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Abstract 

Inventory control has been considered an essential problem in the management of supplier 
companies for several decades. In recent years numerous new supply chain and inventory 
control models have been developed to support management decisions. In this paper, we 
investigate the classical one-customer and one-supplier (news vendor) problem with an 
analytical, event-oriented model. Our basic aim is to extend the classical newsvendor model to 
n periods, which means that management decisions will be made only once at the beginning of 
a predefined time horizon based on demand forecast information. The developed model is also 
suitable to handle the product run-out problem which arises from the seasonality of the real 
demand. A new heuristic method was developed to determine the optimal length of the time 
horizon. We examine the problem by means of a simulation method and discuss the results. 

Keywords: Supply Chain Management, Inventory Control, News Vendor Model, Stochastic 
Demand 

1. Introduction 

In the last 15 years, the business environment of companies in the field of mass production has 
altered. The demand rate for mass products has remained at a high level but numerous new 
requirements have appeared on the market. The life cycle of products is becoming ever shorter. 
Customer needs for stylish forms, new modern designs, special packaging or better product 
properties have greatly increased. Generally, mass production companies assemble and bundle 
their products from components originating from their supplier companies.  

Changes in the business environment influence engineering and logistic relations between 
companies and suppliers. The former, simple buying-selling (so-called “cool”) relation has 
become much “warmer”. This means that cooperative and collaborative methods and activities 
have become the main object in SCM development. The fast evolution of IT technology plays an 
important role in this process. In many respects, real-time, network-similar collaboration of 
independent, locally-separated companies is not realizable without an effective computer 
network information system. 

The whole productive-marketing chain of mass production is fairly long. The customer demands 
appear in shopping centres, which generate orders to logistical centres. Logistical centres 
transmit these demands to end-product manufacturers. End-product manufacturers forward 
orders to dozens of suppliers. This process generates on-floor orders (internal orders), starts 
production of lots, and places orders for raw material from suppliers. These multi-stage 
distributed information, decision and physical (producing and transporting) supply chains, 



 170 

material- and information-transmitter chains have a unavoidable delay, which directly leads to 
delays and instabilities, back orders, and overstock and becomes a source of unusable loss. 
Developing complex, large, collaborative supply systems necessitates increased information 
technology support of both business and technical processes. Complex ERP systems and 
auxiliary SCM modules and standalone SCM applications are available on the market to support 
the above-mentioned planning, decision, executive and information processes. 

Relations of the marketing organizations, end-product manufacturers and supplier companies 
can be very complicated and various in practice. This motivates a wide examination of the 
available models and further investigation of effective decision supporting and planning 
methods.  

If we analyse only the relation between the end-manufacturer and suppliers, even if strategy, 
tactical and operative collaborative areas can be separated, we find that strong fluctuation of 
stochastic market demands greatly influences the activity of mass production companies. 
Beyond the relationships of market competition, which is often stiff, care must be taken to 
maintain the obtained market positions. This generates a major emphasis on keeping order 
deadlines. The high requirements for readiness for delivery justify the realization of mixed, Make 
to Stock and Make to Order business policy.   

In this paper we examine the possibility of supplier inventory policy in the case of non-
deterministic demands. We assume that estimations concerning the future (forecasts) are 
solved; furthermore orders, acknowledgements, demands of delivery and the organization of the 
transport operation and synchronization of the planning process are also solved on the tactical 
level. We suppose that the supplier network on the strategy level is complete and bound by 
contract, and also that computerized communication conditions are available for the realization 
of business processes. 

In this study (in the current stage of the research), we consider the problem as a relation of one 
supplier and one end-manufacturer. Moreover we assume that the supplier produces one 
product and he is in relation to one end-manufacturer. The end-manufacturer can give a 
demand forecast at least for the middle-term, namely several weeks in advance (or other 
predefined time periods). But concrete transport demand is given in the form of demand of 
delivery only a short time beforehand, typically one or two weeks. The information announced 
by the end-manufacturer is uncertain to some extent. The values of forecast and concrete 
demand of delivery naturally do not coincide at all times. 

The primary objective of this research is to examine supplier inventory control policies, which 
ensure delivery completion (compliant Service Level: SL) in accordance with the demand of the 
end-manufacturer for a specific product, considering also the uncertainties. The production and 
inventory control policy of the supplier must be optimal in a sense, taking into consideration the 
collaborating relationship of the partners. In the first step, the above-mentioned policy must be 
characterized by time management (determination, control) of the inventory level. The end-
product manufacturer has a contractual obligation to provide technical specifications, a long- 
and a middle-term forecast to the supplier. The supplier has a contractual obligation to provide 
services in time according to the agreement with the end-product manufacturer. The supplier 
can control the stock level through inner production and orders.  The management task of the 
supplier is to determine what stock level should be maintained, and in what time and what size 
of series should management of the stock level be begun. 

