

Production Systems and Information Engineering

Volume 11 (3), pp. 10-26 10
doi: https://doi.org/10.32968/psaie.2023.3.2

COLLISION DETECTION IN 2D GAMES

PÉTER MILEFF

University of Miskolc, Hungary

Institute of Information Technology
mileff@iit.uni-miskolc.hu

Abstract. Collision detection is a fundamental aspect of game development,
as it enables game objects to interact with each other in a realistic and
intuitive way. In 2D games, collision detection is typically done by checking
for overlaps between the bounding boxes or shapes of game objects.
However, as games have become more complex, more sophisticated
algorithms and techniques have been developed. This publication provides an
overview of the various algorithms and techniques used for 2D collision
detection in games. We discuss the pros and cons of different approaches,
such as the Axis-Aligned Bounding Box (AABB) approach, the Oriented
Bounding Box, the Separating Axis Theorem (SAT) and other useful
techniques. We also discuss the challenges and limitations of these
approaches and provide guidance on how to choose the appropriate approach
based on specific needs and constraints.

Keywords: Collision detection, AABB, Separating Axis Theorem

1. Introduction

Modern game development is a dynamic and rapidly-evolving field that involves

creating cutting-edge interactive experiences for players across a wide range of platforms

and devices. With advances in hardware and software technology, game developers now

have access to powerful tools and engines that allow them to create highly-realistic

graphics, immersive soundscapes, and sophisticated gameplay mechanics. One major

trend in modern game development is the rise of cross-platform development, which

allows games to be played on multiple devices and platforms, including consoles, PCs,

and mobile devices. This has opened up new opportunities for game developers to reach

wider audiences and create innovative gaming experiences that can be enjoyed by

players across a range of devices.

One important aspect of game development is collision detection, which is the process of

detecting when two or more objects in a game world come into contact or intersect with

each other. Collision detection is essential for creating realistic and immersive gaming

experiences. Whether we are creating a first-person shooter, a racing game, a platformer

or a puzzle game, collision detection is used to ensure that the game world behaves as

expected and that players can interact with objects and characters in a meaningful way.

Collision detection in modern game development is a complex process that requires a

deep understanding of both the physical properties of objects in the game world and the

computational techniques used to simulate their behavior. There are several different

approaches to collision detection, each with its own strengths and weaknesses.

The central topic and aim of this article is to provide an overview of the most important

https://doi.org/10.32968/psaie.2023.3.2
mailto:kovacs@iit.uni-miskolc.hu

COLLISION DETECTION IN 2D GAMES 11

techniques that are essential for creating a two-dimensional game. The algorithms

presented from a practical point of view can help to efficiently implement collision

detection.

2. Collision detection

The interaction between objects is an essential element of computer games,

meaning the examination of when two objects collide or make contact with each

other. This principle applies not only to the world of games but also when, for

example, we place a mouse over a menu item. Of course, in computer games, the

dominant role is played by the proper detection of interactions, as the gaming

experience is shaped by these interactions. For example, in an action game, the

bullet hits the enemy, or the hero cannot walk through the maze wall.

In a very simplified way, the essence of collision detection is to somehow

algorithmically detect whether the two-dimensional images of two or more objects

overlap each other. To be more precise, the problem is a bit more complicated than

that: it means determining whether one object has a pixel that overlaps with a pixel

of another object.

During the development of a game, there will certainly come a crucial moment

when we have to decide what collision detection system or model to use. The

decision is not always easy and straightforward. There are types of games where

interactions can be very complex, and often not all problems are visible in advance.

Nevertheless, the model applied is important, as it greatly affects both the

development time and the gaming experience itself. Essentially, collision detection

systems can be divided into two groups:

● Pixel-based collision detection: examines the overlap of the pixels of the

images belonging to the objects that collide. It can detect a precise, real

collision.

● Bounding object-based collision detection: The overlapping of objects is

not determined at the pixel level, but at the level of some enclosing

object(s) (box, circle, polygon, etc.). It usually doesn't allow precise

collision.

Pixel-based collision detection can be computationally intensive and complicated,

depending on the complexity of the texture associated with the object. For this

reason, where possible, game developers try to enclose the moved elements in

some object(s) and perform the collision detection on this. Usually, the choice falls

on the circle or box, because they are very simple elements. The subsequent

calculations with them (collision test, rotation, translation, etc.) are not nearly as

computationally intensive as, for example, in the case of a bounding polygon or the

pixel-level test. Although they do not approximate the object well, they are still

effective and can be used well in practice.

