
ADVANCED 2D RASTERIZATION ON
MODERN CPUS

Peter Mileff1, Judit Dudra2

1 Department of Information Technology, University of Miskolc
Miskolc-Egyetemváros, 3515 Hungary,

2 Department of Structural Integrity, Bay Zoltán Non-profit Ltd., Hungary

Abstract. The graphics processing unit (GPU) has become part of our
everyday life through desktop computers and portable devices (tablets,
mobile phones, etc.). Because of the dedicated hardware visualization has
been significantly accelerated and today’s software uses only the GPU for
rasterization. Besides the graphical devices, the central processing unit
(CPU) has also made remarkable progress. Multi-core architectures and
new instruction sets have appeared. This paper aims to investigate how
effectively multi-core architecture can be applied in the two-dimensional
rasterization process and what the benefits and bottlenecks of this ren-
dering model are. We answer the question of whether it would be possible
to design a software rendering engine to meet the requirements of today’s
computer games.

1 Introduction

Computer graphics has undergone dramatic improvements over the past few
decades, and one important milestone was the appearance of graphic processors.
The main objective of the transformation was to improve graphical computa-
tions and visual quality. Initially, the development process of the central unit
was far the fast-paced evolution of today. So based on industry demands, there
was a need for dedicated hardware to take over the rasterization task from the
CPU.

Graphical computations have requirements different from the other parts of
the software. This allowed graphics hardware to evolve independently from the
central unit, opening new opportunities to developers, engineers and computer
game designers. From the perspective of manufacturers and the industry, pri-
marily speed came to the fore against programming flexibility and robustness.
So in recent years the development of video card technology focused primarily
on improving the programmability of its fixed-function pipeline. As a result, to-
day’s GPUs have a quite effectively programmable pipeline supporting the use
of high-level shader languages (GLSL, HLSL and CG).

Applied Information Science, Engineering and Technology: Selected Topics from the Field of Production Information

Engineering and IT for Manufacturing: Theory and Practice, Series: Topics in Intelligent Engineering and Informatics,
Vol. 7, Chapter 5, Springer International publishing, 2014.

2

Today technological evolution proceeds in quite a new direction, introducing
a new generation of graphics processors, the general-purpose graphics processors
(GPGPU). These units are no longer suitable only for speeding up the render-
ing, but have capabilities for general calculations similar to those of the CPU.
Simultaneously with the soaring of the graphical chips, central units also have
evolved. Although this line of development was not as spectacular as the devel-
opment of GPUs, it was undoubtedly important. The appearance of a new GPU
or video card was always surrounded by major media advertising compared to
the attention given to central units. For CPUs, initially two development lines
have evolved. The first approach considered it appropriate to increase the num-
ber of central processing units (Multiprocessing Systems) and then the objective
was to increase the cores inside the central unit (Multicore processors). The first
dual-core processors have appeared starting in 2005. A multicore system is a
single-processor CPU that contains two or more cores, with each core housing in-
dependent microprocessors. A multicore microprocessor performs multiprocess-
ing in a single physical package. Multicore systems share computing resources
that are often duplicated in multiprocessor systems, such as the L2 cache and
front-side bus. Multicore systems provide performance that is similar to that of
multiprocessor systems but often at a significantly lower cost, because a mother-
board with support for multiple processors, such as multiple processor sockets,
is not required.

All of these gave a completely new direction to software development, mak-
ing the evolution of multi-threaded technology possible. Today we can say that
the core increasing process has significantly contributed to improving the user
experience of the operating systems (multitasking) and the development of multi-
threaded applications. Multi-threaded software which exploits properly the hard-
ware features can far outperform the performance of software applying the clas-
sical, one-thread approach. Observing this trend we can see that processor man-
ufacturers and design companies have established themselves in the production
and design of (multi) core based central units. Today’s mobile devices also have
multiple cores (2-4) and in case of PCs the number of cores can reach eight units
due to the Hyper-Threading technology.

Besides the core increasing tendency, the processor manufacturers responded
with extended instruction sets to market demands, making faster and mainly
vectorized (SIMD) processing possible also for central units. Almost every man-
ufacturer has developed its own extension, like the MMX and SSE instruction
families, which were developed by Intel and are supported by nearly every CPU.
Initially, AMD tried to boost its position with its 3DNow instruction set, but
nowadays the direction of development of mobile central units is the Vector
Floating Point (VFP) technology and the SSE such as the NEON instruction set
initially introduced in ARM Cortex-A8 architecture. For PCs Advanced Vector
Extensions (AVX) open up again great new opportunities in extending perfor-

3

mance.

