
 

Production Systems and Information Engineering  

Volume 6 (2012), pp. 99-110 
 

99

EFFICIENT 2D SOFTWARE RENDERING 

PETER MILEFF 
University of Miskolc, Hungary 

Department of Information Technology 
mileff@iit.uni-miskolc.hu 

JUDIT DUDRA 
Bay Zoltán Nonprofit Ltd., Hungary 
Department of Structural Integrity 
judit.dudra@bay-zoltan.hu 

[Received March 2012 and accepted May 2012] 

Abstract. The market of computer graphics is dominated by GPU based 
technologies. However today’s fast central processing units (CPU) based on 
modern architectural design offer new opportunities in the field of classical 
software rendering. Because the technological development of the GPU 
architecture almost reached the limits in the field of the programming model, the 
CPU-based solutions will become more popular in the near future. This paper 
reviews the problems and opportunities of two-dimensional rendering from a 
practical point of view. An efficient, software based rasterization method is 
presented for textures having a transparent color component. The applicability of 
the solution is proved through measurement results compared to other methods 
and the GPU based implementation. 

Keywords: real-time rendering, software rasterization, optimization  

1. Introduction 

Computer graphics has gone through dramatic improvements over the past few 
decades, where an important milestone was the appearance of the graphic 
processors. The main objective of the transformation was to improve graphical 
computations and visual quality. Initially, the development process of the central 
unit was far from being a fast paced evolution like today. So based on industry 
demands, there was a need for dedicated hardware which takes over the 
rasterization task from the CPU.  
Graphical computations have different requirements from the other part of the 
software. This allowed for the graphics hardware to evolve independently from the 
central unit opening new opportunities before developers, engineers and computer 
games. From the perspective of manufacturers and industry, primarily speed came 
to the fore against programming flexibility and robustness. So in recent years the 



100 P. MILEFF, J. DUDRA  

 
development of videocard technology focused primarily to improve the 
programmability of its fixed-function pipeline. As a result, today's GPUs have 
quite effectively programmable pipeline supporting the use of high-level shader 
languages (GLSL, HLSL, CG). 
Nowadays, the technological evolution proceeds to a quite new direction 
introducing a new generation of graphics processors, the general-purpose graphics 
processors (GPGPU). These units are no longer suitable only for speed up the 
rendering, but tend the direction of general calculations similarly to the CPU. 
However, the problems of the GPU-based rasterization should be emphasized. The 
applied model and the programming logic slowly reach its limits, the intensity of 
progress is apparently decreasing. Even there are fast hardware supported pipeline 
in current graphics cards, they do not provide the same level of flexibility to the 
programmer to manage the rendering process like CPU based rendering. Although 
the existing pipeline and 3D APIs provide many features for developers, if we 
would like to deviate from the conventional operation, we encounter many 
difficulties. 
Today's GPU architecture is questionable and needs to be reformed, as leading 
industrial partners strongly suggest [12,13]. The video card industry is currently 
under development. For example AMD’s new Fusion technology (APU - 
Accelerated Processing Units) represents a whole new generation by the integration 
of the graphical processor and the central unit. 
For the problem posed also by game industry leaders [12], the solution is to return 
to the software rendering technique, where the display content should be 
programmed logically and technically using the same language as the application. 
This would permit creating a more flexible development environment driving 
computer graphics to a new direction. 
A good basis for this is provided by the huge revolution of the CPUs occuring in 
recent years. Processor manufacturers have responded with extended instruction 
sets to market demands making possible faster and mainly vectorized (SIMD) 
processing also for central units. Almost every manufacturer has developed its own 
extension e.g. the MMX and SSE instruction family which are developed by Intel 
and supported by nearly every CPU. Due to new technologies, a software can reach 
about 2-10x speedup by exploiting properly the hardware instruction set. 
This paper investigates practical realization questions of two-dimensional software 
rasterization. A special optimization solution is presented, which helps to improve 
the non GPU based rendering for transparent textures. 