In the following, this paper focuses on bounding object based collision solutions. It

presents the most important procedures necessary for this to be achieved.

12 P. Mileff

3. Bounding circle collision

3.1. Bounding circle collision

The bounding circle (or possibly ellipse) based collision detection is the simplest

possible known solution for deciding whether two objects overlap. In this case, all

objects are enclosed in a (somewhat appropriate) circle. The center and radius of

the circle are usually determined in such a way as to make the collision test as

efficient as possible.

If the circle is too large or does not fit well on the object, there will be false

collisions at the edges of the object. And if it is too small, the object may even

partially hang into the other object, for example into the wall. Of course, it is also

possible to calculate the circle even automatically. In this case, after loading the

object’s representing graphic element (image), its width and height values can

provide a clue. However, automation is not suitable in many cases, because the

goal of defining the bounding circle is not always that all pixels of the object fall

within it. The figure below shows this:

Figure 1. Bounding circle around the game object. It

can be seen that in the case of the rocket on the right,

the application of the bounding circle is no longer ideal

The question arises as to how it is worthwhile to specify the bounding circles.

Usually by hand, by creating an additional description file for the different game

objects, which contains not only the image elements of the animation phases, but

also the corresponding bounding circles.

3.2. Collision detection

Collision detection is the easiest for this type of bounding object. This is why many

developers, especially beginner game developers, like to use it. Since the two

objects are regular, we can speak of a collision when the bounding circles overlap

each other, so we must examine this fact. And two bounding circles only overlap

when the distance between the centers of the circles is less than the sum of the

radii:

COLLISION DETECTION IN 2D GAMES 13

Figure 2. Collision test with bounding

circles

 Collision detection pseudo code:

bool checkCollision(center1, r1, center2, r2) {

// Calculate the distance of the centers

distanceX = center1.X – center2.X

distanceY = center1.Y – center2.Y

// Calculate distance based on Pythagorean theorem

d = sqrt((distanceX * distanceX) + (distanceY * distanceY))

// Check collision

if (d <= (r1 + r2))

 return true; // Collision

return false; // No collision

}

The main virtue of the solution - as can be clearly seen from the sample code - is

that it is extremely simple and requires little resources from a computational point

of view. It is mainly recommended in cases where we have objects that fit well

within the circle.

4. Bounding box based collision

Another simplest, but still most popular form of collision detection is the bounding

box-based solution (rectangular collision detection). In this case, the object is

surrounded by a "box", i.e. a square or rectangle (Figure 3). Its popularity stems, on

the one hand, from the fact that its implementation is also simple, and on the other

hand, due to its adaptability, non-circular objects involved in the collision can be

relatively well handled with it.

Figure 3. Best fitting bounding box. There are apparently no

empty pixels between the outermost points of the shape and

the sides of the box

14 P. Mileff

In the simplest case, the bounding box is determined by the object's two-

dimensional image and texture. This can be calculated very simply when loading,

since the width and height of the texture image will be in the case that the Sprite is

drawn correctly and does not contain unnecessary transparent pixels on the edges.

When defining the box, they usually try to establish or specify the best fitting

rectangle (Best fit rectangle, minimum bounding rectangle (MBR)). The reason for

this is to reduce/avoid false collisions. Just think about the fact that if we increased

the size of the box along the x axis in the case of the above object, it would result

in us sensing a collision even when we have not yet reached the wall.

The following code shows a class description for a possible bounding box

implementation:

class CboundingBox2D {

 CVector2 minpoint; // Box minpoint

 CVector2 maxpoint; // Box maxpoint

 CVector2 bbPoints[4]; // bounding box points

 float boxHalfWidth; // box half width

 float boxHalfHeight; // box half height

 matrix4x4f tMatrix; // Transformation matrix

 bool mEnabled; // BB is enabled or not

public:

...

};

In two dimensions, a bounding box can be specified with its 4 corner points

(bbPoints[4]), but in order to speed up later calculations, it is advisable to store the

minimum (minpoint) and maximum point (maxpoint) relative to the screen

coordinate system. In the figure above, this means the lower left and upper right

points. On top of all that, the calculations will require a matrix class that performs

the transformation, and from the point of view of acceleration, it is worth storing

half the width and height of the box.