Due to new technologies, software can reach multiple speedups by properly
exploiting the hardware instruction set. It is therefore appropriate to examine
the speedup possibility of the rasterization process. Is there any point in develop-
ing a software renderer capable of meeting the needs of today’s computer games?
This paper investigates the practical implementation issues of two-dimensional
rasterization. A special optimization solution is presented, which helps to im-
prove non-GPU-based rendering for transparent textures, heavily utilizing the
CPU cores for higher performance.

2 Related works

Software-based image synthesis has existed since the first computers and was
focused even more with the appearance of personal computers, up until about
2003. After this time almost all the rendering techniques became GPU based.
However, there were many interesting software renderers created during the early
years. The most significant results were the Quake I and Quake II renderers in
1996 and 1998, which are the first real three-dimensional engines [8]. The render-
ing system of the engines was brilliant compared to the computer technology of
that day, and was developed under the coordination of Michael Abrash. The en-
gine was typically optimized for the Pentium processor family, taking advantage
of the great MMX instruction set. The next milestone in computer visualization
was the Unreal Engine in 1998 with its very rich functionality (colored lighting,
shadowing, volumetric lighting, fog, pixel-accurate culling, etc.) [12]. Today Un-
real technology is a leader in the area of computer graphics.

After the continuous headway made in GPU rendering, software rasterization
was increasingly losing ground. Fortunately, there are some notable great results
today as well, such as Swiftshader by TrasGaming [2] and the Pixomatic 1, 2,
and 3 renderers [14] by Rad Game Tools. Both products are very complex and
highly optimized, utilizing the modern threading capabilities of today’s Multi-
core CPUs. The products have dynamically self-modifying pixel pipelines, which
maximizes rendering performance by modifying its own code during runtime. In
addition, Pixomatic 3 and Swiftshader are 100% DirectX 9 compatible. Unfortu-
nately, since these products are all proprietary, the details of their architectures
are not released to the general public.

Microsoft supported the spread of GPU technologies by the development of
DirectX, but in addition, its own software rasterizer (WARP) has also been im-
plemented. Its renderer scales very well to multiple threads and it is even able
to outperform low-end integrated graphics cards in some cases [3].

4

In 2008 based on problem and demand investigations, Intel aimed to de-
velop its own software solution based video card within the Larrabee project [5].
In a technological sense, the card was a hybrid between the multi-core CPUs
and GPUs. The objective was to develop an x86 core (many) based fully pro-
grammable pipeline with 16 byte wide SIMD vector units. The new architecture
made it possible for graphic calculations to be programmed in a more flexible
way than GPUs with an x86 instruction set [4].

Today, based on the GPGPU technology, a whole new direction is possible in
software rendering. Loop and Eisenacher [17] describe a GPU software renderer
for parametric patches. The FreePipe Software rasterizer [10] focuses on multi-
fragment effects, where each thread processes one input triangle, determines its
pixel coverage, and performs shading and blending sequentially for each pixel.
Interestingly, recent work has also been done by NVidia to create a software
pipeline which runs entirely on the GPU using the CUDA software platform [7].
The algorithm uses the popular tile-based rendering method for dispatching the
rendering tasks to the GPU. Like any software solution, this allows additional
flexibility at the cost of speed.

A new SPU (Cell Synergistic Processor Unit) based deferred rendering pro-
cess has been introduced in today’s leading computer game, Battlefield 3 [13].
Its graphical engine, a Frostbite 2 engine, makes it possible to handle a large
number of light sources effectively and optimized. In [1] a modern, multi-thread
tile based software rendering technique is outlined where only the CPU is used
for calculations and had great performance results.

Thus, recent findings clearly support the fact that CPU-based approaches are
ready to come back in order to improve performance and flexibility. So, the aim
of this paper is to investigate performance in the area of 2D software rendering
utilizing today’s CPUs.

