Special Issue

of the Infocommunication Journal

Application of Neural Network Tools
in Process Mining

Application of Neural Network Tools
in Process Mining

Laszl6 Kovacs, Erika Baksdné Varga, and Péter Mileff

Abstract—Dominant current technologies in process mining
use schema induction approaches based on graph and au- toma-
ton methods. The paper investigates the application of neural
network approaches in schema induction focusing on three al-
ternative architectures: MLP, CNN and LSTM networks. The
proposed neural network models can be used to discover XOR,
loop and parallel execution templates. In the case of loop detec-
tion, the performed test analyses show the dominance of CNN
approach where the string is represented with a two- dimensional
similarity matrix. The usability of the proposed approach is dem-
onstrated with test examples.

Index Terms—process mining, convolutional neural network,
graph schema induction.

I. INTRODUCTION

ROCESS mining is a technique to discover, analyze, and

monitor processes in an objective manner. It uses log
data from corporate information systems and turns them into
insights and actions. In this sense process mining is a subfield
of data science: it requires the availability of data and aims at
improving processes [1]. The induction of complex schema or
grammar models is a key challenge in knowledge engineering.
The input for schema mining is a set of sequences (traces) and
the engine determines the general schema graph covering the
input set. The input for schema mining is given with an event
log, which is a list of event traces. The traces of the event log
are generalized, merged into a schema graph.

The first software systems for schema induction usually
used a pattern matching approach to determine the common
section in the sentences. In most cases, the induction was based
on a set of transformation rules defined by human experts.
Current toolsets for process mining are dominated by the graph
or automaton oriented algorithms [2] usually starting with the
construction of the Direct Follower Graph which is a graphical
representation of a process. Traditional frequent pattern mining
techniques run into their limits when dealing with massive
datasets [3]. Therefore, more advanced algorithms apply tree-
based representation [4]. These incremental methods derive
relevant patterns recursively. One of the most widely used
industrial approaches is the inductive mining algorithm [5],
which uses a top-down discovery algorithm. The top-down
method recursively decomposes the event log into smaller
event logs. The method first converts the event log into a
corresponding DFG (direct follow graph), then it simplifies
the initial graph into a compact schema graph. Beside the
graph-based standard approaches, we can find some recent

The authors are with the Department of Information Technology, University
of Miskolc, Miskolc, Egyetemvdros, Hungary. E-mail: {laszlo.kovacs,
erika.b.varga, peter.mileff} @uni-miskolc.hu

DOI: 10.36244/1CJ.2023.5.3

SPECIAL ISSUE ON APPLIED INFORMATICS

approaches on application of neural networks in process min-
ing [6]. We can consider graph schema induction as a special
type of classification problem, where the final output category
corresponds to a complete schema graph. The schema graph
is usually constructed in an incremental way by selecting the
next winner event or events and the edges in the graph denote
the adjacency relation. Considering simple event sequences,
the dominating approach for next event prediction is to use
Recurrent Neural Networks (RNN), where the output signal of
a processing step is used as input component for the prediction
of the next element in the sequence. In [7], the RNN network
model was applied for the process discovery task. Current
solutions are able to detect XOR branches in the trace log, but
these methods still miss some crucial functionality required
by industrial problems. The main goal of this paper is to
show our proposals on the adaptation of neural networks in
process mining to cover some missing functionalities, like
AND branches and loop detection [8].

II. BACKGROUND
A. Process Mining with Graph Methods

Today’s era is about automation which also affects complex
business and administrative processes. For the automation of
processes, the most important prerequisite is to have pro-
cess models which can be transformed into running systems.
Thanks to process mining methods, the required models can be
discovered by extracting knowledge from event logs recorded
by information systems. The general process discovery prob-
lem is defined in [1] as finding an algorithm that maps an
event log (L) into a process model so that the model is
representative for the behavior seen in the event log. This
task is highly challenging, since an input event log contains a
collection of historical cases of a given process, called traces,
which are sequences of actions while the expected output
model should be compact and meet the requirements of fitness,
precision, generalization and simplicity. In order to produce a
generalized model, the control-flow structures underlying in
the data sequences should be discovered.

The control-flow patterns used in process modelling are
presented in [9] and [10]. The identified 43 patterns are
classified into 8§ classes, amongst which the basic patterns that
can be explored in the event log are:

« sequence,

e parallel split,

« synchronization,

o exclusive choice, and

« simple merge.

