
microCAD 2005, 19th International Scientific Conference, University of Miskolc Hungary.

pp. 327-334.

Application Servers in E-Commerce Applications

Péter Mileff

1
, Károly Nehéz

2

1
PhD student,

 2
PhD, Department of Information Engineering, University of Miskolc

Abstract

Nowadays there is a growing demand to develop distributed enterprise level software

applications and leverage the flexibility, speed, security and reliability of latest server-side

technologies. The Java2 Platform Enterprise Edition (J2EE) technology provides a

component-based approach to design, develop, assembly and deploy of enterprise

applications. The J2EE platform offers a multi-tiered distributed application model, the ability

to reuse components, integrated XML-based data exchange, a security model, and flexible

transaction control for application developers.

This paper presents an introduction to basic concepts and terms and main advantages of

J2EE technology based application servers.

Keywords: Java technology, JMX, J2EE, JBoss

1. Introduction to J2EE technology

The J2EE platform introduces a multi-tier, distributed application model. Application

logic can be divided into several tiers according to functions. Typically each modern

enterprise level software application can be separated logically into minimal three tiers: client,

business logic, and database tier. Theoretically each tier can be represented on the same or

different servers that lead a very flexible architecture.

Figure 1.

J2EE Support for three tier applications

The client tier is responsible for data representation. It includes browser-based or

standalone clients and even legacy client applications. The middle tier supports components,

modules that provide application services to the client and that implement the application's

business logic [3]. The enterprise information system tier handles enterprise information

microCAD 2005, 19th International Scientific Conference, University of Miskolc Hungary.

pp. 327-334.

system software and includes enterprise infrastructure systems such as enterprise resource

planning (ERP), mainframe transaction processing, traditional relational or modern object

oriented database systems, and other legacy information systems. Functional decomposition of

these three layers makes it possible to naturally separate logical layers (data-model, business

logic and representation layers) of a software application.

1.1 J2EE services

The J2EE framework allows developing distributed applications by providing a set of

basic services around transaction management, security checks, state management, and

resource management. It is the application server that provides the actual implementation of

the J2EE Framework. The following table describes the technologies used by J2EE to

implement parts of a distributed application:

Technology Description

Java Database Connectivity (JDBC) A standard API used to connect the Java platform to

database resources in a vendor-independent manner.

RMI-JRMP Standard Java Remote Method Invocation (RMI) that

uses the Java Remote Message Protocol (JRMP) to

implement remote process communication in a

networked infrastructure.

Java Interface Definition Language (Java

IDL)

A service that incorporates Common Object Request

Broker Architecture (CORBA) into the Java platform

to provide interoperability using standard Interface

Definition Language (IDL) defined by the Object

Management Group (OMG). [8]

Remote Method Invocation-Internet Inter-

ORB Protocol (RMI-IIOP)

Protocol that enables RMI programmers to combine

the benefits of using the RMI APIs and CORBA IIOP

communications protocol to communicate with

CORBA-compliant clients that have been developed

using any language compliant with CORBA. [8]

Enterprise JavaBeans (EJB) Component architecture for the development and

deployment of component-based distributed business

applications.

Servlet technology Open technology to extend functionalities of java

based web servers. Based on a request-response

mechanism with a Web clients.

JavaServer Pages (JSP) XML based scripting technology, for building

applications containing dynamic Web content, using

Java as a scripting language.

Java Message Server (JMS) An API to communicate with Message Oriented

Middleware (MOM) to enable point-to-point and

publish/subscribe messaging between systems.

Java Naming and Directory Interface (JNDI) A unified interface to access different types of naming

and directory services.

Java Transaction API (JTA) A set of APIs that allows transaction management.

Applications can use the JTA APIs to commit and roll

back (abort) transactions.

JavaMail An API that provides a platform-independent and

protocol-independent framework to build mail and

microCAD 2005, 19th International Scientific Conference, University of Miskolc Hungary.

pp. 327-334.

messaging applications.

