

Production Systems and Information Engineering

Volume 10 (2), pp. 11�26
doi: 10.32968/psaie.2022.2.2.

11

ACTIVITY LOGS IN PRACTICE

Péter Mileff

University of Miskolc, Hungary
Department of Information Engineering

mileff@iit.uni-miskolc.hu

Judit Dudra

Bay Zoltán Nonpro�t Ltd. for Applied Research, Hungary
Department of Structural Integrity and Production Technologies

judit.dudra@bayzoltan.hu

Abstract. Modern information technology is now present virtually ev-
erywhere, in all areas. For the increasingly complex processes, complex
information systems are developed that can be used to provide e�ective
support for the processes. There is a lot of data �owing through informa-
tion systems that is now essential to examine. RPA o�ers a solution for
this, which allows partial or even complete automation of processes. One
of the important basic units of RPA may be the activity logs generated in
practice. In this publication, this area is reviewed. The most important
formats are brie�y presented, followed by a runtime model whose aim
is to hide the di�erences in the formats, to achieve a general structure.
Building on this module, an MLP model that implements the prediction
of atomic events is �nally presented. The publication approaches the
problem from a practical point of view and proves the e�ectiveness of
the model with test results.

Keywords: Activity log, MLP neural network, process mining

1. Introduction

Today's increasingly complex social model results in increasingly complex busi-
ness processes. It is a natural and general endeavor to be able to support these
processes with IT systems, thereby increasing e�ciency within the company.
Without this, the processes can often be slow, and due to their complexity,
in many cases their support and follow-up is unsatisfactory without an appro-
priate support system. Today, however, it is not enough to implement only a
complex management system, the appropriate automation has also appeared
on the market as a new requirement. Due to the complexity of the business
processes, the interface is often quite diverse and complex. If one of these

http://doi.org/10.32968/psaie.2022.2.2.

12 P. Mileff and J. Dudra

processes is analyzed in detail, the process solution schemes can be well dis-
tinguished. Rules can be de�ned and set up to form the basis for ongoing
decisions. Once a rule base is de�ned, it is practically the point at which the
system can begin to be fully or even partially automated. Nowadays, there are
systems where the customer is essentially talking or mailing to an �automa-
ton�, where some kind of arti�cial intelligence-based decision support system
is helping to solve the problem and conducting the process. With such systems
(RPA - Robotic Process Automation), e�ciency can be further increased

One of the new RPA-based research trends today is the automatic discovery of
rules[1]. Due to their operation, the systems performing administration consist
of data and the process steps that perform transformations on them. A very
simple example is the process of ordering an item online, where the order itself
is an exact, well-de�ned process. Within the process, there may be branches or
alternative routes for each activity. By following the example above, a payment
can be made online or even by cash on delivery. From the state changes of the
data used by the process, a sample of rules can be extracted, which could be
used to solve the process even with full automation. However, this requires that
the states be logged either in a database or in one or more log �les. Because
RPA is a modern approach to increasing e�ciency, most information systems
are not adequately prepared to store changes to data in an appropriate format.
In most cases, we start by processing some kind of log �les, which we try to
extract rules by scanning them in a detailed and automated way.

It can be formulated as a general goal to be able to predict certain events based
on activity logs extracted from an information system using a model that uses
an e�ciently con�gurable arti�cial neural network.One of the key issues of
IT systems based on arti�cial intelligence is the appropriate data set, as it
enables the design of the processes built on it, the learning algorithms and the
appropriate learning. A high quality data set is therefore important and needs
to be addressed with particular attention. The recorded data, the work�ow
steps, are organized into a higher level sequence, transaction. Because the
system is used by multiple users at the same time, a log �le will be created
that randomly mixes activities for di�erent transactions. This paper examines
the general structural issues of activity logs and their processability in a Python
environment from a practical point of view. A general in-memory model format
for general handling and description of multiple types of input sets is presented.