Concerning the restrictive conditions, we assume that the products produced and stored by the 
supplier are not perishable for the time of delivery on call and at the requisite time, and that the 
producing resources are available without constraint. The supplier needs raw materials to 
manufacture the products. We assume that these materials are available at the start time of 
production. We suppose that raw materials and finished goods are not in the same inventory, so 
the model does not deal with the potential question of the two stocks taking up much room from 
each other. 
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2. Related studies 

Demand for efficiently modelling and solving inventory control problems, exists since 
establishment of industrial companies, factories and enterprises. First successful publications 
appeared at the beginning of the 1950’s. Since then constantly numerous papers were 
published in the stockpiling area, which validates the up-to-datedness of the subject. 
Because the whole history overview will be diffuse, therefore only some name are 
emphasized now. The most important events related to the evolution of inventory control 
models are fully summarized in the paper of Hans-Joachim Girlich and Attila Chikán [1999]. 
The main line of direction of resource results is represented by one-product, one-period 
deterministic models. These models try to give an optimal policy in analytical way 
accordance with the objective function of the modeled reality. Multi-period deterministic and 
stochastic models applying more products were developed only in later years. 

An another direction of the stockpiling policies is represented by game theory approaches. 
The reason of this should be found in the game theory itself, as in the “novelty” of the branch 
of mathematics. Game Theory assures effective methods to model the “warming-up” process 
of the supplier – end manufacturer, customer – vendor relation (becoming nowadays 
continually closer) and to modeling its cooperativity. In the following the results of the last 
near 50 years are surveyed. 

In the late 1950’s, the problem of “Optimal Inventory Policy” was analyzed by two important 
economists: Arrow [Arrow et al., 1951] and Marschak [Arrow et al, 1951]. Karlin’s 
presentations solved this problem with her dynamic programming method („The Structure of 
Dynamic Programing Models”) [Karlin, 1955]. Thirty-six years later, Alistair Milne [Milne, 
1966] emphasized that one of the best papers in the area of production decisions and 
inventory analysis area was the study of Arrow, Karlin and Scarf entitled “Studies in the 
Mathematical Theory of Inventory and Production” [Karlin, 1958]. Among the deterministic 
models, the Wagner-Within method minimizing the total cost fills in a great role, which 
determines the optimal inventory level with O(n logn) calculation time for an n length finite 
time horizon. A remarkable scientist of the stockpiling theme is Herbert Scarf, who attained 
prominent results mainly at the game theory solutions. Since 1957 it was justified by his 
numerous publications, as well as his “Computation of Equilibrium” monograph, born in 1973.  

E. Schneider’s mathematical models deal with uncertainty-loaded problems of inventory control. 
E. Shaw in the “Elements of a Theory of Inventory” [Chikán, 1999] created a two-period 
uncertainty loaded model. In the 90’s (S,s) type dynamic inventory control policies were 
published. The mathematician A. Markov laid strong foundations for the mathematical 
background for these models. In the meantime, John von Neumann and Oskar Morgenster’s 
famous book, the “Theory of Games and Economic Behavior” [Neumann, 1940] became 
known, which gave a new direction to the approach of inventory problems. The paper of 
Dvoretzky, Kiefer and Wolfowitz [Dvoretzky et al., 1953] examined the (S,s) type policy in the 
case of a fixed time interval and penalty cost. Nowadays the analysis of inventory-holding 
problems has become an important part of the management of supply chains. Many excellent 
publications have been published related to this theme [Lal and Staelin (1984), Monohan 
(1984), Lee and Rosenblatt (1986), Dada and Srikanth (1987) and Weng (1995)], which work 
with the deterministic demand model [Girlich and Chikán, 1999]. 

In recent years further models have been published in the area of collaborative planning (Aviv), 
forecast and Vendor Management [Aviv and Federgruen, 1998], and information sharing within 
the supply chain [Gavirneni et al., 1999]. Nowadays in the explanation of the supply chain 
problems, the most prominent results are linked with the name of G.P. Cachon [Cachon, 1999, 
2003]. For laying the foundation of the inventory policies, successful game theory results have 
sprung up.  

In the large literature of inventory control models the so-called newsvendor model has a 
prominent role. The stochastic model is applied in a wide variety of areas of operations 
management for its simplicity and efficiency: centralized and decentralized supply chain 
inventory management (e.g., Shang and Song 2003, Cachon 2003), retail assortment planning 
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(e.g., van Ryzin and Mahajan, 1999), international operations (e.g., Kouvelis and Gutierrez 
1997), horizontal competition among firms facing stochastic demand (e.g., Lippman and 
McCardle, 1995), lead time competition (e.g., Li 1992), outsourcing and subcontracting 
decisions (e.g., Van Mieghem 1999), product and process redesign (Fisher and Raman 1996 
and Lee 1996), and spot markets and inventory control (e.g., Lee and Whang 2002). 

It is not allowed to pass over the classical EOQ (Economic Order Quantity) model, because it 
was widely applied since 1916 and its other modified variations are also used still at present. 
The model is strictly based on deterministic input-output condition scheme, but it is fairly 
indifferent to the estimation inaccuracy concerning the expected value of the demand. 