JavaBeans Activation Framework (JAF) API for an activation framework that is used by other

packages, such as JavaMail. JAF is used to determine

the type of data, encapsulate access to that data,

discover the operations available on that data, and

instantiate the appropriate bean to perform these

operations. For instance: JavaMail uses JAF to

determine what object to instantiate based on the type

of the attached object of an email.

1.2 Components and Containers

Conceptually the J2EE architecture divides the programming environment into

containers. A container is a standardized runtime environment that provides specific services

to components. Container is an interface between components and the low-level platform

specific functionality that supports the component. A component is an application-level

software unit supported by a container that can be reused by other enterprise applications.

Technically speaking, a component is a reusable piece of software that encapsulates data and

behaviour, has a defined life-cycle model, and provides services to clients. In the J2EE

environment, a Web container provides standard Web-specific services, whereas an EJB

container provides services to support enterprise bean components. For example, an EJB

container provides such services as transaction management, security, multi-threading,

distributed programming, and connection pooling. A Web container provides communication

APIs and protocols and network services to facilitate sending and receiving requests and

responses. Figure 2 illustrates the J2EE component types and their containers.

Figure 2.

J2EE Components and Containers

The J2EE client tier supports a variety of client types. A client may be a Web browser

using HTML pages, or it may use dynamic HTML generated with JSP technology. A client

microCAD 2005, 19th International Scientific Conference, University of Miskolc Hungary.

pp. 327-334.

may be a Java applet or a standalone Java application. J2EE clients access the middle tier

using standard Web communication protocols. In multi-tier environments, they never directly

access the EIS tier.

The middle tier consists of the Web and EJB containers, plus other services, such as Java

Naming and Directory Interface (JNDI), JMS, JavaMail, and etc. The Web container provides

the programming environment for developing and deploying servlets and JSPs. Typically,

servlets and JSPs encompass an application's presentation logic and the logic that controls

client interaction. Web components, when packaged together, comprise a Web application.

The Web container, through servlets and JSPs, provides runtime support for receiving HTTP

requests and composing HTTP responses to these requests. It ensures that results are returned

to the requesting client [2]. The EJB container, which is also in the middle tier, provides the

environment for developing and running enterprise bean components. It is often considered

the backbone of the J2EE programming environment. Enterprise bean components are Java

code that implement an enterprise's business processes and entities. They perform the

application's business operations and encapsulate the business logic. The EJB container

automatically handles transaction and life-cycle management for its enterprise bean

components. In addition, the EJB container provides other services to its beans, such as lookup

and security services, and standardized access via the Connector architecture to the EIS tier

database or legacy system.

2. Application servers

Application servers are middleware platforms for development and deployment of

component-based software. Application server offer an environment in which users can deploy

application components - software components, developed either by the users themselves or

by third-party providers that correspond to server-side parts of distributed applications. Most

application servers implement one of the industry standards currently adopted for server-side

application components: J2EE, .NET or the CORBA Component Model.

2.1 JBoss Application server

JBoss is an extensible, dynamically configurable Java based application server which

includes a set of J2EE compliant components. JBoss is an open source middleware, in the

sense that users can extend middleware services by dynamically deploying new components

into a running server. The Java Management Extensions (JMX) specification [4], provides the

base of JBoss middleware components. JMX defines architecture for dynamic management of

resources distributed across a network. In JMX, as in other management architectures offers a

dynamic management of components. Dynamic management means that container is able to

dynamically load, unload components, without stopping the applications. JMX was chosen as

the basis of the JBoss component model for the following advantages: it provides a

lightweight environment in which components can be dynamically loaded and updated; it

supports component introspection and component adaptation; it decouples components from

their clients; it can be used as a realization of the microkernel architectural pattern. The JBoss

service component model extends and refines the JMX model to address some issues beyond

the scope of JMX: service lifecycle, dependencies between services, deployment and

microCAD 2005, 19th International Scientific Conference, University of Miskolc Hungary.

pp. 327-334.

redeployment of services, dynamic configuration and reconfiguration of services, and

component packaging. Service components implement every key feature of J2EE: naming

service, transaction management, security service, servlet/JSP support, EJB support,

asynchronous messaging, database connection pooling, and IIOP support. They also

implement important features not specified by J2EE, like clustering and fail-over.