2. Activity monitoring

The most important starting point for any process that we want to build on
the results of user activity in the future will be the so-called event log. The
area that deals with these is called Process Mining, which aims to analyze

Activity logs in practice 13

data from a process perspective. It seeks answers to questions such as "What
is the current state of the process?", "Are there unnecessary steps that could
be eliminated?", "Where are the bottlenecks?" And �Are there any deviations
from the established and prescribed process rules?�. In order to be able to
analyze the data in the event log in any form, it must be written to the log with
some process-speci�c approach. This makes it possible to decide which step
in the event log belongs to which process. Perhaps one of the most important
questions in this topic may be, "Where does the data come from in the event
log?"

Usually, some kind of activity monitoring software is used to monitor user
activities. Activity monitoring software records the use of applications and
programs on the monitored workstation on-screen user activities are logged in
a pre-designed and well-structured log. So logs are information databases that
store all the activities that took place that day. Thanks to today's modern
technology, there are many options and solutions available for monitoring,
monitoring and managing activities. Some important techniques:

• Logging and Analysis: The most common form of user activity mon-
itoring. In this case, we store the events in a classic text �le or database.
All events and processes are well de�ned. The resulting log �le stores the
information in a well-structured format for later processing and analysis.

• Video recordings of sessions: user activity is recorded as a video
stream. An important goal is to be able to analyze later, to prevent
possible security breaches, and to reproduce the interactions that have
taken place.

• Screenshot capture: similar considerations apply to the technique as
in the video-based approach. In this method, images are recorded, which
provides a basis for further analysis. In several practical approaches, the
current activity is framed with a box on the captured screenshot. For
example, a user-selected item, pressed buttons, and so on.

• Keyboard usage logging: Logging of keystrokes may be important
in cases where the corporate or other system used by users expects less
graphical interaction, and more processes may require manual data entry
/ typing.

3. Activity log formats

In practice, the format of activity logs can be of any design. The main aspect
is always to create a logical and exact structure for storing and retrieving data.
Over the years, several types have emerged, the most important are:

• CSV: a well-known and familiar format in an enterprise environment

14 P. Mileff and J. Dudra

• XES: an XML-based standard format for storing and transmitting data
• OCEL: a standardized object-centric format released in 2021
• Custom database model: in some systems we can even store events
in databases. This is usually only possible if the software system has
been pre-designed this way.

Whatever format is used in practice, an activity log must basically consist of
at least three mandatory elements: a case id, an activity and a timestamp.

• Case id: each case is a step in the execution instance of a process. For
example, in an ordering process, handling an order is a case. A very
important criterion is that in each case we need to know which process
it belongs to.

• Activity: activities are di�erent steps in the process or state changes.
IT systems can record not only activities that are important to us, but
also less interesting debugging information. Having less relevant activ-
ities in the log is not a problem in itself, they can be �ltered out later.
However proper naming of activities is very important from the begin-
ning. Most processes are complex, and the analysis does not go too far
if the steps in the process map show purely technical status numbers or
operation codes.

• Timestamp: each activity requires at least one timestamp to sort each
event in the correct order. And if you want to analyze the duration
of the activity, you must specify a start and end timestamp for each
activity. E�orts should be made to record timestamps as accurately as
possible.

3.1. The OCEL format

OCEL is a format created in 2021 that aims to provide a general standard to
interchange object-centric event data with multiple case notions [2]. It comple-
ments the XES standard and is supported by most process mining tools. The
standard supports two �le format types: JSON-OCEL, XML-OCEL in order
to support a widespread collection of languages and systems. The elements of
the format and their relationship are shown in the �gure below:

The standard supports the storage of events, objects, and their attributes.
Considering the integration of OCEL-based support into any information sys-
tem, it is an object-based format that has an appropriate level of structure
while being modern. Although in practice support for the OCEL format is
currently very rudimentary. If we look at the popular Python environment,
the ocel-standard package in the o�cial Python repositories provides process-
ing, which is currently available in version 0.0.3.1. Although the package is

Activity logs in practice 15

Figure 1. OCEL event log complete meta-model structure[2]

very rudimentary, it has already provided enough opportunity for processing
to be done.