13

mailto:laszlo.kovacs%40uni-miskolc.hu?subject=
mailto:erika.b.varga%40uni-miskolc.hu?subject=
mailto:peter.mileff%40uni-miskolc.hu?subject=
https://doi.org/10.36244/ICJ.2023.5.3

Application of Neural Network Tools
in Process Mining

In sequential routing, a task in a process is enabled after the
completion of the preceding task. There can be two different
types of splitting nodes in a process model. Parallel split is
applied when a single thread of execution is split into two or
more branches which are triggered concurrently (AND node).
Exclusive choice corresponds to conditional routing. In this
case, as soon as the incoming branch is enabled, the thread
of control is passed to exactly one of the outgoing branches
(XOR node). The splitted branches need to be merged after
a while, i.e. an AND or XOR node are generally succeeded
by a synchronization or simple merge node, respectively. The
difference between these nodes is that a synchronizing node
means that all the activated incoming branches should be
completed before the thread of control is passed forward; while
a simple merge node waits for only one branch to be completed
[11].

Graphical process models usually have special notations for
the elements that influence the flow of control. These nodes
interconnect activities in the conceptual model, but there is no
sign of them in the event log. This makes the process discovery
problem challenging, since the developed algorithms have to
explore the control structures hidden in the event sequences.

B. Standard Tools in Process Mining

Process mining tools utilize existing data from corporate
information systems to provide dynamic visualization of the
processes and to perform process mining tasks such as process
discovery and conformance checking.

The first framework that has been designed to combine
different process mining algorithms, is ProM [12]. This frame-
work is flexible regarding the input and output format, and
allows for easy implementation of process mining methods.
Three types of graph-based algorithms can be plugged in.
One can explore the process perspective to find a general
characterization of all possible paths, expressed for example
in terms of a Petri net or Event-driven Process Chain (EPC).
With respect to the organizational perspective, the mining
method either structures the organization by classifying people
in terms of roles and organizational units, or maps the relations
between them. Thirdly, cases can also be investigated by
characterizing them with their path in the process, by the
agents working on them, or by the values of the corresponding
data elements.

A more sophisticated tool is the open source PM4PY devel-
oped by the Fraunhofer Institute using Python [13]. It supports
several input and output formats, and a variety of process
discovery algorithms creating procedural process models (such
as the Alpha Miner, the Inductive Miner and the Heuristics
Miner algorithms) or methods producing descriptive models. It
also allows for conformance checking, object-centric process
mining, organizational network analysis and provides some
features useful for the application of machine learning tech-
niques. Most recently, PM4PY offers some integrations with
OpenAl (e.g. with ChatGPT) for getting insights automatically.

However, a great disadvantage of traditional graph-based
process mining methods is the use of recursion which results
in high memory consumption and long execution time. In our

14

Special Issue

of the Infocommunication Journal

approach, we apply approximation in discovering a process
model by means of neural networks.

C. Process Mining with Neural Network Methods

Neural networks can be utilized in process mining to
enhance various aspects of the analysis and optimization of
business processes. One of their applications is when they are
used to predict future events in a business process. Compared
to traditional process mining techniques, such as Petri nets and
the Business Process Model Notation (BPMN), deep learning
methods have proven to achieve better performance in terms
of accuracy and generalization power.

In [14], Hanga et al. propose a method that combines the
benefits of visually explainable graph-based methods with
more accurate deep learning methods. Among neural net-
works, the RNN architecture has the capability to provide the
context for each following prediction that helps in preserving
the state in which the decision was made. Therefore, in
this approach, an LSTM model is employed first to find
probabilities for each known event to appear in the process
next. These probabilities are then used to generate a graphical
process model graph.

Obodoekwe et al. [15] used convolutional neural network
(CNN) for predicting the next activity in an event trace. The
method first detects the spatial structure within the order of
historical event sequences and then transforms them into 2D
images. The images are then trained using the CNN network
to generate a deep learning model that can predict the next
activity in an ongoing process. The feasibility of the approach
was evaluated using Helpdesk event logs and the results show
that the proposed CNN-based method provides highly accurate
next activity prediction and is faster in training and inference
than the LSTM-based approach.

The most widely studied problem of process mining is
automatic process discovery. Several approaches have been
proposed, but the applicability and effectiveness of these
approaches depend on event log features and the structure
of the processes. When applied to real-life event logs, the
majority of traditional process discovery methods produce
broad and spaghetti-like models, or models with poor fitness
and precision [1].