2. Related work 

The software based image synthesis has existed since the first computers and it has 
been focused even more with the appearance of personal computers until about 
2003. After this time almost all the rendering techniques become GPU based. 
However there were borned many interesting software renderers during the early 
years. The most significant results were the Quake I, Quake II renderers in 1996 



 EFFICIENT 2D SOFTWARE RENDERING 101 

 
and 1998, which are the first real three-dimensional engine [8]. The rendering 
system of the engines was brilliant compared to the current computer technology 
and was developed by the coordination of Michael Abrash. The engine was 
typically optimized for the Pentium processor family taking advantage of the great 
MMX instruction set. The next milestone of computer visualisation was the Unreal 
Engine in 1998 with its very rich functionality the time (colored lightning, 
shadowing, volumetric lighting, fog, pixel-accurate culling, etc) [12]. Today Unreal 
technology is a leader in the area of computer graphic. 
After the continuous headway of GPU rendering the software rasterization were 
increasingly losing ground. Fortunately there are some notable great results also 
today, such as the Swiftshader by TrasGaming [2] and the Pixomatic 1, 2, 3 
renderes [14] by Rad Game Tools. Both products are very complex and highly 
optimized utilizing the modern threading capabilities of today’s Multicore CPUs. 
The products have dynamically self-modifying pixel pipeline, which maximises 
rendering performance by modifing its own code during runtime. In addition, 
Pixomatic 3 and Swiftshader are 100% DirectX 9 compatible. Unfortunately, since 
these products are all proprietary, the details of their architectures are not released 
to the general public. 
Microsoft supported the spread of GPU technologies by the development of 
DirectX, but beside of this its own software rasterizer (WARP) has been 
implemented. Its renderer scales very well to multiple threads and it is even able to 
outperform low-end integrated graphics cards in some cases [3]. 
In 2008 based on problem and demand investigations, Intel aimed to develop an 
own software solution based videcard within the Larrabee project [5]. The card in 
technological sense was a hybrid between the multi-core CPUs and GPUs. The 
objective was to develop an x86 core (many) based fully programmable pipeline 
with 16 byte wide SIMD vector units. The new architecture made possible to 
graphic calculations to be programmed in a more flexible way than GPUs with x86 
instruction set [4]. 
Today, based on the GPGPU technology, a whole new direction is possible at a 
software rendering. Loop and Eisenacher [2009] describe a GPU software renderer 
for parametric patches. Freepipe Software rasterizer [Liu et al. 2010] focuses on 
multi-fragment effects, where each thread processes one input triangle, determines 
its pixel coverage and performs shading and blending sequentially for each pixel. 
Interestingly, recent work has also been done by NVidia to create a software 
pipeline which runs entirelly on the GPU using the CUDA software platform [7]. 
The algorithm uses the popular tile-based rendering method for dispatching the 
rendering tasks to GPU. Like any software solution, this allows additional 
fexibility at the cost of speed. 
A new SPU (Cell Synergistic Processor Unit) based deferred rendering process has 
been introduced in today's leading computer game, Battlefield 3[13]. Its graphical 
engine, Frostbite 2 engine makes possible to handle large number of light sources 
effectively and optimized. 



102 P. MILEFF, J. DUDRA  

 
In publication [1] a modern, multi-thread tile based software rendering technique 
was outlined where only the CPU has been used for calculations and had great 
performance results. 
Thus, recent findings clearly support the fact that CPU-based approaches are ready 
to come back in order to improve performance and flexibility. So, the aim of this 
publication is to investigate performance in the area of the 2D software rendering 
utilizing today CPUs.  