4.1. Box-Box collision detection

The algorithm for determining collisions is very simple to formulate: when the

bounding boxes of two objects overlap, the objects collide. The following figure

illustrates this:

Figure 4. AABB collision

COLLISION DETECTION IN 2D GAMES 15

The computational requirements of overlapping two boxes are not high. However,

if there are many objects on the screen and we do not want a serious part of the

CPU time to be spent on their calculation. From an implementation point of view it

is better to examine the case where there are no collisions. This results in a faster

solution:

boolean CheckBoxOverLap(CBoundingBox2D box1, CboundingBox2D box2)

{

if (box1.maxpoint.x < box2.minpoint.x ||

 box1.minpoint.x > box2.maxpoint.x){

 return false;

}

if (box1.maxpoint.y < box2.minpoint.y ||

 box1.minPoint.y > box2.maxpoint.y){

 return false;

}

return true;

}

The error of the bounding box-based solution should also be mentioned. If objects

that are "holey" collide, and only the holey parts overlap each other, there is no

actual collision, as shown in the image above. Although they do not approximate

the object well, they are still effective and can be used well in practice. Despite the

error, this solution was the most widespread in the field of game development. The

reason for this is its simplicity and reduced computational requirements, as well as

the fact that in the case of most games, during fast movement, we don't notice that

"object didn't even collide with the pixel of the object".

Although we stated above that it is advisable to define the narrowest box, in many

cases this is unfortunately not enough for realism. A typical example is platform

games, where the character is constantly pulled by gravity and does not fall until

his box collides with a box on the ground. It is not advisable to match the box to

the figure's texture in every phase, otherwise the object may not fall when it should.

The following image is from a classic game where the character's box is exactly the

size of its image, allowing it to stand up to 1 pixel tall.

Figure 5. Giana Sisters - 1987. The protagonist was able to

stand stably on the ground when the outermost pixel of his

containment box had already collided. In the game, however,

this had to be used in many ways.

In order to eliminate the error, a very simple but easily implementable solution was

developed in practice. The size of the bounding box is not calculated pixel-by-pixel

exactly for the image of the object, but its size is reduced to some extent. The

figure below demonstrates this well:

16 P. Mileff

Figure 6. Reduced-sized bounding box allows

more realistic collision detection

The size reduction can be done automatically with a custom algorithm or even

manually. As already mentioned at the bounding circle, a separate description file

is often used, in which it is possible to manually specify the size of each box.

4.2. Applying multiple bounding boxes

If we do not use objects in the graphic application that can be properly covered

with a rectangle, then the normal AABB does not provide a satisfactory solution.

Empty areas at the edges can lead to frequent false collisions, which can greatly

degrade the gaming experience. A better solution to bounding boxes is to use not

one, but even several bounding objects to cover the real area involved in the

collision. The figure below shows an example of this:

Figure 7. Using multiple bounding boxes greatly improves

the efficiency of collision detection

In practice, this approach can be useful in many cases, and it can be important from

several aspects. Its main purpose is to use it to make collision detection more

precise. In cases when only one box alone is not enough to achieve sufficiently

accurate collisions, the result can usually be improved with applying more boxes.

bool CheckCollision(CGameObject2D object1, CGameObject2D object2) {

 if (object1.isVisible() == false || object2.isVisible() == false)

 return false;

 vector <CBoundingBox2D> object1BBs = object1.getBoundingBoxes();

 vector <CBoundingBox2D> object2BBs = object2.getBoundingBoxes();

 for (int i = 0; i < object1BBs.size(); i++) {

 CBoundingBox2D object1Box = object1BBs[i];

 // Loop all the bounding boxes

 for (int j = 0; j < object2.size(); j++) {

 CBoundingBox2D object2Box =object2[j];

 bool result = CheckBoxOverLap(currentObjBox, objectCurrentObjBox);

 // Check overlapping case

 if (result == true) {

 return true;

 }

 }

COLLISION DETECTION IN 2D GAMES 17

 }

 return false;

}

4.3. Moving a bounding box

It is important to say a few words about the practical implementation of bounding

boxes. In practice, the box-based collision test means that behind a game object we

have an "invisible" box, which is constantly moved according to the translation of

the game object. From a practical point of view, the development of any computer

game requires the ability to display the bounding boxes at certain times during the

development of the game. There are many practical reasons for this. Most of all, it

offers developers a kind of debugging option when the game's engine is made in-

house, rather than being used as an external component.

