0.5
P(GOVERNMENT/SOCIAL)=0.5

If shr=0 and borrower=0 and unaudited=0 and verified=1 and scandal=0
then

P(GOVERNMENT/SOCIAL)=0.9722222222222222
P(WAR, CIVIL WAR)=0.027777777777777776

If shr=0 and borrower=0 and unaudited=0 and verified=1 and scandal=1
then

P(GOVERNMENT/SOCIAL)=1.0

If shr=0 and borrower=0 and unaudited=1 and shrs=0
then

P(ACCOUNTS/EARNINGS)=0.29850746268656714
P(ANNUAL RESULTS)=0.029850746268656716
P(CORPORATE/INDUSTRIAL)=0.31343283582089554
P(EQUITY MARKETS)=0.014925373134328358
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P(FUNDING/CAPITAL)=0.014925373134328358
P(MARKETS)=0.014925373134328358
P(PERFORMANCE)=0.29850746268656714
P(SHARE CAPITAL)=0.014925373134328358

If shr=0 and borrower=0 and unaudited=1 and shrs=1
then

P(ACCOUNTS/EARNINGS)=0.25
P(ANNUAL RESULTS)=0.25
P(CORPORATE/INDUSTRIAL)=0.25
P(PERFORMANCE)=0.25

If shr=0 and borrower=1 and iss=0
then

P(BOND MARKETS)=0.09090909090909091
P(BONDS/DEBT ISSUES)=0.2727272727272727
P(CORPORATE/INDUSTRIAL)=0.2727272727272727
P(FUNDING/CAPITAL)=0.2727272727272727
P(MARKETS)=0.09090909090909091

If shr=0 and borrower=1 and iss=1
then

P(BONDS/DEBT ISSUES)=0.3333333333333333
P(CORPORATE/INDUSTRIAL)=0.3333333333333333
P(FUNDING/CAPITAL)=0.3333333333333333

If shr=1 and shrs=0 and revs=0 and unaudited=0
then

P(ACCOUNTS/EARNINGS)=0.29365079365079366
P(ANNUAL RESULTS)=0.14285714285714285
P(COMMENT/FORECASTS)=0.007936507936507936
P(CORPORATE/INDUSTRIAL)=0.2777777777777778
P(PERFORMANCE)=0.2777777777777778

If shr=1 and shrs=0 and revs=0 and unaudited=1
then

P(ACCOUNTS/EARNINGS)=0.3333333333333333
P(CORPORATE/INDUSTRIAL)=0.3333333333333333
P(PERFORMANCE)=0.3333333333333333

If shr=1 and shrs=0 and revs=1
then

P(ACCOUNTS/EARNINGS)=0.3333333333333333
P(CORPORATE/INDUSTRIAL)=0.3333333333333333
P(PERFORMANCE)=0.3333333333333333

If shr=1 and shrs=1 and revs=0
then

P(ACCOUNTS/EARNINGS)=0.28125
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P(ANNUAL RESULTS)=0.0625
P(CORPORATE/INDUSTRIAL)=0.3125
P(FUNDING/CAPITAL)=0.03125
P(PERFORMANCE)=0.28125
P(SHARE CAPITAL)=0.03125

If shr=1 and shrs=1 and revs=1
then

P(ACCOUNTS/EARNINGS)=0.30612244897959184
P(ANNUAL RESULTS)=0.05102040816326531
P(CORPORATE/INDUSTRIAL)=0.3163265306122449
P(FUNDING/CAPITAL)=0.01020408163265306
P(PERFORMANCE)=0.30612244897959184
P(SHARE CAPITAL)=0.01020408163265306


