
5th International Conference of PHD Student, University of Miskolc, Hungary. pp 245-252.

2005.

INTELLIGENT DYNAMIC LOAD BALANCER FOR JBOSS

APPLICATION SERVER

Péter Mileff

1
, Károly Nehéz

2

1
PhD student,

 2
PhD

Department of Information Engineering, University of Miskolc

Abstract

The growth of Internet services during the past few years has increased the

demand for scalable distributed computing systems. Ecommerce systems concurrently

serve many clients that transmit a large, number of requests. An increasingly popular

and cost effective technique to improve server performance is load balancing, where

hardware and/or software mechanisms decide which server will execute each client

request. Load balancing mechanisms distribute client workload equally among server

nodes to improve overall system responsiveness. Load balancers have emerged as a

powerful new technology to solve this.

This paper focuses on a new generation of adaptive/intelligent dynamic load

balancing technique, which based on the J2EE technology and can be practical in J2EE

application servers. The paper discusses in detail both the theoretical model of the load

balancing and its practical realization. The effectiveness of the new balancing method

will be demonstrated through exact measurement results compared with former

traditional non-adaptive methods.

Keywords: Distributed systems, Adaptive Load Balancing, J2EE Application server, JBoss

1. Introduction

As the number of concurrent requests received by a standalone server increases,

the application exceeds the estimated respond time when the work load is too much on

a server machine. At this time, there are two options to solve this problem: using faster

machines or using multiple machines. The first solution is expensive and limited by the

speed of a standalone machine. Second choice is more straightforward: deploy the

same application on several machines and redirect client requests to those machines.

The system is transparent from outside, which means, client applications perceive a

standalone very-fast server with one accessible IP address. To achieve the performance

and transparency, load balancing algorithms must be utilized.

Load balancing can improve the system performance by providing better

utilization of all resources in the whole system consisting of computers connected by

local area networks. The objective of load balancing is to reduce the mean response

time of requests by distributing the workload.

5th International Conference of PHD Student, University of Miskolc, Hungary. pp 245-252.

2005.

1.2 The practical approach of balancing problems

A dynamic load balancing can be either preemptive or non-preemptive. A non-

preemptive mechanism transfers only jobs that have just arrived, while a preemptive

mechanism transfers jobs at any time, even when the jobs are in execution. Because

preemptive mechanism are more costly than non-preemptive one and most of the

benefit that can potentially be achieved through dynamic load balancing can be

achieved using non-preemptive transfer only, non-preemptive transfers are usually

used. Various proposed dynamic balancing methods are based on several policies.

Three important ones among them are the transfer policy, the location policy and the

selection policy, which decide when, where and what jobs should be transferred

respectively. Much work [2][3] has been published on the design of transfer and

location policy but very few on the selection policy.

1.3 Problem of real-time load balancing

The requests over the network arriving from clients and start a process in memory.

Each process runs separated from one another and rivals in gaining resources. The

objective of the balancers is to distribute these processes among the individual servers,

that response time of processes will be minimal. Because the characteristic of the

running tasks can be very various, so it is essential to use an adaptive load balancing

algorithm, which try to distribute the tasks in an intelligent way using as it is called

load information. This is a very difficult objective, beacause the balancer must

accommodate the given job. When we could know in advance what type of task will be

arrive, the scheduling algorithm could easily choose the most suitable server for the

task, but the type of the tasks knows in general only the client. So the traditional

algorithms like Round-Robin or Random access can be usable only with a certain type

of tasks.

Leland and Ott [1] analysed 9.5 million UNIX processes and found that there are

three type of processes: CPU intensive processes use great amount of CPU cycles but

do a little I/O operations; I/O intensive processes do a great deal of I/O but use a little

CPU cycles; canonical processes do a little I/O and use a little CPU cycles. The amount

of processes using great amount of CPU cycles and doing a great deal of I/O is

extremely small.

Cabrera[3] analysed 122 thousand processes running on VAX11/785 and found

that mean lifetime of processes is 400 ms, the lifetime of 78% of processes is shorter

than one second, 97% of processes terminate within 8 seconds. The author concluded

that only long live jobs should be candidates for load balancing due to the overhead

costs involved. In a loosely coupled distributed system based on network message

passing, a job running longer is often more suitable to transfer than a shorter job since

the overhead of transferring a short job may override the benefit.