3 Basics of 2D rendering

The name ’software rasterization’ originates from the imaging process where the
entire image rasterization process, the whole pipeline, is carried out by the CPU
instead of target hardware (e.g. a GPU unit). In this case the graphics card
is responsible only for displaying the generated and finished image based on a
framebuffer array located in the main memory. The main memory holds also the
shape assembling geometric primitives in the form of arrays, structures and other
data, ideally in an ordered form. The logic of image synthesis is very simple: the
central unit performs the required operations (coloring, texture mapping, color
channel contention, rotating, stretching, translating, etc.) on data stored in the
main memory, then the result is stored in the framebuffer (holding pixel data)

5

and the completed image is sent to the video controller.

A framebuffer is an area in the memory which is streamed by the display
hardware directly to the output device. So its data storage logic needs to meet
the requirements (e.g. RGBA) of the formats supported by the video card. To
send the custom framebuffer to the video card, several solutions have arisen in
practice. First, we can use the operating system routines (e.g. Windows - GDI,
Linux - Xlib) for transfer, but it is strongly platform dependent. This method
requires writing the bottom layer of the software separately for all the operating
systems. A more elegant solution is to use OpenGL’s platform-independent (e.g.
GLDrawPixels or Texture) [6] or DirectX (e.g. DirectDraw surface or Texture)
solutions.

3.1 Benefits of software rendering

Although software rendering is rarely applied in practice, it has many advan-
tages over the GPU-based technology. The first and most emphasized point is
that there is less need to worry about compatibility issues, because the pipeline
stages are processed entirely by the CPU. In contrast with the GPU, the CPU’s
structure changes less rapidly, thus the need for adapting to any special hard-
ware/instruction set (e.g. MMX, SSE, AVX, etc.) is much lower. In addition,
these architectures are open and well-documented, unlike the GPU technology.

The second major argument is that image synthesis can be programmed uni-
formly using the same language as the application, so there is no restriction
on the data (e.g. maximum texture size) and the processes compared to GPU
language shader solutions. Every part of the entire graphics pipeline can be
programmed individually. Because displaying always goes through the operat-
ing system controller, preparing the software for several platforms causes fewer
problems. Today’s two leading GPU manufacturers publish their drivers only in
closed form, which leads to significant problems in performance with the Linux
platforms. Driver installation is not easy on certain distributions; the end of the
process is often the crash of the entire X server. The alternatively available open
source drivers are limited in performance and other areas.

In summary, software rendering allows more flexible programmability for im-
age synthesis than GPU technology.

3.2 Disadvantages of software rasterization

The main disadvantage of software visualization is that all data are stored in
the main memory. Therefore in case of any changes of data the CPU needs to
contact this memory. These requests are limited mostly by the access time of
the specific memory type. When the CPU needs to modify these segmented data

6

frequently, this can cause a significant loss of speed.

The second major problem, which originates also from the bus (PCIe) band-
width, is the movement of large amounts of datasets between the main and the
video memory. Within the period of one second the screen should be redrawn
at least 50-60 times, which results in a significant amount of dataflow between
the two memories. In the case of a 1024x768 screen resolution with 32 bit color
depth, one screen buffer holds 3 MB of data.

Moreover, developing a fast software rendering engine requires lower level
programming languages (e.g. C, C++, D) and higher programming skills. Be-
cause of the techniques used, it is necessary to use operating system-specific
knowledge and coding.

4 Overview of 2D rendering

Two-dimensional visualization plays an important role in addition to today’s
modern three-dimensional rasterization. Computer applications using graphical
menu or windowing systems belong in this area, but the most obvious example
is the desktop of the operating system. Undoubtedly the main users of the tech-
nique are the two-dimensional computer games. Over the years, there has been
an increasing demand to improve the visual quality of the virtual world. Today
a complex game operates on a large number of continuously changing and mov-
ing sets of objects. Thus the rasterization process consumes significant system
resources, changing dynamically depending on the moving objects. Typical fea-
tures of the renderer of these complex systems are a high screen resolution, large
texture sets, animations and transformations to achieve better user experience.
The screen resolution has been also increased. While in the past the 320x200 and
640x480 dimensions were sufficient, nowadays large high-quality textures (32 bit)
are indispensable for higher screen resolutions (e.g. higher than 1024x768). All
of these increase the requirements for performance, inducing continuous devel-
opment of the rasterization models and techniques.

Based on the needs of computer games, in the following it will be shown what
the main difficulties of two-dimensional rendering are and why the rasterization
stage is so performance intense.