Stockpiling in the management of supply chains plays an important role nowadays. With the 
rapid evolution of information technology, ERP (Enterprise Resource Planning) and SCM 
(Supply Chain Management) applications systems are gaining in significance. Dynamic systems 
with many products are manageable with operations research models or constraint 
programming methods. However, solutions based on analytical results and heuristics have a 
great part in “what if” type investigations and in the case of quick decisions.   

3. Classical newsvendor problem in supply chains 

In successful inventory control models, the critical inventory and the cost-optimal inventory 
policy are realized by decisions. In the course of these, decisions are made to determine 
starting time and quantity of the production. Naturally the individual decisions involve many 
responsibilities whose consequences appear in production, logistical and business costs. In 
the course of remaining non-reusable and overstocked products, stock finance and inventory 
holding costs occur. In addition, production of non-sufficient goods leads to penalty (back-
order) costs. Modeling this latter case is a very difficult problem. Of course, different models 
can possess different objective functions, and by means of this a common interest can be 
realized between the end-product manufacturer and the supplier (common cost function). As 
a constraint the strict non-admittance of the “lack” (e.g. short cycle JIT) can be appeared. In 
this paper we consider a model that in general allows the risk of the back-order, but the 
frequency of these can be reduced to a small level by increasing the penalty costs. 

The literature uses the concept of penalty costs in three different ways in inventory control 
policy. According to the first explanation, the supplier pays a penalty cost in the course of 
back-orders, which means undertaking the loss of the lost business of the end-manufacturer. 
This situation appears in a simple “cool” buying-selling relation.  

In the second explanation the back-order occurs when the supplier increases the cost of the 
whole supply chain anyway, even if there is not any concrete lost business. Namely, the end-
manufacturer should prevent the consequence of the supplier’s loss with more inner work, 
finished product reserves, reschedulings, etc. This approach infers some kind of “warm” 
(collaborative) relation among the business partners.  

In the third explanation, not only the non-satisfied inner orders and the lost business but also 
the large (maybe never again saleable) stocks also cause a loss to the whole production 
chain, which must be suffered by all the partners jointly. This kind of close business, 
production and logistic relationship of the partners infers a long-term community of interest, 
some kind of “Virtual enterprise”. In this paper we refer to the explanation of penalty cost in 
accordance with the second interpretation.  

This research supported by a consortium of six significant Hungarian mass production 
companies. The project was launched in 2005 and our team has been working on theoretical 
models of inventory controlling area. We examined the literature available on this field. We 
have chosen an event-oriented model for solving the inventory control problem of the 
supplier, which is based on cyclic demand of delivery and transport. This is the classical 
newsvendor model. The optimal stockpiling policy holds the supplier related costs at the 
minimal level on a long term. By minimizing costs, profit maximization can be indirectly 
attained. It is clear that in a cooperative supply system the supplier must tackle higher-level 
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services. The end-manufacturer recompenses these with stable and reliable orders, with 
forecast of the processes, with detailed business and production information, and with long-
term contractual safety. Of course, inventory policy of the supplier is only one (important) 
component of the cooperative (even collaborative) supply system. All elements of the whole 
relation system are not discussed here. We suppose the demand in the model is known as a 
time-dependent random variable with its expected value and distribution function (in the 
simplest cases it is uniform distribution in every t time between a pre-defined Dmin and Dmax 
value), which appears at the time of demand of delivery. The real demands arrive as pre-
known, fixed periodicity to the supplier.  

The element and the most important phases of the supplier inventory control policy are 
summarized as follows. Determination of the distribution function is needed for the first step 
of the method. In this step, we determine an optimal inventory level retailed on a long view, in 
terms of the costs. As a second step, we aim a lower inventory level than the optimal, using 
the forecast information. To achieve this, a critical inventory level must be determined, where 
the production and the non-production costs respecting to one time interval are equal. The 
third important step of the method is the decision itself, which is about starting a production 
cycle or not; i.e. if the current inventory level is less than the critical level, then production 
must be started, otherwise nothing is done until the next decision event. 

Our model examines the problem from the point of view of the supplier. The collaborative 
interests appear in the model through the parameter values. After the solution of the model 
we review the steps performing the optimal policy. 

3.1 Cost function for one-period 
The classic newsvendor model considers a type of problem that many decision makers 
(newsvendors) encounter in the business world. Facing uncertain demands for limited-useful-
life products (such as mobile phones, fashionable goods etc.), a decision maker 
(newsvendor) needs to decide how many units of these goods to order for a single selling 
period. Intuitively, if she/he orders too many (overage), this may cause unnecessary 
inventory cost. Thus, the cost will be too high. Whereas, if the decision maker (newsvendor) 
orders too few (underage), it will miss opportunities for additional profits because some 
customers have no chance to buy the goods. The optimal solution to this problem is 
characterized by a balance between the expected costs of overage and underage. 