Shunin et al. [7] try to find patterns in event logs using a
neural network. The algorithm extracts an RNN’s internal state
as the desired transition system that describes the behaviour
present in the log. One of the main advantages of using this
architecture is its natural ability to detect and merge common
behavioural parts that are scattered across the log. Another
benefit is that the models derived by the approach absolutely
fit to the event log.

Sommers et al. [16] applied graph neural networks in
process discovery. They encode the discovery problem as a
graph of three parts. The first part of the graph is the trace
graph representing the event log. The second part of the graph
is a candidate Petri-net, which is a possible result model. The
third part of the graph are the links from the event nodes of
the trace graph to transitions in the candidate model. Their
approach is to utilize a collection of neural networks, each of

SPECIAL ISSUE ON APPLIED INFORMATICS

Special Issue

of the Infocommunication Journal

which takes a segment of the graph as input and simulates a
distinct stage in the gradual construction of a Petri-net model
from an event log. The method was evaluated on synthetic
and real-life data and compared to other methods, achieving
the highest simplicity while competing with Inductive Miner,
Heuristic Miner, and Split Miner methods in terms of F-score.

In this paper, we present a neural network architecture for
the detection of AND (parallel) branches in the event log. With
the help of this approach, the engine can determine the parallel
processes in the traces and it builds up a process schema graph
related to more actors. The proposed engine uses a two-level
representation approach where the bottom level corresponds
to the single actor level activity chain. These homogeneous
segments are merged by using synchronization nodes. The top
level contains the synchronization graph of the agent level
segments. The second neural network architecture presents a
novel loop detection approach which can be used to discover
tandem repeat sections. The proposed method first converts
the sequence into an image matrix format and this matrix
will be sent to a CNN convolutional network. The category
labels correspond to the different loop kernel positions in the
sequence. The next model integrates these two neural network
models to have a more general schema induction engine for
process mining. The presented novel network models were im-
plemented in Python Tensorflow/Keras framework. In order to
test the induction engines on event logs of different complexity
levels, a test set generator application was developed in the
research project. The target schema is constructed with a visual
editor, and the engine generates the related event log of given
size. In the test experiments, we compared the efficiency of our
proposed models with some standard graph based engines. In
the paper, we analyze the test results showing both the benefits
and limitations of the neural network approach.

In the tests we used three main neural network architectures:

« multi-layer perceptron model (MLP), which is a standard
NN tool for both general classification and regression,

o recurrent neural model (LSTM), and

« convolutional neural model (CNN).

The detection of branching nodes of the schema graph can
be implemented either with the standard MLP network or
with the LSTM recurrent model. The main goal of the neural
network is to predict the next element of the investigated
sequence. The prediction is based on the previous elements,
thus the input vector is given as the description vector of
the preceding elements. In the standard approach, the engine
outputs only the winner category, in this way generating only
one next element. According to the literature [17], the standard
way of generating sequence branching is to consider not only
a single winner category, but a group of best candidates. The
size of the winner group is usually an input parameter in the
algorithm.

III. DISCOVERY OF PARALLEL BRANCHES

Parallelism denotes parallel workflows of different actors
and resources, and the split and join control nodes denote an
artifact level dependency among the different branches. For
example, we consider a workflow to produce a mobile phone.

SPECIAL ISSUE ON APPLIED INFORMATICS

Application of Neural Network Tools
in Process Mining

In this process the production of the different components
can be executed in a parallel way. A synchronization join
node denotes the case when the next assembly step requires
the availability of all components produced in the preceding
steps. These control nodes can be automatically discovered
if the event log contains an artifact attribute as well. The
artifact attribute identifies the target, i.e. the object of the given
action. Using this parameter we can discover the artifact level
dependency between the different actions of the event log.

Beside the actor events, the extended input event graph
for the training process contains also synchronization control
nodes which describe the adjacency relationship among the
event sequences. We assume that every control node has
an input set of event sequences and an output set of event
sequences. Similarly to Petri-nets, the join control node is
triggered only when all of the input sequences are finished.
If the transition is triggered, all output sequences will start
the execution.