However, there is a small gap between moving the boxes and displaying them.

While the rendering is done by the GPU according to the world coordinates of the

boxes and the exact position is calculated in the vertex shader, any other

calculation of the boxes (e.g. overlap test) is done on the CPU side. The collision

test will only be accurate and functional if the position of the box drawn by the

GPU matches the calculations performed on the CPU side.

When moving the object (translate, rotate, scale), the coordinate of the box must

also be transformed. From the point of view of practical implementation, it is worth

noting that two versions of an object's box should be stored: the original and the

transformed version. It is worth keeping the original copy, because during any

movement it is worth taking it as a basis and calculating the transformed version

according to the movement parameters. And it is advisable to store the transformed

version because you may need this box several times within a game cycle.

In case of translation, no serious problem occurs, since the box moves while

maintaining its orientation and size. Its calculation is simple: we transform the

coordinates of the original AABB to the new position. The case of the scaling

transformation is also similar to the translating, with the difference that the center

of the transformation must be taken into account here. In the case of the game

engine, an important decision is where the origin of the object's local coordinate

system [REF] should be. In many cases, this is the center of the object or one of the

corner points of the object. This decision usually affects the box scale calculation

logic. However, in the case of rotation, we encounter other difficulties.

Figure 8. Translation and scaling of a bounding box

4.3.1. Rotate a bounding box

Based on what has been presented so far, we can consider it a natural way to rotate

the boxes if the corner points of the box are rotated in the right direction, thus

obtaining the rotated object. In practice, however, two approaches have emerged

18 P. Mileff

regarding the orientation of the box:

● Axis-Aligned Bounding Boxes (AABB): a rectangle with all edges

parallel to a coordinate axis.

● Oriented Bounding Box (OBB): a rectangle that rotates with the rotation

of the object.

The following figures illustrate the difference between the two solutions:

Figure 9. Difference between AABB and OBB

While OBB seems to be the natural solution for anyone, in practice AABB is used

instead. The reason for this is that in the case of OBB, the overlap of two arbitrarily

rotated boxes must be detected, which can be described with a mathematically

more complicated algorithm. The implementation of AABB, the calculation of box

overlap (collision test), the visibility test with the screen box (is it visible on the

screen or not) is significantly simpler than with OBB. However, the disadvantage

of the rotated AABB is obvious: during the rotation of the box, its original size

changes, and thus the effectiveness of the collision detection can deteriorate to a

large extent.

In the following, the procedure for rotating the AABB is presented. We will

observe why the size of the box changes and how we get the box parallel to the

coordinate axes again after rotation.

4.3.2. AABB rotation in practice

The rotation of an AABB box consists of three-steps:

1. Transforming the four points of a box according to the rotation angle

2. From the rotated points, we search the minimum and maximum points, i.e.

the boundaries of the new box

3. Based on these points, we create a new box parallel to the coordinate axes

In the following, we present how the rotation of the AABB takes place in practice.

During the solution, we need to rotate the 4 points of the box, and then determine

AABB again based on the rotated points. The example algorithm rotates the box

along the x-axis, its essence is briefly as follows:

// loop all the 4 points

for (unsigned int i = 0; i < AABB_POINTS; i++){

// setup points as a vector

CVector2 point(bbPoints[i].x,bbPoints[i].y);

// rotate BB vector

m_TransformationMatrix.rotate_x(&point, angle);

bbPoints[i].x = point.x;

bbPoints[i].y = point.y;

}

After that, the bounding box must be recreated to meet the AABB's requirements

again. This is done with two functions:

// Search min and max points

COLLISION DETECTION IN 2D GAMES 19

searchMinMax();

// setup AABB box

setUpBBPoints();

The searchMinMax() function searches for the minimum and maximum points

among the rotated points based on the x,y coordinates. After that, the

setUpBBPoints() function determines the 4 new points of the box:

void setUpBBPoints()

{

 bbPoints[0].x = minpoint.x;

 bbPoints[0].y = minpoint.y;

 bbPoints[1].x = maxpoint.x;

 bbPoints[1].y = minpoint.y;

 bbPoints[2].x = maxpoint.x;

 bbPoints[2].y = maxpoint.y;

 bbPoints[3].x = minpoint.x;

 bbPoints[3].y = maxpoint.y;

}

It is important to note that the consequence of rotation is a change in the size of the

box. The dashed line in Figure 9. indicates the "covered area" of the original object.