5th International Conference of PHD Student, University of Miskolc, Hungary. pp 245-252.

2005.

2. Concept of an Intelligent Load Balancer

To create an efficient Load Balancer is a very difficult objective. There are of

course many theoretical load balancing solution methods, but many times the practical

modell doesn’t make these implementation and efficiency possible. To find the suitable

and optimal method for balancing, it is essential to have the most deep knowledge level

of the specific system.

Before we go into the details of the Load Balancer, let us examine first the

theoretical modell, which is show in Figure 1:

Standalone

clients

Network

JBoss Computer Cluster

Dynamic Load Balancer

Dispatcher

Statistics

Service

EJB

Node 1

Statistics

Service

EJB

Node 2

Statistics

Service

EJB

Node 3

Statistics

Service

EJB

Node 4

Statistics

Service

EJB

Node n

Status info

request

Status info

Status info

Status info

Status info

Result 1

Request 1

Request n

R
e
s
u
lt n

Requests

Replies

HTTP or RMI

Figure 1.

JBoss Load Balancer Architecture

The theoretical functionality of the balancer is the following: Standalone clients

initiate requests over the network through HTTP protocol or RMI to the JBoss cluster.

The JBoss cluster can be a complex of homogeneous or inhomogeneous computer on

which the JBoss application server runs in cluster mode. Of course, more clients can

initiate a request at the same time to the cluster, so the cluster must fulfil more than one

request parallel. The incoming requests are received and directed to the compliant node

of the cluster by the intelligent load balancer. So it’s objective is to choose the most

ideal node in term of execution based on the collected load information by the

Dispatcher. To elect the ideal node is not an easy matter. The main objective of the

balancer is to realize a more effective task-division, which response time can be more

better than the former algorithm. In additional we concentrate the detailed elaboration

of the practical realization.

5th International Conference of PHD Student, University of Miskolc, Hungary. pp 245-252.

2005.

2.1 Components of the Load Balancer

The architecture of our Balancer essentially can be divided into three individual

components: the Statistics Service, the Dispatcher, and the Scheduler as well. The

individual units are in close communication with one another, none of them can

operate without the others. At present the connection of the units works on the concept

of the Remote Method Invocation(RMI), but the following objective is to change the

entire comminucation or part of that to the new TreeCache method of JBoss. Utilizing

TreeCache, response time may be shorter.

2.1.1 Statistics Service

We can consider from the description above, that the Statistics Service is

responsible for the load information. Naturally this unit must run on each node. When a

new node come into the cluster, then the Statistics Service start immediately on it. It

attempts to find the Dispatcher and provide data to it. Figure 2. shows the architecture

of the Statistics Service and the Dispather:

Figure 2.

Elements of Statistics Service

Figure 2. shows that Statistics Service is consisted of three parts: CPU -, I/O

Statistics and Fuzzy Engine. The functionality arise from those name: CPU Statistics

services the CPU usage and I/O Statistics the I/O usage of the specific node. The CPU

Statistics and the Fuzzy Logic represent collectively an MBean(Managed Bean) unit,

however the I/O Statistics is an another separate MBean unit. In the JBoss system each

MBean indicate services. The sufficient node-information are essential to the compliant

operating of the balancer. In fact, Java classes are running in a virtual machine on each

host, therefore it does not make it possible to query the load information directly from

the operating system. For this reason we had to evolve individual methods and had to

utilize operating system specific resources. Nevertheless these resources are operating

system dependent.

5th International Conference of PHD Student, University of Miskolc, Hungary. pp 245-252.

2005.

The current version of the balancer works on MS Windows Systems, but further

objective is to create Linux/Unix version too. Since the Java 1.5 appeared , it become

possible to measure the CPU average usage with the Java Management Extension

technology, using the built in OperatingSystemMXBean class. It has a function named

getProcessCpuTime(), which can query the CPU time of the specific JVM(Java Virtual

Machine) in nanosecond, from which the average CPU usage can be computed. The

CPU usage can be query direct from the operating system, but in this case the

efficiency of the balancer can degrade to a great extent. The reason for this is that, the

MS Windows operating system updates the data of the Performance Monitor every

1000 millisecond, on account of which the schedule of the short task becomes

impossible. The JBoss system can work with 50 ms sample time, but in this instance

the data acquisition is fulfilled in every 100 ms.