4.1 Characteristics of 2D rendering

Two-dimensional rendering operates on images (textures) and objects (anima-
tions) using 2D algorithms. During the image generation process, the graphics
engine is responsible for objects being drawn into the framebuffer one by one,

7

based on a predefined drawing logic. So the final image is created as a combina-
tion of these. In all cases, textures are stored in the main memory, represented
as a block of arrays. Arrays contain color information about the objects; their
size depends on the quality of the texture. Today software works with 32-bit (4
bytes - RGBA) type color images, where image resolution can be up to 1024x768
pixels depending on the requirements of the items to be displayed.

Based on color channel information, textures can be divided into two types:
images containing some transparent area (e.g. cloud, ladder), and images with-
out transparent areas. The distinction is important because the rasterization and
optimization methods differ for these types. In the following the implementation
logic will be shown.

4.2 Rasterization model of non-opaque textures

Textures without transparent areas use only RGB color components, or the alpha
value of all the pixels is maximal. So the image does not contain any transpar-
ent pixels (’holes’). This information is very important because it fundamentally
determines the display logic. This means that any two objects can be drawn on
each other without merging any colored pixels of the overlapping objects. The
rendering process will be significantly faster and simpler.

The rasterization of images without transparent areas is relatively simple;
the entire texture can be handled at once in one or more blocks and not pixel
by pixel. The memory array of the texture is moved into the frame buffer using
memory copy operations (e.g. C - memcpy()).

There exists only one criterion: to avoid framebuffer over addressing, atten-
tion should be paid to the edges of the screen and during copying, the data
should be segmented based on the object’s position. If any object is located out
of the screen bounding rectangle in any direction, a viewport culling should be
performed row by row at the texture. Although this requires further calcula-
tions, the solution is still fast enough. So this method was preferred in the early
computer games.

4.3 Rasterization model of textures having transparent areas

In case of transparent textures, the part of the image contains transparent point
groups, or the pixels of the image are opaque in some intensity. To implement
the first category, a pre-selected but unused color has to be applied to mark the
transparent pixels, this is called colorkey. Today, this is achieved using the alpha
(A) channel associated with the image.

8

The role of this type of textures has increased today: they are used in many
areas in order to improve the visualization experience (e.g. window shadows, an-
imations with blurred edges, and semi-transparent components). Handling this
extra information is not more complicated but is more computing intensive. The
reason is that transparent and non-transparent areas can arbitrarily vary within
a texture image (character animation, particle effects, etc.). Due to this, the ren-
dering process is made at per-pixel level because transparent or semi-transparent
parts of the objects should be merged with the overlapped pixels. Figure 1 illus-
trates the problem.

Fig. 1. Overlapping RGBA textures

The graphical engine assesses the graphical objects pixel by pixel and gen-
erates the final image. The disadvantage of this is that many elements, which
can also consist of many points, have to be drawn on the screen. The per-pixel
drawing requires thousands of redundant computations and function calls. For
each pixel the color information should be read from memory, then depending on
the environmental data its position should be determined and finally the color
should be written into the framebuffer (e.g. pFrameBuffer[y * screenWidth + x]
= color).

For this reason, this technique does not possess high enough performance to
meet the requirements of today’s complex computer games, where up to 100 dif-
ferent moving objects should be drawn simultaneously on the screen. Too many
small operations should be performed, which consumes CPU resources.

9

5 Accelerate 2D visualization applying thread
management

Given the process and the difficulties of rasterization, the question arises whether
it is possible to find a more effective solution which is able to meet the growing
demands of today’s computer games. As long as the above model is implemented
using classical programming technology, performance results will certainly not
be satisfactory because the model does not take into account the characteristics
of available hardware.

The following simple investigation will confirms this fact: while writing the
paper, we implemented a simple one-threaded rasterizer (classical model). The
objective was to make performance profiling utilizing transparent textures. The
results showed clearly that a software running time of 97% exposes the render-
ing of the transparent textures: calculating color and position information of the
pixel and writing them onto the framebuffer. This by itself does not indicate the
inefficient use of the technology. Therefore, as a further investigation, it was ob-
served how many CPU cores were active and to what extent during the runtime.
The results showed that at the same time only one CPU core load was high,
the load of the others was minimal. This confirms the fact that the simple ras-
terization model cannot properly take advantage of the features of the hardware.