3. Software rendering in practice 

Software rasterization is the process, where the entire image rendering is carried 
out by the CPU instead of a target hardware (e.g. GPU unit). The main memory 
stores the shape assembling geometric primitives in in the form of arrays, 
structures and other data. The logic of image synthesis is very simple: the central 
unit performs the required operations (coloring, texture mapping, color channel 
contention, rotating, stretching, translating, etc.) on data stored in main memory, 
then the result is mapped into the framebuffer and the completed image are sent to 
the video controller. Framebuffer is an area in memory which is being streamed by 
display hardware directly to the output device. Usually it is on video card, but can 
be mapped into address space of the application and accessed directly like normal 
RAM. 
Software image synthesis has many advantages over the GPU-based technology. 
As the CPU performs the whole processing, there is less need to worry about 
compatibility issues because we do not have to adapt to any special hardware, or 
follow its versions. The image synthes can be programmed uniformly using the 
same language like the application, so there is no restriction on the data (e.g. 
maximum texture size) and the processes compared to GPU language shader 
solutions. Every part of the entire graphics pipeline can be programmed 
individually. Preparing the software to several platform causes less problems 
because displaying always goes through the operating system controller, there is no 
need for special video card driver. 
Developing a fast software renderering engine requires lower level programming 
languages (e.g. C, C++, D) and  higher programming skills. Because of the utilized 
techniques it is necessary to use operating system-specific knowledge and codings. 
A typical example is when the framebuffer should be copied into the video card’s 
memory for displaying. To support this data transfer, several solutions are 
developed in practice.  
Firstly, we can use the operating system routines for framebuffer transfer, but it is 
strongly platform-dependent. This method requires writing the bottom layer of the 
software separately for all the operating systems. A more elegant solution is to use 
the OpenGL’s platform-independent (e.g. glDrawPixels, texture) [6] or the DirectX 
(e.g. DirectDraw surface, texture) solutions. 
 



 EFFICIENT 2D SOFTWARE RENDERING 103 

 
4. 2D software rendering solutions 

Two-dimensional visualization plays an important role beside today's modern 
three-dimensional rasterization. We can say that the world moved to the direction 
of the field of 3D vizualization, but the two-dimensional solutions have always 
been and will be present as a complementary technique. Several layers of the 
computer applications belong here: any software that has some kind of graphical 
menu or windowing system, and mainly the two-dimensional computer games. 
There are always attempts to make menu systems more illustrative using three 
dimensional graphics, but these solutions usually return to 2D mapping. The 
rendering speed at these systems is not critical compared to today’s system 
performance. Mostly a small number of static images vary, other transformations 
(e.g. rotate, stretch, etc.) are not very typical. 
In computer games the rasterization performance requirements are the opposite of 
this. Generally a large number of continuously changing and moving set of objects 
have to be rendered, which consumes significant system resources. Typical features 
of today's systems are high screen resolution, large texture sets, animations and 
transformations to reach a higher user experience. 
In the following several 2D rasterization techniques are presented, which make it 
possible to develop a high performance and robost software-based rendering 
system. 

4.1 Classical 2D rendering 

The classical two-dimensional software rasterization has to solve a great number of 
difficulties. The main disadvantage of the GPU-based solutions is that there is no 
special hardware for rendering, any calculation should be done on the CPU. 
The basic building blocks of 2D rendering are two-dimensional images (textures) 
and objects (animations). The graphics engine is responsible for image generation, 
it takes objects one by one and draws them into the framebuffer. So the final image 
is created as a combination of these. In all cases, textures are stored in the main 
memory represented as a block of arrays. Arrays contain color information about 
the objects, their size depends on the quality of the texture. Today software works 
with 32-bit (4 bytes - RGBA) type color images, where image resolution can be up 
to 1024x768 pixels depending on the requirements of the items to be displayed. 
Textures can be classified into two main groups based on the color channels 
included: there are visual elements with and without alpha channel (A). The 
distinction is important because the displaying process, the potential acceleration 
techniques differ in these two groups. 
 
4.1.1 Rendering textures without alpha channel  

Textures without alpha channel lack transparency and only have RGB color 
components. This means that any two objects can draw on each other without 



104 P. MILEFF, J. DUDRA  

 
merging any colored pixels of the overlapping objects. The rendering process will 
be faster and simpler.  
The classical mechanism for drawing any type of texture is the per-pixel 
rasterization (just like in 3D area), which is slow in terms of today’s high quality 
requirements. The graphical engine asses through the graphical objects pixel by 
pixel and generates the final image. The disadvantage of this is that many elements, 
which can also consist of many points, have to be drawn on the screen. The per-
pixel drawing requires thousands of redundant computations and function calls. In 
case of each pixel the color information should be read from memory, then 
depending on the environmental data its position should be determined and finally 
the color should be written into the framebuffer (e.g. pFrameBuffer[ 
y * screenWidth + x] = color). So the pixel-by-pixel realization is not enough to 
provide a fast solution because too many small operations are performed, which 
consume CPU resources. In a real-time computer game up to 100 different moving 
objects should be drawn simultaneously to the screen. 
In order to achieve the appropriate speed, additional solutions and optimizations 
are needed. In case of textures without alpha channel, the solution is relatively 
simple. Move the picture array at once in one or more blocks into the frame buffer 
and not pixel by pixel. So the main objective of a rendering optimization (for 3D as 
well) is to try to perform all the operations in blocks as wide as possible. This 
minimizes unnecessary movement of data and calculations. The following figure 
shows the process: 