The acquiring the I/O information is already much harder task by far. Now Java

helps us neither so much as was in case of CPU usage. To get the required infromation

we need operating system level methods, to which the C/C++ programming language

ensures the suitable environment. The solution was realized by the technology as called

JNI(Java Native Interfaces), which makes merging the C/C++ and the Java

programming language possible. So the survey data of the I/O are realized by native

invocation. However the operating system is again a limiting factor, because the data

are only updated in every 1000 millisecond. If the client requests are not so frequent,

this limit is enough in practice.

Before we change to the consideration of the Fuzzy Engine, it is necessary to

make a mention of a relevant feature of the statistics collector MBeans. All the nodes

send information to the Fuzzy Engine, when the avarage usage of these are smaller

than 100%. This is the most essential condition of the operating of the balancer, what

we will detail in the discussion of the Dispatcher.

The Fuzzy Engine is responsible for the part of the adaptivity of the balancer. It

gathers the information sended by I/O and CPU services and deducts a fuzzy value

between 0 and 1 supported by a preset Fuzzy Engine. This fuzzy value will be sent to

the Dispatcher, that stores it in a hashtable. Current version of Balancer use three fuzzy

linguistic variables: one for I/O and an other for CPU utilization and the third one

indicates the service capability of a server node. First two variables are considered

input variables and third one as output variable. Both input variables are divided into

three membership functions, therefore output server capability must be divided into six

membership functions. Further aim is to fine the shape of membership functions using

a fuzzy-neuro engine.

2.1.2 The Dispatcher

The Dispatcher is the second most important part of the Load Balancer. It is also

realized by MBean. It’s objective is to store the status information sended by each node

in a hashtable structure. Figure 2. shows the architecture of the Dispatcher.

5th International Conference of PHD Student, University of Miskolc, Hungary. pp 245-252.

2005.

The sent forwarded information consist of two parts: a fuzzy engine value and the

IP address of the specific node. The IP address is essential to identify the nodes. The

infomormation gets to a hashtable bucket in a vector with the time of arrival together.

As Figure 2. shows, the key of the hashtable is the IP address, because it is individual.

By the discussion of the Statistics Service we have mentioned, that there is a

condition, whereas a node only send the information to the Dispatcher, when its load is

fewer than 100%. In Dispatcher this effects, that the belonging stored information of

the hashtable bucket will not be updated. The time stamp of the data is therefore

essential, because relying upon these findings will the balancer make a decision to

wich information are timely, and which not.

The Dispatcher can be find on only one node in the cluster. It makes no difference

on which, but the best thing to do is that, it is started on the fastes node. The connection

between the Statistics Services and the Dispatcher is dynamic, that is each node in

startup finds and stores the address of the node on which the Dispather runs.

2.1.3 The Balancer

After preparation of the data the work of the balancer is no more so difficult.

However we have to pay attention at the optimal implementation, because the least

mistake can also cause big response time decrease. The balancer is a java class

implemented a CustomLoadBalancePolicy interface, which is functionally part of the

JBoss base interfaces.

Its theoretical operating is the following: The balancer make a decision on the

bases of the status information collected from server nodes. It considers those

information valid, which arrived within 150 ms. Those nodes, which are highly loaded,

they don’t send any information to the Dispatcher, so naturally the balancer doesn’t

give them a new task. The balancer will choose the node with the best fuzzy engine

value. However in case of a big loaded cluster can often occure so, that all of the nodes

are loaded fully and none of them makes a sign. Nevertheless in this case the balancer

have to choose one of them, but the question is which one.

Many solution methods have sprung up, however by reason of the tests it

appeared, that such method needed, which can efficiently distribute the works in case

of big loaded nodes. The first solution is the random distribution. It can be good, or can

be very bad because of the random distribution. For instance if the random balancer

gives the work to such node, which is slower than the others, and of course also loaded

on 100%. It proved a little better that method which gives the work to that node, which

average non-response time is the least, if every node are out of time constraint.

A very important element of the balancer is the following: in the current version

of the balancer a node can get a work twice one after the other only, if its CPU usage

doesn’t correspond to the stored value at the giving out of the previous work and also

this value is so more little, than the value of all the nodes. This condition came into the

balancer therefore, because when almost more clients all at ones give their requests

5th International Conference of PHD Student, University of Miskolc, Hungary. pp 245-252.