On the basis of the problem outlined in the model the supplier cost function regarding one 
time period can be formulated as a function of the parameters in the following manner 
[Hayriye, 2004]: 

       ( )[ ] ( )[ ] ,0DqmaxhE+ ,0qDmaxpE+x)(qc+c=K(q) vf −−− .     (1) 

where the individual parameters are the following: 

cf  – fixed cost. This cost always exists when the production of a series is started. [Ft / 
production]   

cv  – variable cost. This cost type expresses the production cost of one product. [Ft /  
product] 

p  – penalty cost (or back order cost). If there is less raw material in the inventory than 
needed to satisfy the demands, this is the penalty cost of the unsatisfied orders. [Ft / 
product] 

h  – inventory and stock holding cost. [Ft / product]  

D  – This means the demand from the receiver for the product, which is an optional 
probability variable. [number / period] 

E[D]  – Expected value of the D stochastic variable. 

F(D) – cumulative distribution function of D 

f(D) – probability mass function of the demands 
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q  – The product quantity in the inventory. The decision of the inventory control policy 
concerns the product quantity in the inventory after the product decision. This 
parameter includes the initial inventory as well. If nothing is produced, then this 
quantity is equal to the initial quantity, i.e. concerning the existing inventory.   

x – Initial inventory. We assume that the supplier possesses x products in the 
inventory at the beginning of the demand of the delivery period. 

m – This means the effective producing quantity in the current time period. Its value is 
the difference between the optimal and the remaining quantity from the last time 
period. 

The first part Equation (1) expresses that starting the production of each series carries some 
fixed costs, which express the starting cost of a new production cycle. The second part 
shows the variable costs of the products to be produced. Assuming that x product is 
available in the inventory, therefore one technological decision will result in the production of 
m=q – x products.   

The third part of the cost function is the penalty cost (back-order), which symbolizes the 
costs issuing from unsatisfied demands. The max(x,0) function performing in the cost 
function will be different from zero if the demand is larger than the quantity in the inventory. 
Of course, in the real world there might be such practical cases when back-order is not 
allowable. This can be achievable via choosing a high p parameter. The last part of the 
equation expresses the holding cost, which arises at that time when the demand is less than 
the quantity of the end-product in the inventory. If the demand is more than the produced 
quantity of the end-product, then of course there are no additional charges, because the 
inventory will be empty after filling the orders. 

On the basis of (1), determination of the optimal inventory level is a minimization problem 
[Hayriye, 2004][Mileff, 2006]. The solution method is not discussed here, [Hayriye, 2004] 
shows the details. So in the long run the amount of cost-optimal end-product can be 
calculated on the basis of the following relation: 
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where F() is the distribution function of the demand. The value of S expresses the amount of 
the end-product that should be in the inventory when the demand appears. In the optimality 

condition )hp/()cp(: v +−=ξ is known as the critical fraction. Also note that the critical 

fraction is the probability of not stocking out (somewhere known as Cycle Service Level(CSL) 

[Porteus, 2001]). So ( )qDemandP ≤=ξ . According to the definition it is the probability that 

the supplier can satisfy every demand during the time horizon. Characteristic of CSL can be 
seen at figure 1. 

 
Figure 1. CSL characteristic 
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It can be noticed that if vcp < , then the problem cannot be explained by mathematics. Since 

at this time 0F(S) < , which the definition of the distribution function does not allow. This 

means in reality that penalty cost occurring at the non-production is less than occurring at the 
production. From this reason supplier will produce nothing, rather suffers the consequence of 
the back-order. 
It is easy to see that if there are no available products in stock to satisfy the demand, then 
necessarily a production cycle should not be started, because it carries fixed costs which 
make the production of a small volume expensive. Consequently it is conceivable that there 
definitely exists a critical amount, which is smaller than the optimal (S) amount, but by 
choosing this quantity it is more profitable to sustain the risk of the back-order. The name of 
that point where the cost of the decision about producing or non-producing (as we would 
rather undertake the risk of the back-order) is equal is the critical inventory level (s). The 
critical level is probably smaller than the long-term cost-optimal inventory level. If the 
products in the inventory are less than this, only then is it profitable to increase the stock in 
hand to the optimal level [Mileff and Nehéz, 2006]. However, using the critical inventory is a 
collaborative question which depends on the contractual relationship among the partners. In 
literature this approach of inventory control is known as (S,s) policy and at first time was 
mentioned by Herbert Scarf. In this paper this method will not be demonstrated, but it is 
shown properly in [Hayriye, 2004] and [Mileff, Nehéz, 2006]. 

4. Extending the news vendor model to more joint weeks 

Numerous examples exists in the literature solving the multi-period inventory problems. The 
study [David Simchi-Levi, Julie L. Swann et al, 2004] discusses many of these methods and 
solutions. These methods generally solve multi-period problems with the help of dynamic 
programming, stochastic programming or with some kind of searching algorithms. The 
solution effort of these, are extremely time consuming and it can be computed with 
difficulties. The heuristic approaches always apply model simplification to solve the NP hard 
multi-period problems. Therefore our aim was to develop a model, based on the original 
newsvendor model to solve multi-period inventory decision problems in case of customized 
mass production. 