3.2. The XES format

The XES standard de�nes a grammar for a tag-based language whose aim is to
provide designers of information systems with a uni�ed and extensible method-
ology for capturing systems behaviors by means of event logs and event streams
is de�ned in the XES standard[3]. An XML Schema describing the structure
of an XES event log/stream and a XML Schema describing the structure of
an extension of such a log/stream are included in this standard. The purpose
of this standard is to provide a generally acknowledged XML format for the
interchange of event data between information systems in many applications
domains on the one hand and analysis tools for such data on the other hand.

3.3. The CSV format

The CSV format is one of the types that was available from the beginning.
The format has several advantages:

16 P. Mileff and J. Dudra

Figure 2. XES event log meta-model structure[8]

• text �le: thanks to the text format, the log �le can be opened with any
editor and its contents can be viewed

• easy to use: the format is simple to structure, making individual pro-
cessing e�cient

• wide support: due to its simplicity, it can be e�ectively integrated into
many information systems

A practical sample of the CSV event log format:

CaseID , ActivityID , CompleteTimestamp

1 ," open","2021−06−17 12 : 12 : 01"

1 ," ed i t " ,"2021−06−17 12 : 13 : 10"

1 ," convert " ,"2021−06−17 12 : 14 : 22"

1 ," c l o s e " ,"2021−06−17 12 : 15 : 30"

2 ," open","2021−06−17 12 : 12 : 01"

. . .

While the XES and OCEL formats already �t into a well-de�ned structure,
this is unfortunately not the case for CSV. The big problem is that the columns
can be of any name, and the order of the columns can vary depending on the
system they come from. The structure of CSV logs from di�erent systems or
even system modules can therefore vary greatly, making processing di�cult.
Nevertheless, it is extremely popular in the industry.

Activity logs in practice 17

4. Introduction of a general descriptive format

When designing any system with similar expectations, it is advisable to think
from the beginning that the layer providing the data should be able to serve
data from multiple directions. The input side should not be limited to a
single format. From a software engineering point of view, the problem of
handling multiple formats is also addressed in many other areas (e.g. game
development), but there is very little information on how to deal with this
problem e�ectively within the �eld of process mining.

A fundamental problem is that supporting di�erent formats requires di�erent,
format-speci�c implementations of the system. An important aspect is the
need to separate the data service layer from the logic module that performs
the business logic (e.g. prediction). Although in theory it is possible to have a
business module that implements all formats and is able to interpret format-
speci�c data, in practice this is a wrong design pattern. For in this case, the
data integration logic is integrated into a module that does not have this as its
main role. At the implementation level, duplicate or very similar methods are
forced to appear, and the code is not clean and well maintained. Long-term
development is not e�cient.

An e�cient solution is a general-purpose (runtime) logic format. The solution
has several advantages:

• This solution allows data from di�erent sources to appear in a speci�c
structure

• Data validation and transformation can be performed in one place
• Any module that needs data already sees a single model, not di�erent
types of log structures

The developed general logic model allows any format to be integrated later.
Figure 2. shows the model of this.

As a result, the data integration module is able to pass a validated data set to
the other modules.

4.1. General descriptive format structure

The logical structure of this general event model structure is the following:

• Log: the highest logical level that represents an event log �le. Set of
Log traces

• Trace: the realization of a speci�c process / case. Each trace has a
unique identi�er (trace_id) and is made up of events.

18 P. Mileff and J. Dudra

Figure 3. Logical structure of data integration module

• Event: the lowest level structure. Stores an elementary event. Mini-
mum required data: name, time.

• Attribute: beside the main components it is advisable to store other
useful parameters.