 
Figure 1. Block oriented texture copy 

In this case drawing means that the central blocks of the main memory are copied 
to a specified area of the framebuffer using system level memory copy operations 
(e.g. C - memcpy()). The solution can achieve significant performance speedup.  
However the method is not complete. The reason is that at pixel level rasterization 
screen bounding check calculations can be performed easily, but in case of block 



 EFFICIENT 2D SOFTWARE RENDERING 105 

 
oriented rendering the data blocks should be segmented based on the object’s 
position. If any object locates out of the screen bounding rectangle in any direction, 
a viewport culling should be performed. Although it requires further calculations, 
the solution remains still fast enough. 
 
4.1.2 Rendering textures with alpha channel  

Textures having also a fourth, alpha (A) color channel belong to another group of 
images. The role of this type of images has increased today, they are used in many 
areas in order to improve visualization experience (e.g. window shadows, 
animations with blurred edges, semi-transparent components, etc.). Handling this 
extra information is not more complicated, but more computing-intensive. The 
reason is that transparent and non-transparent areas can arbitrarily vary within a 
texture image (e.g. character animation, particle effects, etc.). Due to this the 
rendering process is made at per-pixel level because transparent or semi-
transparent parts of the objects should be merged with the overlapped pixels. As 
mentioned earlier, basically the procedure is not very computation intensive, but in 
systems working with large amounts of objects and larger textures, the solution 
performance will be insufficient. The following diagram illustrates the problem: 

 
Figure 2. Overlapping RGBA textures 

4.2 RLE like object rendering 

The above implies that the main problem of two-dimensional software rasterization 
is to handle semi-transparent textures or textures with ‘hole’ areas in a performance 
friendly way. In the following we present a technique which offers an efficient 
solution to this problem at the cost of some compromises. 
It is foreseeable from the above that a process needs to be developed which 
somehow tries to take advantage of block-based visualization capabilities handling 



106 P. MILEFF, J. DUDRA  

 
pixels in blocks. To resolve this issue, let us start from the investigation of a typical  
texture. If we analyze pixels, we can see immediately that the majority of images 
have parts where the colors of adjacent pixels are equal to each other or there are 
fully transparent areas. This provides a good basis to develop an algorithm with a 
custom data structure, which works like RLE (Run-length Encoding) encoding and 
can group the same color and adjacent pixels into blocks. 

4.2.1 Texture pre-processing 

The basic idea of the solution is to collect the same colored pixels into blocks. This 
requires pre-processing operations for all the loaded textures. During the process 
the appropriate describing data structure will be established, which helps 
performing the block oriented rendering in the rasterization stage. The following 
figure shows the steps and logic of the pre-processing task. 

 
Figure 3. Preparing textures for block oriented rendering 

The figure illustrates that an even more complex structure is needed to store the 
color blocks. Pre-processing is performed row by row, where a separate block is 
created for all the coherent sets of pixels. For this the following should be stored: 
color and length of the group, whether the group is transparent or not, and finally a 
pointer pointing to the first pixel in the original texture address space. Moreover a 
global data structure should be prepared, which stores the precalculated color 
groups in rows, their counts and a pointer to the original texture memory space. 
The proper implementation of the storage is especially important because in case of 
systems containing a large amount of objects, the number of loops, function calls, 
and operations are significant and slow down the rendering process. 