In the field of parallelization, central units have developed substantially dur-
ing the past years. The number of cores is continuously increasing and the in-
struction sets are slowly but also continuously evolving, e.g. the AVX instruction
set applyied at Intel Sandy Bridge and AMD Bulldozer processors. Each core
has its own cache memory. All of these provide a good basis for establishing
intensified parallel computations. Today, having four cores in a central unit of
a desktop computer is natural and mobile devices are slowly catching up in this
area. An example is the Tegra 4, offering quad-core Cortex A15. It is therefore
clear that these should be used in the rasterization process. It is indispensable
to design and implement the rasterization model in such a way so as to be able
to take into account the opportunities of today’s hardware parallelism and dy-
namically adapt to them.

A software renderer developed by applying parallel technology properly is
expected to achieve significantly better results than the classical approach. In
the following such a model is outlined, supported by detailed test results.

5.1 The model of the distributed rasterizer

In the course of rasterization it is appropriate to develop a distributed model for
the logic of the rendering engine. A solution should be designed which can be
built from well parallelized processes. Naturally, the degree of parallelization has

10

a theoretical maximum upper limit defined by Amdahl’s Law [15]: the speedup
of a program using multiple processors in parallel computing is limited by the
time needed for the sequential fraction of the program. Therefore it is impor-
tant to investigate first to what extent the rendering process corresponds to the
principles of parallelization.

The technology of parallelization is based on the appropriate utilization of
CPU cores. This can be achieved most effectively by using hardware threads.
However, thread management raises several optimization issues. As an impor-
tant rule, the core rasterization model should be designed to take into account
the potential number of cores in the particular hardware central unit. The par-
allelization is not optimal when the working threads of an application exceed
the number of CPU cores (in the case of Intel processors this includes the vir-
tual cores given the Hyper-Threading technology). When the number of logi-
cal threads reaches the number of available hardware threads, the performance
slowly starts to decrease because of context switches [15].

Fortunately the process of two-dimensional visualization is simple from the
mathematical point of view, therefore parallelization can be adapted more eas-
ily than in the case of 3D. The rendering is based on writing pixels into the
framebuffer. Since pixels are independent of each other, thus the process of the
rasterization can be well parallelized under certain criteria. The most impor-
tant criterion required is that the synchronization between threads should be
minimal. To achieve this, the only requirement is that the same elements of the
framebuffer cannot be written by threads at the same time. If we can solve the
problem that the threads should not wait for each other during the pixel writing
process, the performance benefit is expected to be significant. The result is a
multi-threaded rendering model implementing distributed rasterization.

Because the rendering process is mainly slowed by the rasterization of trans-
parent objects, hereafter the paper primarily deals with this category.

Advanced distributed rendering model To design a distributed rasteriza-
tion model achieving minimal synchronization, we should start from the logical
division of the visualization area similar to GPU hardware and Tile Based render-
ing. Because this division also determines the logical division of the framebuffer,
the areas should be designed to be independent. In this case, if the rasterization
of the area is performed by separate processing threads, the necessary synchro-
nization between threads will be minimal. The reason for this is that none of the
render threads will do pixel operations on areas belonging to other threads.

Starting from the former idea that today a 4-core central processing unit
is standard, we consider four identical-sized areas for the screen division. Thus
the rasterization process can be performed using four threads. Naturally, the

11

efficiency of this process is optimal when the number of logical screen areas cor-
responds to the CPU cores. Figure 2 shows the logical steps of the rasterization
process.

Fig. 2. Distributed rasterization logic

The first part of the applied graphics pipeline is identical to the classical solu-
tion. The position and orientation calculation of the 2D objects is performed and
the objects are located in the region of the screen. If at least one pixel is visible
of the object’s texture, its rasterization is indispensable. However, this process
differs from the classical method. While previously calling a Draw() method
immediately writes the texture of the object into the framebuffer, this solution
requires a container that collects and holds these textures on a list during the
rasterization. The actual rasterization occurs when all of the object’s texture is
on the list intended for drawing.

The basis of the parallel rasterization is that the different areas of the frame-
buffer can be written independently and parallel with each other. To accomplish
this, a fast classification algorithm is required, which determines the area where
the object belongs and its render thread. However, the classification raises a
further question. Surely there will be objects whose images overlap the logical
areas. So during the classification process the texture will be associated with
both threads for rendering, which violates the rules of parallelism laid down.
One solution to these problems can be a simple model where the classification
algorithm associates the textures with the areas in such a way that the elements
belonging to more than one area are associated with the main thread of the

12

application.