JBoss supports a generalization of the EJB model by using service components as meta

components. Its meta-level architecture for generalized EJBs is built upon four kinds of

elements: invokers, containers, dynamic proxies, and interceptors. Invokers are service

components that provide a general remote method invocation service over a variety of

protocols. Containers are service components that enhance application component classes

with predefined and packaged sets of aspect requirements. They provide serverside join points

for aspects that crosscut the central concerns of multiple EJB components. Dynamic proxies,

used as client stubs, provide similar join points at the client side. Interceptors implement

crosscutting aspects at both sides. Containers, proxies, and interceptors are neither created nor

manipulated by initiatives of the server spine, but by actions of an EJB deployer, which is a

service component itself. In other words, EJB support is pluggable [6].

2.2 JBoss JMX Architecture

The JMX architecture is shown in Figure 3. It consists of three levels: the

instrumentation, the agent, and the distributed services level. The instrumentation level

defines how to instrument resources so that they can be monitored and manipulated by

management applications. The instrumentation of a given resource is provided by one or more

managed beans (MBeans), Java objects that conform to certain conventions and expose a

management interface to their clients.

Figure 3.

The JBoss-JMX architecture

The agent level defines an agent that manages the set of instrumented resources within a Java

virtual machine, in behalf of (possibly remote) management applications [6]. The JMX agent

microCAD 2005, 19th International Scientific Conference, University of Miskolc Hungary.

pp. 327-334.

consists of an in-process server, the MBean server, plus a standardized set of agent services:

dynamic class loading, monitoring, timer service, and relation service. Agent services are

implemented as MBeans; this makes them manageable through the MBean server, like user

resources. The distributed services level specifies how management applications interact with

remote JMX agents and how agent-to-agent communication takes place. It consists of

connectors and protocol adaptors, implemented as MBeans. This level is not fully defined at

the present phase of the JMX specification process. Together, the instrumentation and agent

levels define an in-process component model. The MBean server provides a registry for JMX

components (MBeans) and mediates any accesses to their management interfaces [1,6,7].

3. Conclusion

A new approach to design and implement enterprise level software applications has been

presented. Continuing work will focus on setting up a small J2EE environment and simulate

its scalability and performance with a special self developed J2EE application.

4. Acknowledgements

The authors are grateful to the colleagues of the Department of Information Engineering at

University of Miskolc. Special thanks are due to Production Information Engineering and

Research Team (PIERT) established at the Department of Information Engineering and

supported by the Hungarian Academy of Sciences for the financial support of the research.

5. References

[1] J. Lindfors, M. Fleury, The JBoss Group: JMX: Managing J2EE with Java Management

Extensions. SAMS Publishing Inc., 2002.

[2] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann: Pattern-Oriented Software

Architecture: Patterns for Concurrent and Networked Objects. Wiley, 2000.

[3] Sun Microsystems: Enterprise JavaBeans Specification, Version 2.0,

 java.sun.com/products/javabeans, 2003.

[4] Sun Microsystems: Java 2 Platform Enterprise Edition Spec.,

 java.sun.com/products/javabeans, 2003.

[5] E. Checchet, J. Marguerite, W. Zwanepoel: Performance and scalability of EJB

applications. In Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA'02), 2002.

[6] Marc Fleury, Francisco Reverbel: The JBoss Extensible Server,

 http://citeseer.ist.psu.edu/697000.html , 2003.

[7] Rod Johnson Wrox: Expert One-on-One J2EE Design and Development, Willey

 Publishing Inc. 2003.

[8] Object Management Group: Corba spectification, www.omg.org, 2004

microCAD 2005, 19th International Scientific Conference, University of Miskolc Hungary.

pp. 327-334.