The event model structure is de�ned in Python language as below:

class Event :

def __init__(s e l f , name : str , timestamp : str) :
s e l f . name = name
s e l f . timestamp = timestamp

class Trace :

def __init__(s e l f , trace_id , even t_ l i s t=None) :
s e l f . t race_id = trace_id

i f even t_ l i s t i s None :
even t_ l i s t = []

s e l f . e v en t_ l i s t = even t_ l i s t

def add_event (s e l f , event : Event) :
s e l f . e v en t_ l i s t . append (event)

def pr in t_trace s (s e l f) :
for event in s e l f . e v en t_ l i s t :

l ogg ing . i n f o (str (s e l f . t race_id) + "−" + event . name)

def get_number_of_events (s e l f) :
return len (s e l f . e v en t_ l i s t)

Activity logs in practice 19

class Log :

def __init__(s e l f , name : str , t r a c e_ l i s t=None) :
s e l f . name = name

i f t r a c e_ l i s t i s None :
t r a c e_ l i s t = []

s e l f . t r a c e_ l i s t = t r a c e_ l i s t

def add_trace_l ist (s e l f , _trace_l i s t) :
s e l f . t r a c e_ l i s t . append (_trace_l i s t)

def add_trace (s e l f , t r a c e) :
s e l f . t r a c e_ l i s t . append (t r a c e)

def pr int_log_traces (s e l f) :
for t r a c e in s e l f . t r a c e_ l i s t :

l ogg ing . i n f o (t r a c e . trace_id)

The current purpose of the structure is to store only the most important data.
If necessary, it can be expanded as required.

4.2. Practical implementation of CSV loading

In the following a sample code is shown, which reads and converts a CSV log
�le into the generic event log structure de�ned above.
def l oad_trace_l i s t_csv (fi le_name) :

da ta se t_a l l = pandas . read_csv (fi le_name)

trace_array = []

for index , row in data se t_a l l . i t e r r ows () :

a c t i v i t y = row [' Act iv i tyID ']
case_id = row [' CaseID ']
timestamp = row [' CompleteTimestamp ']

found_case = False
for oo in trace_array :

i f oo . trace_id == case_id :
new_event = Event (a c t i v i t y , timestamp)
oo . add_event (new_event)
found_case = True
break

i f not found_case :
new_event = Event (a c t i v i t y , timestamp) ;
new_trace = Trace (case_id)
new_trace . add_event (new_event)
trace_array . append (new_trace)

l og = Log (fi le_name)
log . add_trace_l ist (trace_array)

return l og

20 P. Mileff and J. Dudra

5. MLP model based event forecasting

Of course, the role of event logs is not limited to the persistent storage of data.
One of the possible uses of the data is to make forecasts. For example, in case
of a more complex process: what will be the next expected step, which may
o�er an opportunity to automate part of the process, or a potential assistance
opportunity for the case management sta�.

In practice, several types of solutions can be used to predict the expected future
values of atomic events. Arti�cial neural networks represent one of the main
directions in which one of the most commonly used models is multilayer percep-
tron networks (MLP). Predicting the expected next element in the sequence
of events is challenging, especially when working with long sequences, noisy
data, multi-step predictions, and multiple input and output variables. Arti�-
cial neural networks, most notably deep learning methods, o�er a promising
opportunity to predict time series such as automatic learning of temporal de-
pendence and automatic management of temporal structures such as trends
and seasonality. The following �gure shows the processing of logs with neural
networks in general:

Figure 4. Elementary steps in MLP modeling and evaluation

5.1. The applied MLP model

One of the most common implementation environments for arti�cial intelligence-
based algorithms are Python and Keras. The univariate MLP model of the
forecast was implemented using these. For the development we used a standard
benchmark data �le available on the Internet (pdc_2016_1.xes), the experi-
ments were performed on this (symbol set size: 18, longest sequence length:
30, number of data samples: 1000).