The optimal inventory policy of the supplier was discussed above in detail projected for one 
production time horizon. Here, this policy will be complemented in such a way that it is to be 
suitable to cover uniformly n number production cycles (weeks). Then we demonstrate the 
determination of the optimal inventory level in the course of the joint production of n number 
of weeks. With the help of these optimum values it becomes possible to determine the 
necessary production cycles in a specific time horizon. This optimal cycle number, which 
means the minimal setup number, opens the door to minimize the costs on the supplier’s 
side.  

4.1 Determining the inventory optimum for n joint weeks  
Let us extend the News Vendor problem to n joint weeks. This means that we do not produce 
every week but we try to determine an optimal number of n joint weeks based on demand 
forecast information. Especially in mass production, where setup costs and production rate 
are high values and holding cost is low, it is not worth producing every week. We suppose 
that necessary production capacities are available. 
Nevertheless holding and penalty costs can arise each week, thus with these factors the new 
cost function becomes quite complicated. The cost function of the joint production for n 
weeks is the following: 
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where n...123q means the quantity which appears in the supplier inventory early in the cycle for 

n week after production. n21 D,...,D,D  mean the demand of the specific week, which appears 

as a random variable. It can be seen that the last part of the function is fairly complicated, but 
by means of several mathematical transformations (which are not discussed in this paper) 
we obtain a simpler variation of (4):  
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The difference between (4) and (5) is that the penalty cost was simplified because we 
exploited that fact the penalty is considered as an independent value during n periods. 
Therefore penalty cost can be calculated as a difference in the sum of demands and 
production quantity. 
 
From the form of (5) it can be expressly seen that the problem is traced back to the one-
week production problem. The solution, the optimal inventory quantity of the joint production 
for n weeks, arises as a minimization problem in the following manner: 

 
ph

)q(hF...)q(hF)q(hF)q(hFcp
*)q(F n...1231n...123n...123123n...12312n...1231v

n...123n...123 +

−−−−−−
= − ,  (6) 

where ()F represents the joint distribution function in compliance with the number of weeks 

drawn together. The q123…n
* - which satisfies the equation - expresses that the finished goods 

must be in the inventory at the time when customer demand appears with regard to n weeks. 
(6) can be solved by using numerical methods but in special cases some simplification can 
be applied.  

In practical calculations, values of )q(hF),...,q(hF),q(hF),q(hF n...1232n...123n...123123n...12312n...1231 −  

can be approximated by 1. Note that: assuming that F1(x) is a cumulative distribution 
function of a uniform distribution. If argument x is greater than the maximum value of the 
given uniform distribution, then F(x) always gives 1 by definition. This way equation (6) 
becomes a simplified form as follows:   

 
ph

)q(hFh)2n(cp
*)q(F n...1231n...123v

n...123n...123 +

−⋅−−−
= − . (7) 

 
The numerator can be a negative value in that case, when holding cost during the weeks is 
greater than a certain limit and in this case, naturally there is no optimal solution. This time 
the number of weeks have to be reduced, because it is cheaper if the supplier does not 
produce anything. 
Of course the critical inventory mentioned for one-week production can be applied in the 
case of joint production for n numbers of production cycles too. However this is not 
discussed in this paper.  

4.2 Optimal inventory control policy for n weeks 

 
As we mentioned above, the optimal inventory quantity in case of joint production for n 
weeks can be calculated with the relation (6) showing similar symmetry to the one-week 
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production problem. In the following, the practical importance and of joint production for n 
weeks will be introduce in brief through a concrete example. The empirical factors show that 
the (high) value of the production fixed costs influences significantly the number of setups in 
the specific production time horizon and indirectly the costs. The greater this value is, the 
less profitable production cycle usage is in the specific order time window. Thus cost 
referring to the specific time horizon will be minimal if and only if the number of setups is 
minimal as a function of production fixed costs. In the following, both the optimal number of 
setups and the optimal production quantity can be determined. The method uses directly the 
above-mentioned cost function of joint production for n weeks.  

We assume that the distribution functions of the probability random variables in the cost 
function are uniform. The manner can be applied in case of optional distribution, but in this 
example we choose normal distribution because of easier lucidity. The reason is that the 
distribution and cumulative functions of the new variable (e.g.: D123 = D1+D2+D3) established 
from the sum of uniform distribution probability random variable are complicated. Supposing 
normal distribution, the σ  and µ  values of this new variable is realized as the sum of the 

σ  and µ  values of the added variables. Moreover we assume that values of σ  and µ  

are equal for all weeks. 