The event graph structure is defined as

0= (Ny,—o)

where
e ¢ € Wx Ais an actor event where A(e) denotes the actor
of the event, T'(e) denotes the timestamp of the event and
W denotes the set of event types (activities)
o c € (C'is a control event, every c¢ has a timestamp denoted
by T(c);

o By =(e1eg...ep e, € W x A Vi, j: Ale;) = Alej)) -

the actor event sequence node;

o C(c) : the control event nodes;

e N, = FE, UC, : the nodes in the graph instance;

o« —»pC E, x C, : the edges from actor events to control

events;

¢« —»cC C, x E, : the edges from control events to actor

events;

¢ —,=—p U —¢ : the edges in the graph.

In the preprocessing phase of the proposed method, the
engine determines the related synchronization nodes first.
Node mining is based on the following considerations:

1) Event nodes are processed in temporal order, and the

current event is denoted by e;.

2) The set of output artifacts of e; are stored in out;.

3) The set of adjacent events E; = {e;} are determined,
where the input artifacts correspond to some elements of
out;, and there is no other intermediate event processing
these artifacts.

4) If the actors of the matching e; and e; event pair are
different, a synchronization node e is needed between
them.

5) The actor of e; (a;) is added to the input-actors of ey,
and the output actor set of e, is extended with a;.

6) If an actor is not present in the actor set of e; while
being active at e, through an artifact-level dependency
with some events in the output-actor list of eg, then it
will be included into the input-actor set of es. A similar
method can be used to extend the output-actor list of e,.

7) The previous two steps are repeated until a closure of
the input-output artifact relationships is achieved at e;.

15

Special Issue

Application of Neural Network Tools
in Process Mining

TABLE I
ACCURACY COMPARISON OF SEQUENCE PREDICTION NETWORKS

Dataset LSTM MLP NH-MLP BE-MLP BE_LSTM
pdc_2016_1.xes | 63.5% | 63.4% 63.4% 63.9% 64.1%
load_random 582% | 57.5% 56.6% 58.7% 58.0%
pdc_2016_9.xes 82% 82.5% 81.2% 81.8% 82.6%
pdc_2017_5.xes | 62.4% | 62.8% 63.7% 64.8% 64.2%
pdc_2019_2.xes | 64.6% | 65.2% 63.9% 66.27% 65.6%

Considering the efficiency of the proposed models, we
performed a comparison test on benchmark sequences. The
investigated network models are:

e MLP : baseline MLP,

e LSTM : baseline LSTM,

¢ BE-MLP : MLP with union-based reduction,

e BE-LSTM : LSTM with union-based reduction,
¢ HN-MLP : MLP with NN-based reduction.

The first architecture is based on the standard multi layer
perceptron neural network model (MLP) which is suitable to
perform feature vector based value prediction. This model
uses a relatively simple architecture, thus the training has
a lower cost. The second version uses a recurrent neural
network architecture (LSTM) that is used for prediction on
value sequences of arbitrary length. It contains a more complex
architecture that enables remembering of previous events in
an efficient way. Due to the higher complexity, it is usually
harder to find the optimal network parameters. The three other
versions apply a sequence reduction preprocessing step. In
this reduction phase, the long event sequence is reduced to
a shorter one, where the reduction can be based on the value
aggregation (MLP with union or LSTM with union) or an extra
MLP neural network is trained to perform the reduction step
(MLP with NN-based reduction).

Regarding the implementation parameters, the model con-
sists of beside the output or hidden Dense layers, also an
LSTM layer. For the hidden layers, we have used the relu
activation function, while the output layer used the softmax
activation function. Regarding the optimisation parameters, we
applied the Adam optimizer with the categorical crossentropy
loss function with the accuracy metrics. For the test evaluation
of the different methods, we used the benchmark datasets
for the Process Discovery Contest events. These competitions
are organized by the IEEE Task Force on Process Mining
Group . The name of the data file refers to the year of the
contest and to the index of the data file. The dataset can be
downloaded from the homepage of the contest (https://www.tf-
pm.org/competitions-awards/discovery-contest). The datafiles
contain the event logs in XES standard format.

The results of the comparison tests are presented in Table I.
The accuracy values are given in percentage unit. The main
conclusion is that the BE_MLP network type is a good choice
for our architecture as

o it provides the best accuracy for most of the benchmark
datasets, and
o it has the lowest execution cost.