Activity logs in practice 21

5.1.1. Data structure preparation

Neural networks work with numerical values. In order to model a non-numerical
problem with a neural network, it must be mapped to a numeric form [4]. Of
course, the event prediction task also belongs to this group, because in practice,
separate events are usually modeled with some kind of atomic identi�er. While
in practice, in a real information system, the representation of a number-based
event would be appropriate in theory, but they often di�er from the numerical
representation due to human readability.

The available XES dataset uses letters (18 pieces) to name the events. So the
�rst task is to map the data set to a numeric value after loading the data,
which can be done by assigning a number to each event ID letter in XES (e.g.
a (0), b (1), c (2), ...).

The next step after numeric mapping is to bring consecutive sequences of
related events into the same format. Not all activity-related events within
XES have the same number of events. However, the Keras-based MLP model
expects data in slices of the same size, leaving no choice but to bring it to a
uniform format. We need to de�ne the longest pattern and adjust the sequence
of events for the other activities by adding zeros from the left to zero for the
longest size. Example:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 13, 13, 13, 15, 14, 16, 1, 6, 3, 2, 4, 5,
7, 8, 10, 9, 11, 12]

5.1.2. Dataset slicing

In order to be able to model the problem in a Keras environment, further
data preparation is essential. Most machine learning algorithms use supervised
learning. In our case, the data in the event sequences must be transformed
into a suitable supervised learning format. Supervised learning is where there
is an input variable (X) and an output variable (y) and uses an algorithm to
learn the mapping function from input to output. A data set sequence can be
transformed by using the previous steps as an input variable and the following
steps as an output variable.

The series can be transformed into patterns with input and output components
that can be used as part of the learning process, for example, to teach a deep
learning neural network.

This is called a sliding window transformation. In this case, the window width
is 3 time steps. For MLP models, Keras will expect data in this (or similar)

22 P. Mileff and J. Dudra

Figure 5. Sample input sequence 1, 2, 3, 4, 5, ...

format. The loaded input dataset must therefore be converted to this format.
The following Python code will do this automatically:

def sp l i t_input_sequence (sequence , n_steps) :
X, y = l i s t () , l i s t ()
for i in range (len (sequence)) :

end_ix = i + n_steps
i f end_ix > len (sequence)−1:

break

seq_x , seq_y = sequence [i : end_ix] , sequence [end_ix]
X. append (seq_x)
y . append (seq_y)

return array (X) , array (y)

5.1.3. MLP model in Keras environmen

After the preparation of the data, the next key element is to create network
model implementing univariate prediction in the Keras environment, which in
our case is represented by the following:

def create_mlp_model (s e l f , h) :

model = t f . keras . Sequent i a l (
[

t f . keras . l a y e r s . Dense (h , a c t i v a t i o n=' r e l u ' , input_dim=s e l f . dimension) ,
t f . keras . l a y e r s . Dense (h) ,

t f . keras . l a y e r s . Dense (len (s e l f . c_dict) + 1 , a c t i v a t i o n=' softmax ') ,
]

)
model . compile (opt imize r='adam ' , l o s s=' ca t ego r i c a l_c ro s s en t r opy ' , met r i c s =[' accuracy '])
return model

The central element of the Keras library is the model (keras.models) which is
represented by the Sequential class. In terms of its operation, it is realized as a
linear set of model layers. In the �rst layer of the model, the shape of the input
must be speci�ed. This is accomplished with a layer called the Dense type,
which requires the number of batch and input attributes to be created. In our
case, the size of the time window of the input dataset can be parameterized,
which is represented by self.dimension. The popular ReLU[4] was used as an
activation function [5]. In addition, the Adam[6] optimization algorithm was
used to compile the model, which is the stochastic gradient descent method
that is based on adaptive estimation of �rst-order and second-order moments.
The following network is created in Keras with a speci�c value of 100 h:

Activity logs in practice 23

5.1.4. Creating the training dataset

The last step is the automatic generation of the training samples, where the
original log dataset was used to create these. The role of the gen_train_data
function is to generate an appropriate teaching dataset. The function uses
the loaded XES data for this process: it creates an array of input data slices
of the speci�ed size based on the value obtained in the parameter using the
create_dataset function, similar to the input data sample presented earlier.

def create_dataset (s e l f , dataset , look_back , data_x , data_y) :
c = len (s e l f . c_dict)
for i in range (len (datase t) − look_back − 1) :

i f datase t [i + look_back] > 0 :
a = datase t [i : (i + look_back)]
for j in range (len (a)) :

a [j] = a [j] / c
b = [0 for _ in range (c + 1)]
b [datase t [i + look_back]] = 1
data_x . append (a)
data_y . append (b)

return np . array (data_x) , np . array (data_y)

def gen_train_data (s e l f , m) :
s e l f .m = m
train_x , train_y = [] , []
for i in range (len (s e l f . data)) :

s e l f . c reate_dataset (s e l f . data [i] , s e l f .m, train_x , train_y)

return train_x , train_y

6. MLP prediction results

We can interpret the correctness of learning as a measure of evaluation. Keras
has a built-in option during the teaching process to measure the "loss" and
"accuracy" values generated during the teaching process, which can be used
for later comparisons. The "categorical_crossentropy" in the above code de-
�nes the error function in the model, which is commonly used for multi-class
classi�cation.

24 P. Mileff and J. Dudra

Table 1. Comparison of running results

Epoch Loss Accuracy Time
50 1.2645 0.4345 13 sec
200 1.1102 0.51 35 sec
500 1.0078 0.5586 1:55 min
1000 0.9360 0.5874 3:31 min
2000 0.9132 0.6018 7:23 min
4000 0.8642 0.6109 15:33 min

The teaching process is long and time consuming. In the experiment, we
taught with several epoch values. The epoch number is a hyperparameter
that de�nes the number of times the teaching algorithm traverses the entire
teaching pattern. Neural networks are non-deterministic systems that can
even provide di�erent outputs for the same input. For this reason, during the
research work, the evaluation of one result was always determined on the basis
of several di�erent runs. The tests were performed on a Core i7-9700 3 GHz
CPU Linux based operating system. The following table summarizes the loss
and accuracy values for epoch values.

The diagrams below illustrate the result of learning processes with di�erent
epoch numbers, the change in the value of accuracy.

Figure 6. Accuracy values convergence with di�erent epoch values

Change in value of loss function for 4000 epoch numbers:

As a result, the trained MLP model was able to perform elementary event
prediction based on the samples. E�ciency meets expectations and can be
further improved with additional methods.

Activity logs in practice 25

Figure 7. Loss function variation

7. Conclusion

The business processes of modern companies are becoming more and more
complex, which can be supported by increasingly complex systems. Of course,
as in any other area, the question of automation arises also here, which can
be used to simplify complex processes in part. RPA is just such an initiative
to build an automated decision support system that can solve or even predict
certain steps in a complex process by logging and monitoring user activity. Due
to the relatively modern nature of the area, it is not yet mature enough, on the
shelf products are not available for instant integration. In this publication, we
have summarized the most important requirements and characteristic problems
of the �eld, and a general runtime model structure was presented to provide
a common path for di�erent types of log �les, which provide a good basis for
the implementation of such a system. Finally an event prediction MLP neural
network model was introduced for an e�ective event prediction based on log
information.

Acknowledgement. The described article was carried out as part of the
2020-1.1.2-PIACI-KFI-2020-00165 "ERPA - Development of Robotic Process
Automation solution for heavily overloaded customer services" project imple-
mented with the support provided from the National Research, Development
and Innovation Fund of Hungary, �nanced under the 2020�1.1.2-PIACI KFI
funding scheme.