4.2.2 The rendering process 

During the rasterization stage object mapping is performed by the prepared data 
structure. This data makes it possible that while the image has ‘holes’ (fully 
transparent parts), a color group oriented block based blitting can be achieved on the 



 EFFICIENT 2D SOFTWARE RENDERING 107 

 
framebuffer. The result is that the rendering performance of images with alpha-
channel can be considerably increased. The rasterization will consist of so many 
blocks as many were created during the texture pre-processing stage. In addition, the 
rasterization is performed row by row. One reason is that the framebuffer has been 
implemented in a row oriented form like in most systems, so a row is a logical unit. 
Another reason is that each object can overrun the screen. Although the colors are 
grouped, parts that are out of screen should be culled during the rasterization.  
The row based approach results again in a speed improvement here, because if the 
beginning or the end of the row is out of the screen, other parts (groups) of the row 
should not be checked. This prevents performing additional computions. The 
following code summarizes the drawing process as a sample.      

CFrameBuffer* framebuffer = g_Graphics->GetFrameBuffer(); 

    for(unsigned int i=0; i < row_group.size(); i++){ 

        vector<CRLEColor*> image_row = row _group[i]; 

        for(unsigned int j=0; j < image_row.size(); ++j){ 

            CRLEColor * c = image_row[j]; 

            if (c->invisible == false){ 

       framebuffer->BlitArray(c->offset,c->length,pos.x+c->x,pos.y+c->y); 

            }}} 

4.3 Test results 

The following section presents the performance differences of the rasterization 
techniques with the help of three test cases. The test programs were written using 
the C++ language applying the GCC 4.4.1 compiler and the measurements were 
performed by an Intel Core i7 870 2.93 GHz CPU. The chosen screen resolution 
and color depth were 800x600x32 in windowed mode. 
Because of the results’ validity we considered it important to implement all the test 
cases with the GPU based technology as well. With this reference value, the 
relative performance ratio of the methods will be visible and clear. The hardware 
used for the test was an ATI Radeon HD 5670 with 1 GB RAM. To display the 
framebuffer, the OpenGL glDrawPixels solution was applied in an optimized form. 
The GPU based reference implementation was also developed with the OpenGL 
API, where all visual elements were stored in the high-performance video memory 
and the VBO (Vertex Buffer Object) extension was applied for the rendering. 
Currently, VBO is the fastest texture rendering method in the GPU area. 
The alpha-channel images used in the tests contained an average number of 
transparent pixels. 

Test case 1: during the test we were looking for an answer to the question of how 
the presented methods can handle a relatively big texture. Although the RLE-based 
solution logically does not fit this example because the picture does not contain 
transparent areas, it is advisable to perform this measurement. 



108 P. MILEFF, J. DUDRA  

 
Test case 2: the aim of this test is to measure the speed of the RLE based rendering 
implementation against the classical method in case of an average size (256x256) 
image with alpha-channel. The fully block oriented approach cannot be used for 
this type of images. 

Test case 3: in test three a heavily loaded rendering system was simulated applying 
200 64x64 size RGBA type textures. 

During the tests the average Frame Rate (Frames Per Second) was recorded at least 
one minute run-time. The following Table contains the results for all test cases. 

Table 1. Benchmark results 

 
Count 

Speed of rasterization methods (FPS) 

Pixel 

level 

Block 

oriented 

RLE 

based 

GPU based reference 

implementation 

800x600 texture 1 119 1290 1224 3522 
256x256 texture 

 (with alpha) 
1 910 - 1798 3689 

64x64 texture  

(with alpha) 
200 143 - 794 1690 

The findings demonstrate that pixel-level rendering was proved to be the slowest 
because of the large number of operations. However the RLE based approach has 
good results in all test cases. The frame rate was only lower in the first test, 
because RLE based rendering requires extra data structures and loops to rasterize 
the image. This supports the fact well that moving pixels in larger blocks results in 
significant performance improvements. 
Naturally the GPU based implementation produces always the fastest frame rate. 
But we must not forget that in this case the calculations are carried out by the 
dedicated hardware. All the data are stored in video ram, so there is no need to 
move data between the main memory and GPU memory. 