16

of the Infocommunication Journal

IV. Loop DETECTION

Loop detection is a key task in schema mining of event
logs. The basic operation in loop detection is the discovery
of tandem substrings. The task of tandem substring detection
can be given with the following formal description. Having an
alphabet A, strings are the final sequences based on A:

8 =a1,a2,...,0m,q; € A.
A substring of s is
Y /
s’ =al,ay, .., a

if
. —_ 4/ _ ! !
Jita; =ay,..,0i15-1 = @y ey Qi1 = Q.-

A substring s’ is a tandem substring if

Jia = a; —a o
110 = Qip kg = Gy ey Qg1
!/ !
= Qitktj—1 = Qs eoes Gife—1 = Qi 24k —1 = Q-

In order to show the ability of a Neural Network architecture
to detect loop structures in sequences, we have developed a
special network type using the CNN convolutional architec-
ture. The main drawback of the baseline MLP approach is
that it is very sensitive to the specific values at each position
of the sequence. On the other hand, loop detection should be
insensitive to the actual character values. Thus, for example,
the sequences “abcbch” and “bagagb” need to be equivalent as
both contain a loop at the second position. Otherwise it would
take a long effort to generate a suitable training set with a
good covering for cases of repetition.

In the initial tests, we have compared three candidate neural
network architectures: multi-layer perceptron, convolutional
CNN and recurrent LSTM. In the case of MLP, the input vector
is the one-hot encoded version of the investigated string. For
each position, a one-hot encoded vector of size M is given
where each position denotes an element of the alphabet. The
output vector describes all possible repetition positions, where
each position corresponds to a (start position, end position)
pair.

The input vector for CNN is given by a two-dimensional
similarity matrix. The position (¢,7) contains the similarity
value of the symbols at the position 7 and at the position j.
Thus, the string is converted into a two-dimensional image
matrix, where the repeat sections can be characterized by a
set of special lines in the image. The output format is similar
to the vectors used in the MLP network architecture.

Considering the applied neural network architecture for loop
detection, we used a CNN model with 14 layers including
the core convolutional layers and the maxpooling layers. The
architecture model is presented in Fig 1.

In the case of LSTM, the input vector contains the one-hot
encoded format of the string, just like in the MLP network.
Here, the output is a number for each position, denoting the
size of the repeat section at the given position. Thus, the
processing of the string will generate a sequence of numbers
where a value greater than 1 denotes a repetition.

The results of the performed accuracy tests are summarized
in Table II.

SPECIAL ISSUE ON APPLIED INFORMATICS

Special Issue

of the Infocommunication Journal

[convad input | input: [[(None, 150, 150, 1)] |
[InputLayer | output: | [(None, 150, 150, 1)] |
[convad [input: | (None, 150,150,1) |
[Conv2D | output: | (None, 150, 150, 64) |
A.
[leaky_re_lu [input: | (None, 150, 150, 64) |
[LeakyReLU | output: | (None, 150, 150, 64) |
[max_pooling2D | input: | (None, 150,150, 64) |
| MaxPoolingzD | output: | (None, 75,75,64) |
[convad 1 [input: | (None,75,75,64) |
[Conv2D | output: | (None, 75,75, 128) |
[reaky_re 1T input: [(None,75,75,128) |
[LeakyReLU | output: | (None, 75,75, 128) |

|

[max_pooling 2d 1 | input:

(None, 75, 75, 128)

| MaxPooling2D | output: | (None, 38, 38, 128)

[convad 2 [input: | (None, 38,38, 128) |
[Conv2D | output: | (None, 38, 38, 256) |
[reaky_reu_z T input: [(None, 38,38, 256) |
[LeakyReLU | output: | (None, 38, 38, 256) |

|

[max_pooling 2d 2 | input:

(None, 38, 38, 256)

| MaxPoolingzD | output: | (None, 19, 19, 256)

[flatten [input: | (None, 19,19, 256) |
| Flatten | output: | (None, 92416) |
[dense [input: | (None, 92416) |
[Dense | output: | (None, 256) |
[teaky re w3 [input: | (None, 256) |
[LeakyReLU | output: | (None, 256) |
| dense_1 | input: | (None, 256) |
| Dense | output: | (None, 44851) |

Fig. 1. Architecture of the CNN neural network for loop detection.

TABLE II
EFFICIENCY COMPARISON OF THE EXAMINED NN ARCHITECTURES
Method | N parameters | Time [s] | V accuracy | T accuracy
MLP 27,590,861 26 96% 8%
CNN 175,631,337 288 100% 99%
LSTM 2,527,212 359 96% 94%

In Table II the columns denote the following measures:

o N parameters: the complexity of the network, i.e. the
number of graph parameters.