Textures belonging to this thread should be drawn only before or after the
rendering process of the other threads. Because of overlapping, the writing pro-
cess of the thread affects the other thread’s logical framebuffer parts. Although
the solution is operational and fast, it is not applicable in every case. In computer
games, a predefined rendering sequence is usually required (e.g. an airplane flies
in front of certain clouds and behind certain clouds). This solution cannot keep
the rendering order because of the overlapped areas. To extend the model in
order to support the rendering order would require too much communication
between threads, killing parallel performance.

In order to keep the advantages of the parallelism, the overlapping problem
should be solved. Since we are in the two-dimensional screen space, the texture
of each object can be described with a rectangle. This is the area bounded by
the texture’s width and height.

An effective approach to the problem is to cut the image of the objects along
the logical area borders. For this, it is necessary to modify the classification
algorithm. While previously all the textures overlapping the logical areas were
associated with the main render thread, this model associates these textures
with any logical area that is overlapped by the image. The most complex case is
when the texture overlaps all four areas of the screen. This requires cutting the
texture into four different parts and associating them with four threads. Figure
3 shows the logic of texture cutting and thread association.

Fig. 3. Rasterization logic

During the visualisation process further checks and calculations are required.
Because overlapping textures can belong to a logical area, during pixel level ras-

13

terization it is necessary to determine the exact pixel borders of the rendering.
This avoids conflict with other threads. All of these operations require extra
performance from the CPU compared to the previous simple solution, but this
does not radically affect the rasterization speed. However, it is clearly visible
that this model keeps the rendering order. If the display list is arranged in the
correct order before the classification process, the order remains unchanged dur-
ing rasterization.

Properties of the rendering system Naturally, since threads are used in the
visualization system, synchronization between threads is inevitable. The model
requires two synchronization points. First, when the threads are assigned their
tasks after the classification process and receive the ’start processing’ signal. The
second point should be at the end of rasterization, to wait for the work of all the
threads to end. It is appropriate to place these points at the main thread and to
accomplish variable sharing and synchronization through mutex variables. Since
creating a new thread is time-consuming, the rendering engine should be imple-
mented in order to avoid continuous thread (re)creation. Threads, for example,
can be created after the classification process and ended after their rasterization
process, but this will greatly slow down the rendering. Instead, threads live and
run continuously. When their work is required, they will be activated, otherwise
they will wait. Following these principles the benefit of the implemented ren-
derer is its expected significant performance improvement. The disadvantage at
the same time is that the implementation should be more complex.

Although the distributed renderer was emphasized for the rasterization of
transparent textures, the principle is also applicable in the case of non-transparent
textures. Their rasterization can also be integrated into the model extending the
process. As previously mentioned, the rendering process of these types of textures
is a set of fast memory copy operations. To keep these properties, the graphical
engine should register the type of the textures after the image loading and de-
termine which textures are transparent. During the rasterization process these
types of textures are also placed on the same list as the transparent textures.
The classification algorithm associates these similarly with one or more logical
areas. However, in the actual rendering stage, the engine needs to know the ex-
act type of texture, because rasterization of transparent textures is performed
by pixel level and that of non-transparent ones is performed most effectively by
memory block copy (including the checking and cutting process of the logical
boundaries of the areas).

This way the complexity of the rendering engine increases, but it is worth
distinguishing the two types in terms of performance.

14

6 Test results

The following section presents the performance results of the multi-threaded ras-
terizer for different test cases. During these tests we considered it important to
compare the results to several different solutions. All different test cases have
also been implemented by the classical, one-thread rendering solution. In ad-
dition, to validate the results the tests were also implemented with the GPU
based technology. With this reference value, the relative performance ratio of
the methods will be visible and clear.

The GPU based reference implementation was developed with the OpenGL
API, where all visual elements were stored in the high-performance video mem-
ory and the VBO (Vertex Buffer Object) extension was applied for the rendering.
Currently, VBO is the fastest texture rendering method in the GPU area. It is
important to emphasize that the drawing of textures was performed using GLSL,
where two different test cases were distinguished. The role of the non-optimized
type is important in mass texture drawing: a shader object is initialized before
every object drawing and closed after it. The marker ’non-optimized’ means the
cost (performance) of the continuous shader changes. The optimal solution initi-
ates the shader object only once before mass texture drawing and closes it after
rendering.