The basic idea of the method is as follows: with the help of the cost function (6), the optimal 
production quantity can be determined regarding an optional time horizon. However this 
quantity is independent from production fixed costs, because the n number of weeks are 
considered as a production cycle. It is easy to see that relating to a certain time horizon the 
necessary number of setups depends greatly on the value of production fixed costs. 
Controlling this problem, we introduce the concept of per-unit cost, which means the cost per 
unit regarding a specific time horizon.  

Let denote the value of per-unit cost 
*
i

i
i

q

K
K̂ = , where iK  means the cost of i th number of 

jointly produced weeks, *
iq  is the optimal quantity of i number of jointly produced weeks and 

k...1i = . We suppose that the value of per-unit cost in case of different numbers of jointly 
produced weeks will be different. The objective is to find the minimal from this set. Thus 

finding the minK̂ , which satisfies the following equation: { }n21min K̂,...,K̂,K̂minK̂ = . Possessing 

the minimum shows clearly the necessary number of weeks in a specific time horizon 
needed for joint production. The necessary minimal number of setups arises already from 
this. 

The first step of the method is using the formula of joint production for n weeks. In the course 
of this the optimum of k number of jointly produced weeks comes to determination. 
Experience shows that the value of k can be maximum 7 – 8 in practice. The determination 
of the optimum can be calculated analytically with the help of the above-mentioned method, 
which needs very little calculation time. We prove our assumption through the next practical 
example. 

Distribution of demands for products are normal with 15/week mean value and with variation 
3=σ . The back-order cost is p = 40 unit for each element. Holding cost is h = 2 unit/period. 

The fixed cost of the production is cf = 120 unit/series. Let the value of variable cost cv = 5 
unit. The per-unit costs of the 9...1k =  number of jointly produced weeks and the produced 
optimal q quantities obtained in the course of computations are summarized in Table 1. 
 

Table 1. Determining the optimal week number for joint production 

 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 

Optimal 
quantity 

16.91364 33.26343 49.16258 64.67296 79.83145 94.66017 109.17202 
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Per-unit 
Cost 

12.68306 9.93307 9.78449 10.21825 10.86718 11.61334 12.40708 

The columns of the table mean the number of jointly produced weeks. The first row denotes 
the optimal quantity as a function of jointly produced weeks and the last row means the per-
unit cost. For example, 79.83145 in the first row means that if we produced on the basis of 5-
weeks forecast information, the optimal quantity would be 79.83145. In this case, 10.86718 is 
the per-unit cost of the production. Clearly, the per-unit cost is minimal in the third column 
(9.78449). With the help of Figure 1, per-unit cost can be studied as function of jointly 
produced weeks. 

 

 

Figure 2. Variation of per-unit cost  

The x axis in Figure 1. shows the production time horizon as function of weeks and the y axis 
represents the per-unit cost as function of jointly produced weeks. Once again, it is easy to 
see that the value of per-unit cost is minimal supposing joint production of a three-week 
(cycle). Using this minimal cycle number the costs will be really minimal.  

Using this method the minimal number of required production cycles can be determined in a 
specific production time horizon, as can be the optimal quantity that needs to be 
manufactured in the cycle. The accuracy of our heuristic was verified using the method of 
constraint programming and with a genetic algorithm. Results in Table 2 prove clearly the 
efficiency of the new method. The enormous advantage of this manner is that it is 
substantially faster than brute force or a genetic algorithm. The measurement of execution 
times can be seen in Table 1. Since it is an analytical solution, therefore this will be always 
an exact solution or at least the error can be estimated in advance. 

Table 2 shows the execution times of three different methods which are summarized 
applying the above mentioned parameters. The objective is to determine the optimal policy of 
a seven week long time horizon. This means that: methods establish the number of weeks, 
when production is necessary. Of course, in case of production the optimal quantity is 
computed as well.  

Table 2. Comparison of execution times 

execution time (m. sec) Methods 
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 

CP 200 600 9000 627000 n.a. n.a. n.a. 
Genetic 200 400 700 1000 2000 3000 5000 
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Heuristic 10 10 20 50 50 50 50 

Note that. n.a. means that execution time was greater than 30 min, therefore we skipped the 
test. Method CP symbolizes the basic constraint programming method. First row of Table 2 
shows that this method cannot be used for solving n-week problems, because it is an NP 
hard problem in this approach. The values of the second row belong to the genetic algorithm 
solution. Genetic algorithm approach is faster than basic constraint programming solution, 
but the obtained results were only quasi-optimal solutions in some instances, which 
approximate the value of the true optimum in 99%. Values in the last row indicate well the 
efficiency of the newsvendor extension and of the heuristic method. Because the method 
makes analytical computing possible, so execution time will be extremely short.  

 

5. Interpretation of product run-out 

Following the explanation of joint production of production cycles we change over to 
the run-out problem of the products, which has nowadays a great importance. Market 
estimations prove clearly that natural fluctuation can be observed at product demands. It 
means that a kind of so-called seasonality can be explained for products. According to this 
seasonality, demands for products change greatly in a certain period. Almost all larger or 
smaller commercial firms, retailers, suppliers come face to face with this problem. They try to 
defend themselves against this with help of human intuition and experience of previous 
years. 