« Time: execution time of an epoch in seconds.

e V accuracy: validation accuracy.

o T accuracy: test accuracy.

Based on the preformed tests, we can see that the CNN
network is the winner of the neural network approach. One
important remark on the results is the very large differences
between the test and verification accuracy values for the MLP
architecture. This shows that there is significant overfitting in
this case.

Application of Neural Network Tools
in Process Mining

100%

75%
50%
25%
0% I
40 100 200 300 400 500 600

Fig. 2. Accuracy test of the different reduction methods.

=3

Considering the winner CNN variant, repetition appears in
the image as a line of pixels parallel to the main diagonal.
Using this representation format, CNN can be used to recog-
nize repetitions. One key issue in the CNN approach is the
high memory cost, as for a string of length m the number of
input neurons of the network will be m?2. Thus, we can reach
our hardware limits relatively quickly during CNN training or
search for repetitions. In order to overcome this problem, we
have applied the following reduction methods:

« Bitmap-based reduction,
o Average aggregator, and
o Adjusted reduction.

In the tests, we have compared three reduction methods. In
the first one, (bitmap reduction), in the initial bit matrix, the
submatrices are replaced with a single cell where the value
is calculated with the max operator. In the second version,
the content of the submatrix considered as a matrix of float
values and the average value will be stored in the reduced
matrix. The third variant applies a special calculation which
is sensitive to the diagonal directions as the loops generate
specific lines (parallel to the diagonal) in the input matrix.

The test results for comparing the efficiency of the different
reduction methods are presented in Fig. 2. In this figure, the
X axis shows the length of the pattern window, and the Y axis
denotes the achieved classification accuracy. The leftmost bar
is for the Adjusted reduction method, the second is for the
Average aggregator, the next is for the Bitmap-based reduction
method, and the last one is for the baseline method without
reduction. Based on the performed tests, the winner approach
is the Average aggregation method.

Another way for reducing memory usage is to apply a
different representation format. We have tested two additional
variants, namely

o A: Neural network to detect whether the word contains
repetition or not. In this case, the output vector contains
only two dimensions.

o B: Neural network to detect the start (or end) position of
the repeat section, where the size of the input vector is
of linear cost.

Based on the performed tests, we can say that the CNN
method significantly dominates the other variants in accuracy
parameters. The test results are summarized in Table III.

SPECIAL ISSUE ON APPLIED INFORMATICS

17

Special Issue

Application of Neural Network Tools
in Process Mining

of the Infocommunication Journal

(11)el 100%0R (12)e2 100%0R (2
agent: a agent: a agent: Not

(41)e3 100%CR (42)e5
agent: b agent: b

Fig. 3. Sample workflow schema B.

TABLE III
EFFICIENCY COMPARISON OF THE EXAMINED NN ARCHITECTURES
USING ALTERNATIVE REPRESENTATION FORMATS

Task | Method | Time [s] | V accuracy | T accuracy
A MLP 17 100% 87%
A CNN 12 100% 100%
B MLP 30 100% 6%
B CNN 50 100% 100%

V. IMPLEMENTATION AND TESTS

In the tested model, three actors are defined: a,b and c¢. The
list of available events, which are given by their IDs, actors
and the related execution time intervals are as follows:

el(a),(1,2) e2(a),(3,5) e3(b),(1,4) ed(c),(2,3)
eb(b), (4,5) e4(b), (5,6) eb6(c),(1,3) eT(c),(2,4)
€9(c), (1,4) el0(a),(3,4) ell(a),(2,4)

The graph structure of the schema is presented in Fig. 3.
For the training phase, 1000 cases were generated for schema
B.

In the first processing phase, the engine determined the
occurrences of synchronization events. The module then pro-
cessed the traces in the log, and generated a list of synchro-
nization events for each trace.