The test programs were written in C++ applying a GCC 4.4.1 compiler
and the measurements were performed by an Intel Core i7-870 2.93 GHz CPU.
Due to Hyper-Threading technology, the CPU can run eight hardware threads
in parallel. As a test environment, a 64 bit Windows 7 Ultimate Edition was
chosen. The implementations did not use any hand optimized SSE such as code
parts; only the compiler optimized code was applied. The chosen screen resolu-
tion and color depth were 800x600x32 in windowed mode. The hardware used
for the test was an ATI Radeon HD 5670 with 1 GB of RAM. To display the
software framebuffer, the OpenGL glDrawPixels solution was applied in an op-
timized form. The alpha-channel images used in the tests contained an average
number of transparent pixels, about 50%. During the tests the average Frame
Rate (Frames Per Second) was recorded for at least one minute run-time. It is
important to highlight that in the case of software rendering, the frame rate was
1714 FPS without any drawing, when only the empty framebuffer was sent to the
GPU. The pixel operations were optimized for both software renderer solutions
(classical and multi-threaded). Framebuffer is defined as an uint32 t type array
because this storage type makes it possible to handle all the color components
of a single pixel in one unsigned integer type variable, in one single block (e.g.
color = A << 24 | R << 16 | G << 8 | B) [16].

15

6.1 Simple pixel operation performance test

First a very simple but very practical test is worth examining the performance
of pixel writing operations. The task of each test implementation was to fill the
screen with a predefined color pixel by pixel. Because of the many pixel oper-
ations, processing is very computation-intensive. Table 1 summarizes the results.

Table 1. Pixel writing performance

Speed of rasterization (FPS)

Simple rasterizer
(1 thread)

Distributed rasterizer
(4 thread)

Write 800x600 pixels
to farmebuffer

614 1122

The results clearly show the advantages of the thread-based solution. The
distributed version was almost twice as fast as the classical solution.

6.2 Renderer’s compound test

In the following our objective is to present and compare the results of the differ-
ent solutions, applying them to some test cases. Each test represents a special
group of tasks. These groups are intended to highlight the most important tasks,
those which often occur in computer games. They help to conclude how effective
the multi-threaded rasterizer can be in different cases.
Test case 1: during the test we were looking for an answer to the question of
how the presented methods can handle a large texture without any transparent
areas.
Test case 2: the aim of this test was to measure the renderer’s performance
applying large and transparent textures. The test image contained an average
number of transparent pixels, about 50%.
Test case 3: the test is a transition between the previous and the following
cases. It renders 10 relatively large, non-opaque images.
Test case 4: applying the third test case with transparent textures.
Test case 5: a heavily loaded rendering system was simulated drawing 200 64x64
size non-transparent animated objects. Each object has eight different anima-
tion frames with identical sizes. Positions are randomly generated and uniformly
distributed.
Test case 6: like test case 5 with transparent textures.

16

Table 2 summarizes the results of all solutions.

Table 2. Benchmark results

Speed of rasterization (FPS)

Number
of
objects

Simple raster-
izer (1 thread)

Distributed
rasterizer
(4 thread)

Non optimized
GPU implemen-
tation

Optimized GPU
implementation

800x600 tex-
ture (RGB)

1 1580 1710 3012 3012

800x600 tex-
ture (RGBA)

1 717 1180 3050 3050

256x256 tex-
ture (RGB)

10 1192 1336 2960 3056

256x256 tex-
ture (RGBA)

10 522 950 2987 3052

64x64 texture
(RGB)

200 666 1002 532 1108

64x64 texture
(RGBA)

200 380 766 538 1126

As we might expect, pixel level rasterization has the lowest performance in
all cases. While the rendering performance of the non-opaque textures is higher,
in the transparent case it was much worse. The reason for this is that the ren-
derer draws non-opaque textures with memory copy operations, and transparent
textures pixel by pixel. The performance values achieved underline the fact that
a rasterizer using one thread is not able to exploit the available CPU resources.

The presented distributed renderer engine performed well in all cases. Al-
though the implemented four- thread based prototype still does not properly
take into account the hardware cores, the results are convincing. In one case,
its performance was higher than for the non-optimized GPU solution. In addi-
tion, it should be noted that this approach scores better on the high graphical
load. While in the second test case the rate of performance values of optimized
GPU and the distributed approach was 2.58, the rate is 2.09 in the last test case.