4.4 Other optimization issues and features 

Developing a really fast software renderer is not an easy task. During the 
implementation the programmer should take care of several seemingly small 
coding tricks, which have a strong influence on the performance. For example 
current 3D hardware is highly optimized for texture and vertex uploads, but 
framebuffer transfers have been neglected. Therefore the first optimization 
technique is to implement the framebuffer as an uint32_t type array and not as a 
floating-point or unsigned char type buffer. This storage type makes it possible to 
handle all the color components of a single pixel in one unsigned integer type 
variable, in one single block (e.g. color  =  A << 24  |  R << 16 | G << 8 | B). With 
this modification at least 20% speed improvement can be achieved. 



 EFFICIENT 2D SOFTWARE RENDERING 109 

 
The built-in data structures (e.g. vector) provided by the C++ STL library are slow, 
is is not practical to use them [11]. The number of array iterations and unnecessary 
assignments should be minimized. To detect bottlenecks in the code, use a Profiler 
application and the component of the compiler which can display the assembly 
code of a specific code section. These can help to localize the problematic code 
segments. 

Conclusion and further work 

Although today's computer graphics is dominated by the GPU market, we cannot 
forget the opportunities offered by software based image synthesis. The central 
units have undergone a huge revolution during the recent years, which makes it 
possible to turn back to CPU based image rasterization in order to gain more 
flexibility. The techniques presented in this article highlight that developing a 
really fast software renderer requires a great deal of effort. It is essential to 
combine several technologies and to use lower-level languages (e.g. C, C++, D) for 
programming. 
This paper discussed software rendering solutions in two-dimensional space. Our 
further objective is to perform a comprehensive analysis of the triangle 
rasterization problems and optimization techniques in the area of 3D computer 
graphics. 

Acknowledgements 

This research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-2010-
0001 project with support by the European Union, co-financed by the European 
Social Fund. 

REFERENCES 

[1] ZACH, B.: A Modern Approach to Software Rasterization. University Workshop, 
Taylor University, 14. dec 2011. 

[2] TRANSGAMING INC: Swiftshader Software GPU Toolkit, 2012. 

[3] MICROSOFT CORPORATION: Windows advanced rasterization platform (warp) guide. 
2012. 

[4] ABRASH, M.: Rasterization on larrabee. Dr. Dobbs Portal, 2009. 

[5] SEILER, L., CARMEAN, D., SPRANGLE, E., FORSYTH, T., ABRASH, M., DUBEY, P., 
JUNKINS, S., LAKE, A., SUGERMAN, J., CAVIN, R., ESPASA, R., GROCHOWSKI, E., JUAN, 
T., HANRAHAN, P.: Larrabee: a many-core x86 architecture for visual computing. 
ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2008 
Volume 27 Issue 3, August 2008. 

[6] ROST, R.: The OpenGL Shading Language. ADDISON WESLEY, 2004. 



110 P. MILEFF, J. DUDRA  

 
[7] LAINE, S., KARRAS, T.: High-Performance Software Rasterization on GPUs. High 

Performance Graphics, Vancouver, Canada, aug 5. 2011. 

[8] AKENINE-MÖLLER, T., HAINES, E.: Real-Time Rendering, A. K. Peters. 3nd Edition, 
2008. 

[9] SUGERMAN, J., FATAHALIAN, K., BOULOS, S., AKELEY, K., AND 

HANRAHAN, P.: Gramps: A programming model for graphics pipelines. ACM 
Trans. Graph. 28, 4:1–4:11, 2009. 

[10] FANG, L., MENGCHENG H., XUEHUI L., ENHUA W.: FREEPIPE: A Programmable, 
Parallel Rendering Architecture for Efficient Multi-Fragment Effects. In Proceedings 
of ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2010. 

[11] AGNER, F.: Optimizing software in C++ An optimization guide for Windows, Linux 

and Mac platforms. Study at Copenhagen University College of Engineering, 
2011.06.08. 

[12] SWENNEY, T.: The End of the GPU Roadmap. Proceedings of the Conference on High 
Performance Graphics, pp. 45-52, 2009. 

[13] COFFIN, C.: SPU-based Deferred Shading for Battlefield 3 on Playstation 3. Game 
Developer Conference Presentation, March 8, 2011. 

[14] RAD GAME TOOLS: Pixomatic advanced software rasterizer, 2012. 