Based on the generated synchronization event sequences,
as input training set, the constructed neural network model M
will predict the following synchronization sequence:

["EMPTY’, ’C2', ’'C3’, "EOS']

In the next phase, the engine predicts the agent-level sequences
in the following form:

[fel’,
["e3’,
[fed’,
["el0",

re2’, "EOS'’]
"e5’, ’Te4d’,
"e9’, "EOS’]
"ell’, "EOS’]

"EOS’]

O Q0O o

After performing more trace generation experiments, the ac-
tion list of agent ¢ may vary. A typical output is the action
chain containing actions ’e6’ and ’e7’:

Ie7I,
le7I’
’e7’,

reh’ ,
a6’ ,
"EOS’]

re71,
Ie7I,

c : ['eo’,
Ie6I,
Ie6I,

Ie6I,
le6I’

Ie77,
le7I,

During the prediction, the neural network outputs the predic-
tion weights for the different event categories. The proposed
measure weight ratio expresses the relation of these weights,

18

Fig. 4. Generated schema graph for single selection case.

Fig. 5. Generated schema graph for multi-selection case.

the higher is this ratio the better is the prediction quality. If
we consider the weight ratio between the best and the second
best event sequences for agent ¢, we can see that most of the
steps are unambiguous, except for the starting event which
has a very low weight ratio. Namely, the higher the ratio, the
stronger is the unambiguity. The next list shows these ratio
values at the different steps for the best event sequence of
agent c:

y e4 , weight ratio: 1.464207
y €9 , weight ratio: 234.37918
y EOS , weight ratio: 237.77512

Considering the resulting graph for a single selection case
(only the best candidate is selected as next event), we can
see that it contains a parallel execution section, where both
agents b and c are active (Fig. 4). If we use a multi-selection
prediction approach, where alternative routes are allowed, we
get the graph presented in Fig. 5.

If we compare these graph results with the standard induc-
tive miner approaches, we see that the proposed variant can
manage more functionality and provides a more accurate result
for the tested example than the standard solution (Fig. 6).

SPECIAL ISSUE ON APPLIED INFORMATICS

Special Issue

of the Infocommunication Journal

Fig. 6. Schema generated by the Inductive Miner.

VI. CONCLUSION

Beside the standard automaton oriented approaches, the
neural network architectures are good alternatives for auto-
mated process schema mining. The analysis presented in this
paper shows that the proposed neural network architectures
are suitable to perform the same schema induction task as the
standard graph-based tools. The proposed methods build up
the correct schema graphs. The key benefit of the proposed
NN approach is that it can discover also parallel sequences
related to different agents in the schema graph, unlike the usual
schema induction methods. The further research is aimed at
optimisation of the neural network architecture for larger graph
schema.

REFERENCES

[11 W. Van der Aalst, Process mining: Data science in action. Springer:
Heidelberg, 2016. https://doi.org/10.1007/978-3-662-49851-4

[2] J.Liu, S. Yan, Y. Wang, and J. Ren, “Incremental mining algorithm of

sequential patterns based on sequence tree,” Advances in Intelligent

Systems, pp. 61-67,2012. por: 10.1007/978-3-642-27869-3_8

T. Truong-Chi and P. Fournier-Viger, “High-utility pattern mining:

Theory, algorithms and applications,” A Survey of High Utility

Sequential Pattern Mining, pp. 97-129, 2019.

por: 10.1007/978-3-030-04921-8

[4] X.Liu, L.Zheng, W. Zhang, J. Zhou, S. Cao, and S. Yu, “An evolutive
frequent pattern tree-based incremental knowledge discovery
algorithm,” ACM Transactions on Management Information Systems,
pp- 1-20,2022. por: 10.1145/3495213

[5] Y. Lu, Q. Chen, and S. Poon, “A novel approach to discover switch
behaviours in process mining,” International Conference on Process
Mining, pp. 57-68,2021. por: 10.1007/978-3-030-72693-5_5

[6] H. Weytjens and J. D. Weerdt, “Process outcome prediction: CNN
vs. LSTM (with attention),” International Conference on Business
Process Management, pp. 321-333,2020.
por: 10.1007/978-3-030-66498-5_24

[7] T. Shunin, N. Zubkova, and S. Shershakov, “Neural approach to the
discovery problem in process mining,” in Analysis of Images, Social
Networks and Texts, 07 2018, pp. 261-273.
por: 10.1007/978-3-030-11027-7_25

[8] M. Kirchmer and P. Franz, “Value-driven robotic process automation
(RPA),” Business Modeling and Software Design, vol. 356, pp. 31-46,
2019. por: 10.1007/978-3-030-24854-3_3

[9] W. Van der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P.
Barros, “Workflow patterns,” Distributed and Parallel Databases,
vol. 14, no. 1, pp. 5-51,2003. por: 10.1023/A:1022883727209