The optimized GPU implementation has the fastest performance in all cases.
But we should not forget that the calculations are performed by dedicated hard-
ware. There is no need to move data between the GPU and the main memory.

17

Naturally, in practice there could be additional (exceptional) cases: one ex-
ample would be in a game if all the objects are positioned in one logical area. In
this case one render thread will render all the objects and its performance will
be the same as that of the classical approach. Besides, the above examples do
not take into account the case where the image of an object should be scaled
or rotated. Compared to the GPU based implementation, this requires more re-
sources from the CPU.

7 Conclusion and Further work

Although today the field of computer graphics is dominated by the GPU market,
we cannot forget the opportunities offered by software based image synthesis.
The central units have undergone a huge revolution during the recent years, of-
fering new opportunities in this area. A powerful GPU cannot be defeated in
rasterization performance, but a properly designed software renderer based on
modern concepts and solutions is also able to achieve good results in rasteriza-
tion, not only in speed, but also in flexibility. It should not be forgotten that
a fully software based pipeline is less restricted compared to today’s hardware
solutions. In addition, the model discussed in this paper highlights that there
are grounds also for developing two-dimensional games and other graphics ap-
plications using software renderers.

Further development of central processing units (e.g. the AVX instruction
set) will open up more and more opportunities in this area. Naturally this will
require a great deal of effort and applying lower level languages (e.g. C, C++,
D) that can take advantage of these potentials of the central unit.

In further work we would like to find the answer to the question of to what
extent the performance of the rasterization process can be enhanced by utilizing
the CPU’s SIMD extensions in both 2D and 3D cases.

Acknowledgements
The described work was carried out as part of the TÁMOP-4.2.2/B-10/1-2010-
0008 project in the framework of the New Hungarian Development Plan. The
realization of this project is supported by the European Union, co-financed by
the European Social Fund.

References

[1] Zach, B.:A Modern Approach to Software Rasterization, University Workshop,
Taylor University, 14. Dec 2011

[2] TransGaming Inc: Swiftshader Software GPU Toolkit (2012)
[3] Microsoft Corporation: Windows advanced rasterization platform (warp) guide

(2012)

18

[4] Abrash, M.: Rasterization on larrabee, Intel Developer Site:
http://software.intel.com/en-us/articles/rasterization-on-larrabee, 20. 02.
2013

[5] Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins,
S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T.,
Hanrahan, P.: Larrabee: a many-core x86 architecture for visual computing, ACM
Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH August 2008
27 (2008)

[6] Rost, R.: The OpenGL Shading Language, Addison Wesley (2004)
[7] Laine, S., Karras, T.: High-Performance Software Rasterization on GPUs.High

Performance Graphics, Vancouver, Canada 5. Aug 2011
[8] Akenine-Möller, T., Haines, E.: Real-Time Rendering, Publisher: A. K. Pe-

ters./CRC Press, 3nd Edition (2008)
[9] Sugerman, J., Fatahalian, K., Boulos, S., Akeley, K., and Hanrahan, P.: Gramps:

A programming model for graphics pipelines, ACM Trans. Graph. 28 (2009) 1–11
[10] Fang, L., Mengcheng, H., Xuehui, L., Enhua, W.: FreePipe:A Programmable, Par-

allel Rendering Architecture for Efficient Multi-Fragment Effects In Proceedings
of ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (2010)

[11] Agner, F.: Optimizing software in C++ An optimization guide for Windows, Linux
and Mac platforms, Study at Copenhagen University College of Engineering 20.
02. 2013

[12] Swenney, T.: The End of the GPU Roadmap, Proceedings of the Conference on
High Performance Graphics (2009) 45–52

[13] Coffin, C.: SPU-based Deferred Shading for Battlefield 3 on Playstation 3, Game
Developer Conference Presentation 8. March 2011

[14] RAD Game Tools: Pixomatic advanced software rasterizer,
http://www.radgametools.com/pixomain.htm (2012)

[15] Akhter, S., Roberts, J.: Multi-Core Programming - Increasing Performance
through Software Multi-threading, Intel Corporation; 1st edition (2006)

[16] Mileff, P., Dudra, J.: Efficient 2D Software Rendering, Production Systems and
Information Engineering 6 (2012) 99–110

[17] Loop, C., Eisenacher, C.: Real-time patch-based sort-middle rendering on mas-
sively parallel hardware. Microsoft Research tech. rep., MSR-TR-2009-83 (2009)