Of course human intelligence is essential in case of a complex problem. Our aim is to 
extend the model with new elements, which can help to solve the problem beside human 
intuition. Applying this extension the more exact computation of necessary inventory level 
becomes possible. 

The problem of product run-out is examined in case of pre-mentioned joint production 
of production cycles. The terminology “run-out” expresses that the demand for a specific 
product will be reduced to zero after a certain time. There was given any notice of the 
demand from the forecast system, but the product suddenly ran out (E.g. packaging material 
produced for Christmas). It is looked for an element (function), which expresses this in time 
ascending risk factor. In compliance with this, the run-out of demands is modelled with a 
random variable with Poisson distribution function. In the following figure the Poisson 
distribution function can be seen in case of 15=λ . 

 

 
Figure 3. Poisson distribution function with 15=λ . 

 

15=λ  means that the event occurs once during 15 time period (week). Figure 3 

shows that the probability of occurrence during the first 8 weeks is small ( 066.0)8(P ≈<ζ ). 

So the product runs out during the first 8 weeks with 6.6% probability. 
 
Applying two weeks joint production, the cost function with its introduced new parts can 

be represented as follows: 
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Where d is a positive real number and expresses the loss per unit of left over goods. ( )λ,iR  

is the Poisson distribution function, where i is a positive integer designating the weeks. 

[ ]∞= ..0λ  is the parameter of the Poisson distribution. 

 
On the basis of the above mentioned expressions:  

( ) ( ) ( ) ( ) ( )121212112121212121v
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The derivation is similar to the other solution in the appendix, so this is not discussed here. 
Thus the solution:   
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∗ . (9) 

The problem can be explained similarly in case of N week joint production as well. Product 
run-out is interpreted for n number of weeks. The solution in this case: (It is not detailed here, 
but can be proved easily) 
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In favour of practical feasibility, choosing values of d and λ  have crucial importance. Value 

of d can be comprehended as penalty cost, which changes per units. λ  expresses the 
seasonality of the product. So the smaller is its value, the larger is the danger of its run-out. 

Conclusions 

In the present paper we examined the problem in case of the collaborative relation of one 
supplier and one customer on the basis of claim of a Hungarian mass-production company. 
Improving the well-known models from the literature, we optimized the cost function of the 
supplier as a function of the parameters, which does not eliminate the possibility of back-
order and is applicable for an optional time horizon. We extended the problem of a one-week 
production cycle to become the production of optional, n number of jointly produced weeks 
possible. Understanding the problem as a non-linear optimization problem, we determined 
the optimal inventory level. With the help of a heuristic method over and above the optimal 
inventory level, the minimal required number of jointly produced weeks can be defined in an 
exact way. The efficiency of the method was proved by a genetic algorithm and constraint 
programming. The simulation results show clearly that calculation time of the method is 
small; therefore it is suitable for fast testing of different policies and decision alternatives.  
The developed model gives also a suitable solution to handle the product run-out problems 
as well, which arises from the seasonality of the real demand. 
Henceforth we aim to extend the developed model to be applicable multi-product problems 
with natural capacity constraints. Part of our aim is to integrate the forecast information of the 
expected demand into the model, as well as to examine how historical data and uncertain 
forecasts influence the conformation of inventory level over time. 
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The following complicated derivations in the appendices have been verified by a 
symbolic mathematical software package. 

APPENDIX 1 

Determining the optimal inventory level of a one-week production cycle 
 
The cost function of the problem outlined in the model can be defined as a function of the 
parameters in the following manner: 
 

( )[ ] ( )[ ] ,0Dqmaxh+ ,0qDmaxp+x)(qc+c=K(q) vf −−− . 

 
The question is how much the cost for one period will be, so how much the expected value of 

the costs will be: [ ]K(q)E=g(q) . From this, formula (1) is obtained. Let denote the cumulative 

distribution function of the demands with F(x) and let f(x) be the probability mass function of 

the demands, so ∫≤
x

0

f(y)dy=x)Ρ(D=F(x) . We assume that f(x) is continuous in ) 0,[ ∞  in 

the following proof. The conclusion in this section still holds when D is a general continuous 
random variable. 

 
The following relations are true in case of any q >0:  
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where ) ,0D(qmax=D)(q + −− , and ) ,0q(Dmax=q)(D + −− . 

With these two relations the cost function will be the following: 
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Our objective is to find the minimal g, so we must find a q which satisfies the 0=(q)g' . For 

derivation we use these fundamental rules: 

∫
x

0

h(x)=h(t)dt
dx

d
, and ∫
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−
0

h(x)=h(t)dt
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d
. 

Thus: 
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After derivation using the fundamental rules we obtain the following relation:  

F(q)) 1p(hF(q)+c=(q)g' v −− . 