2005.

parallel, then without this condition the same node receive the request of more clients,

because the requests are so close to one another, that the data of the balancer couldn’t

update so quickly.

2.2 Test and results

The testing process has been carried out on a JBoss cluster consisting seven

homogeneous PC-s. Each machine had Pentium III 733 MHz CPU with 256 MByte

RAM. Machines were connected via 100Mbps Ethernet network. Utilized operation

system was Windows 2000 SP5. Application server version was JBoss 3.2.5

‘WonderLand’.

Simulating client requests was carried out with a generic professional simulation

environment: Apache JMeter. During testing process server machines where slowed-

down randomly with a special Loader-MBean emulating I/O or CPU load. Loader-

MBean is used for emulating other clients requests and other applications that are

parallel launching on the server nodes.

We have started the simulations with a client, then we increased the number of

clients to seven. In the course of all simulation we have tested all algorithms three

times, then we represented these average results on the Figure 3. The diagram shows

properly, that in every case the results of the Round-Robin fell short of the results of

the Intelligent Balancer.

0

50

100

150

200

250

300

350

T
h
ro
u
g
h
p
u
t

1. client 2. client 3. client 4. client 5. client 6. client 7. client

Number of clients

Random Intelligent Balancer Average Intelligent Balancer Round Robin

Figure 3.

Test results

If we examine the results we can see that, the value of the Throughput increases

with the increasing number of the clients, although it is not in direct ratio. The more

clients initiate request to the cluster, the more clients share the CPU. Exactly that is

why it does no good to more increase the number of the client - like number of the

nodes - in the course of the measurement, becase at such times the scheduling lose its

importance.

Of course, it depends on the type of the task scheduling requisted task, that they in

what extent require the resources. In the course of seven homogeneous nodes optimal

5th International Conference of PHD Student, University of Miskolc, Hungary. pp 245-252.

2005.

distribution is, if all of them get one. Certainly, we assume that the request of the

clients arrive in near time. Because the artificial loads run in random time on the nodes,

therefore certain corresponding with the number of nodes or more the nodes become

full.

At that time every node are maximum load. Whereas at such time the scheduling

is impossible, therefore the best solution is that, if we distribute the taks optimal among

the nodes till then, while the scheduling will be become possible. The Balancer does it

in two ways: with random node-choosing and with average response time. One node

could not get two tasks one after another.

The Figure 3. shows both results of the algorithm and with increasing of the

number of clients - which means that the more task get into the system - better and

better approach the theoretical maximum of the respose time of the Round-Robin and

the Intelligent Balancer.

In the event of inhomogeneous nodes certainly we can reach much better response

time, but of course it depends on the inhomogenity of the nodes.

During tests intelligent load balancer and only Round-Robin algorithm was

compared because Round-Robin algorithm is definetly better that other classic methods

like: First Available and Random balancer algorithms. Thus our aim was to outstrip

this traditional non-adaptive method.

3. Conclusion

An intelligent fuzzy-based Load Balancer Application and its test results have

been presented in this paper. Continuing work will focus on further developing and

implementing more flexible XML based configuration possibilities and redesign

communication between server nodes and the dispatched session bean utilizing the new

JBoss TreeCache introduced by the latest JBoss version 4.0.

4. Acknowledgements

The research and development summarized in this paper has been carried out by

the Production Information Engineering and Research Team (PIERT) established at the

Department of Information Engineering and supported by the Hungarian Academy of

Sciences. The financial support of the research by the aforementioned source is

gratefully acknowledged.

5. References

[1] J. Lindfors, M. Fleury, The JBoss Group: JMX: Managing J2EE with Java

Management Extensions. SAMS Publishing Inc., 2002.

[2] J. Basney and M. Livny, “Deploying a High Throughput Computing Cluster,” High

Performance Cluster Computing, vol. 1, May 1999.

5th International Conference of PHD Student, University of Miskolc, Hungary. pp 245-252.

2005.

[3] C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The Design and

Performance of a Pluggable Protocols Framework for Real-time Distributed Object

Computing Middleware”, in Proceedings of the Middleware 2000 Conference,

ACM/IFIP, Apr. 2000.