[3

—

Application of Neural Network Tools
in Process Mining

[10] N. Russell, A. H. M. Hofstede, W. van der Aalst, and N. Mulyar,
“Workflow control-flow patters — A Revised View,” Business, vol. 2,
pp. 06-22,2006. por: 10.1.1.93.6974

[11] N.Russell, W. van der Aalst, and A. Ter Hofstede, Workflow patterns :
the definitive guide. MIT Press, 2016.
poI: 10.7551/mitpress/8085.001.0001

[12] B.F van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M.
Weijters, and W. M. P. van der Aalst, “The prom framework: A new era
in process mining tool support,” in Applications and Theory of Petri
Nets 2005, G. Ciardo and P. Darondeau, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 444-454. por: 10.1007/11494744_25

[13] A. Berti, S. J. van Zelst, and W. van der Aalst, “Process mining for
Python (pmdpy): Bridging the gap between process-and data science,”
in Proceedings of the ICPM Demo Track 2019, co-located with 1st
International Conference on Process Mining (ICPM 2019), 2019.
poI: 10.48550/arXiv.1905.06169

[14] K. M. Hanga, Y. Kovalchuk, and M. M. Gaber, “A graph-based approach to
interpreting recurrent neural networks in process mining,” /EEE Access,
vol. 8, pp. 172 923-172 938, 2020. por: 10.1109/ACCESS.2020.3025999

[15] E. Obodoekwe, X. Fang, and K. Lu, “Convolutional neural networks in
process mining and data analytics for prediction accuracy,” Electronics,
vol. 11, no. 14, 2022. por: 10.3390/electronics11142128

[16] D. Sommers, V. Menkovski, and D. Fahland, “Process discovery using
graph neural networks,” in /[EEE International Conference on Process
Mining (ICPM), 2021. por: 10.48550/arXiv.2109.05835

[17] J. Abonyi, R. Kdroly, and G. Dérgo, “Event-tree based sequence mining
using Istm deep-learning model,” Complexity, vol. 2021, p. 24, 2021.
por: 10.1155/2021/7887159

Prof. Laszlé Koviacs from University of Miskolc, De-
partment of Information Technology is a specialist in
knowledge modeling and data mining. He obtained a
PhD degree in technical sciences from Uni. Miskolc.
Main teaching areas: DB Systems, Data Mining and
Ontology Management. His research interests involve
soft computing, concept set management, heuristic op-
timizations, ontology modeling, stat. grammar induc-
tion and rough set models. He has about 250 publica-
tions with 450 references. He is the Head of the Dept.
and leader of the Research Group on Machine Learning at Uni. Miskolc.

Erika Baksané Varga is an associate professor at the
Institute of Informatics, University of Miskolc, Hun-
gary. She received a Ph.D. degree in Computer Sci-
ence from the University of Miskolc in 2011. She has
academic experience in teaching procedural and object
oriented programming, and data analysis and data min-
ing. Her research interests include teaching methodolo-
gies of programming, data and process modeling, data
analysis and data mining, ontological modeling, NLP
and text mining.

Péter Mileff is a senior SW developer and an associate
professor at the Institute of Informatics, University of
Miskolc, Hungary. He obtained his Ph.D. in Computer
Science in 2008. He has more than 10 years of teaching
experience in software development and the building
and design of software systems. He has professional and
research experiences in computer visualization and game
development; and 15 years of industrial experience in the
design and development of digital payment systems and
platform-independent technologies.

SPECIAL ISSUE ON APPLIED INFORMATICS

19

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-642-27869-3_8
https://doi.org/10.1007/978-3-030-04921-8
https://doi.org/10.1145/3495213
https://doi.org/10.1007/978-3-030-72693-5_5
https://doi.org/10.1007/978-3-030-66498-5_24
https://doi.org/10.1007/978-3-030-11027-7_25
https://doi.org/10.1007/978-3-030-24854-3_3
https://doi.org/10.1023/A:1022883727209
https://doi.org/10.1.1.93.6974
https://doi.org/10.7551/mitpress/8085.001.0001
https://doi.org/10.1007/11494744_25
https://doi.org/10.48550/arXiv.1905.06169
https://doi.org/10.1109/ACCESS.2020.3025999
https://doi.org/10.3390/electronics11142128
https://doi.org/10.48550/arXiv.2109.05835
https://doi.org/10.1155/2021/7887159