26 P. Mileff and J. Dudra

References

[1] Wil M. P. van der Aalst.: Process Mining: Data Science in Action, Springer;
2nd ed. April 26, 2016.

[2] Process and Data Science Group (PADS): OCEL standard,
http://www.ocel-standard.org, 2022.

[3] Christian W. G.: An Introduction to the XES Standard,
https://�uxicon.com/blog/2010/09/intro-to-xes/, 2022.

[4] Ron K.: Practical Deep Learning with Python: A Python-Based Introduction,
No Starch Press, 25 Feb. 2021.

[5] Ruth Vang-mata: Multilayer Perceptrons: Theory and Applications, Nova Sci-
ence Pub Inc, March 1, 2020.

[6] Ian G., Yoshua B., Aaron C., Francis B.: Deep Learning (Adaptive Com-
putation and Machine Learning Series, MIT Press (Hardcover),3 Jan. 2017.

[7] João M. P. Cardoso, José Gabriel F. Coutinho, Pedro C. Diniz: Em-
bedded Computing for High Performance. E�cient Mapping of Computations
Using Customization, Code Transformations and Compilation, pp. 17-56., 2017.

[8] IEEE: XES Standard, https://xes-standard.org, 2022.

[9] Scikit-learn Online: Supervised Neural Network Models, https://scikit-
learn.org/stable/modules/neural_networks_supervised.html, 2022.

[10] Seyedali M., Hossam F., Ibrahim A.: Evolutionary Machine Learn-
ing Techniques: Algorithms and Applications (Algorithms for Intelligent
Systems), Springer; 1st ed., 25 Nov. 2020. https://doi.org/10.1007/

978-981-32-9990-0

[11] Marlon D., Marcello La R., Jan M., Hajo A. R.: Fundamentals of
Business Process Management, Springer Berlin, Heidelberg, 2018.

[12] R'bigui, Hind & Cho, Chiwoon: The state-of-the-art of business process min-
ing challenges, International Journal of Business Process Integration and Man-
agement, 2017. https://doi.org/10.1504/ijbpim.2017.10009731

[13] Jaswinder S.; Rajdeep B.: A Study on Single and Multi-layer Perceptron
Neural Network, 3rd International Conference on Computing Methodologies
and Communication (ICCMC), 2019. https://doi.org/10.1109/iccmc.2019.
8819775

[14] Thulasi B.: Multi-layered deep learning perceptron approach for health
risk prediction, J Big Data 7, 50, 2020. https://doi.org/10.1186/

s40537-020-00316-7

[15] Mohammadreza F. S., Mozhgan V., Gyunam P., Marco P., Sebastiaan
J. van Z., Wil M. P. van der A.: Event Log Sampling for Predictive Mon-
itoring, In: Munoz-Gama, J., Lu, X. (eds) Process Mining Workshops. Lecture
Notes in Business Information Processing, vol 433. Springer, Cham, ICPM 2021.
https://doi.org/10.1007/978-3-030-98581-3_12

https://doi.org/10.1007/978-981-32-9990-0
https://doi.org/10.1007/978-981-32-9990-0
https://doi.org/10.1504/ijbpim.2017.10009731
https://doi.org/10.1109/iccmc.2019.8819775
https://doi.org/10.1109/iccmc.2019.8819775
https://doi.org/10.1186/s40537-020-00316-7
https://doi.org/10.1186/s40537-020-00316-7
https://doi.org/10.1007/978-3-030-98581-3_12

	1. Introduction
	2. Activity monitoring
	3. Activity log formats
	3.1. The OCEL format
	3.2. The XES format
	3.3. The CSV format

	4. Introduction of a general descriptive format
	4.1. General descriptive format structure
	4.2. Practical implementation of CSV loading

	5. MLP model based event forecasting
	5.1. The applied MLP model

	6. MLP prediction results
	7. Conclusion
	References