Setting 0=(q)g' , we find that q* must satisfy 

h+p

cp
=)F(q v−

∗ . 

To check whether g has a unique maximum, we take the second derivative of g, 
 

h)f(q)+(p=(q)''g . 

 

Examining the result it is easy to see that 0h+p ≥  without exception, because both p and h 

are positive integers. Thus 0(q)''g ≥ , so g is a convex function on ) 0,[ ∞ . 

APPENDIX 2 

Determining the optimal inventory level of a two-week joint production 
cycle 
 
The following equation expresses the two week cost function: 

( )[ ] ( )[ ] ( )[ ] ( )[ ]

[ ][ ] .)q+(qD+DpE+
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It is easy to see that the function has been completed with the parts regarding to the second 
week. To simplify the function, some formulas are applied as follows:  

{ } ( ) ,qDD=qD,min
+−−  

{ } ,D=qD,max +  

{ } +DD=D= ,0Dmin −− . 

The last part of the equation is fairly complicated, so using these formulas it can be 
transformed to a more simple form:  

[ ] [ ][ ]+

21121122112 )q+(qD)q+(qD+D=)q+(qD+D −−−− −
. 

Assume that the demand of the second week is independent of the demand occurring 
at the first week. So demands can be explained as independent probability random variables, 
therefore using the above formulas the expected value of the last part can be separated to 
two different parts. Penalty cost can be computed separately for every week and the joint 
expected penalty cost of the two weeks equals to the sum of the expected penalty costs of 
the certain weeks. So in the following we use the joint cumulative distribution and probability 
mass function of the merged probability random variables. 

 
On the basis of the formulas and these remarks, the cost function changes as follows: 
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In a more simple form: 
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where 2112 q+q=q  and 2112 D+D=D . 

 

Note: 12q  means the jointly produced quantity for two weeks, which is realized by the sum of 

producing quantities. In favour of more simplification 12D  indicates the sum of the demands 

projected to the certain weeks. Because demands can be explained as independent 
probability random variables, therefore they can be summarized, and used jointly. 
 
Applying the definition of the expected value: 
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The objective is to keep the costs at the minimum level finding the minimum of the cost 
function. Performing the derivation in accordance with the jointly producing quantity, we get 
the equation:  

 
Simplified the equation: 
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Using the above mentioned rules: 
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The theory of extreme value calculation declares, if 0=)(qK' 12 then there is a ∗12q , which 

satisfies the following equation: 
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The second derivate of the function in accordance with 12q : 
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Verifying the result it can be seen that 0)q(pf)q(hf)q(hf 12121212121 ≥++  in every case, 

because both p and h are positive integers, and the values of each probability mass function 

belonging to the certain weeks are positive integers. Thus 0)(q''K ≥12 , namely 12K  is 

convex on )[ ∞ 0,  interval. 
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APPENDIX 3 

Determining the optimal inventory level of an n-week joint production 
cycle 

 
The initial point to determine the optimal inventory level for n joint week is the n-week cost 
function similarly to in what has gone before:  
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Where n21n...123 q...qqq +++=  and n21n...123 D...DDD +++= . The last part of the equation, 

which expresses the back-order cost, requires a transformation because of its complexity. 
We use the formulas mentioned at the two-week policy. As a result of these the transformed 
cost function: 

[ ] [ ] [ ]
[ ] ( )[ ]++

++

−++++−−−−+

++−−+−+−+=

n...123n21n21n...123

21n...1231n...123n...123vfn...123n...123

qD...DDpED...DDqhE

...DDqhEDqhExqcc)q(K
 

The difference between these two equations comes from handling the penalty cost. 
Simplification arises from the assumption that demands of certain weeks, represented as 
probability random variable with optional distribution function, are independent during the 
whole time horizon. In this comprehension penalty cost can be computed as a difference of 
the summarized demands for n weeks and the current inventory level. Applying the definition 
of the expected value: 
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The objective is again to keep the costs at the minimum level and to find the minimum of the 
cost function. Performing the derivation in accordance with the jointly producing 

quantity 123...nq , we get the equation:  
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Simplified:  
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Applying the above mentioned rules the equation gets the form: 
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which satisfies the following equation: 

ph

)q(hF...)q(hF)q(hFcp
*)q(F n...1231n...123n...12312n...1231v

n...123n...123 +

−−−−−
= − . 

To verify that ∗123...nq is a real minimum of the function the second derivate helps. 

Thus 

)q(pf)q(hf...)q(hf)q(hf
qd

)q(dK
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n...123
2

n...123n...123 ++++=  

Verifying the result it is easy to see that  

0)q(pf)q(hf...)q(hf)q(hf n...123n...123n...123n...123n...12312n...1231 ≥++++  in every case, because both 

p and h are positive integers, and the values of each probability mass function belonging to 

the certain weeks are positive integers. Thus 0)(q''K n...123 ≥ , namely n...123K  is convex 

on ) 0,[ ∞  interval. 

 