Since the size of the box changed because of the rotation is in many cases no

longer ideal for detecting collisions, therefore this type of rotation is not used in all

cases. Perhaps the "error" can be eliminated if the size of the rotated box is reduced

to some extent. In certain games, however, developers choose a different but

simple solution. All rotated images of the game object (even up to 360 pieces) are

created with an image editor and stored as a separate image. Thus, each such

"phase" can have its own bounding object, which does not suffer from the change

in the size of the box that occurred during the previous rotation. And during the

gameplay, the image corresponding to the current rotation angle is displayed.

Figure 10. The rotated phases of the game object

4.4. Bounding circle and box collision test

However, we must not forget about a case that also occurs in practice when

different types of bounding objects collide. For example, in a typical breakout

game, the ball is covered by a bounding circle and the bricks by a bounding box.

Collision detection in this case will be a little more complicated than before. The

logic of the algorithm is as follows: The closest point (P) to the circle on the

bounding box must be found. If the distance between the point and the center of the

circle is smaller than the radius of the circle, then a collision has occurred.

20 P. Mileff

Figure 11. Geometric illustration of a Circle - AABB collision

The first step is to determine the distance vector (D) between the center of the

circle (C) and the center of the box (B). This vector is then clamped according to

the dimensions of the half of the box. Half of the box is the distance between the

center of the box and the edges. The resulting point after clamping is always

located somewhere on one edge of the box.

The clamp operation means that a given value is always adjusted to a set of value

ranges. We can interpret it as follows:

float clamp(float value, float minValue, float maxValue) {

return max(minValue, min(maxValue, value));

}

The point P after cutting is the point of AABB that is closest to the circle. To

determine the collision, all we have to do is calculate the distance between the

center of the circle (C) and P. For this we need the vector D, which is the difference

between the vectors C and P. The length of vector D will give the distance. If this

value is smaller than the radius of the circle, then there was a collision.

Figure 12. Geometric illustration of a Circle - AABB collision

The pseudo code of the collision detection:

checkAABB_Circle_collision(AABB, Circle)

// Distance of the two center

Vector2 d_vector = Circle.center - AABB.center;

Vector2 aabb_half_extents(AABB.sizeX / 2.0, AABB.sizeY / 2.0);

float clampedX = clamp(d_vector.x, -aabb_half_extents.x,

aabb_half_extents.x);

float clampedY = clamp(d_vector.y, -aabb_half_extents.y,

aabb_half_extents.y);

Vector2 closestPoint = AABB.center + Vector2(clampedX,clampedY);

Vector2 new_d_vector = closestPoint - Circle.center;

COLLISION DETECTION IN 2D GAMES 21

// Calculate the distance

diff = sqrt((new_d_vector.x * new_d_vector.x) + (new_d_vector.y *

new_d_vector.y))

if (diff <= (Circle.radius)

 return true; // Hit

return false; // No hit

}

5. Bounding polygon

In practice, of course, we can work with objects for which none of the solutions

described so far provide adequate results. If even more accurate collision detection

is required, it is advisable to use the bounding polygon approach. The bounding

polygon is a convex or concave polygon consisting of arbitrary points, the purpose

of which is to surround the game object with the best possible shape. The collision

test is performed on this polygon.

Figure 13. Application of a bounding polygon (Spine animation tool [14])

The polygon-based approach can effectively take the shape of the object.

Nowadays, more and more game engines are starting to support this approach.

Usually, a separate editing interface is provided for creating and modifying the

polygon in the editor of the game engine (e.g. Unity, Cocos Creator).

Detecting the collision of two polygons is a more complex task. Several approaches

are prevalent in the literature. One known solution is when the polygon is split into

a set of triangles, and then the required type of test is performed on this set. The

type of investigation may depend on the type of objects involved in the collision. If

two polygons collide, we speak of a polygon-polygon collision test. Here, we can

even apply triangle-triangle collision detection, or we can check whether a point of

the given object's polygon is included in each triangle of the other object. In the

following, we present a solution that is preferred in practice.

5.1. Separating Axis Theorem

The Separating Axis Theorem, or SAT, is a technique used to establish whether

two convex shapes are intersecting. It can also be applied to identify the minimum

penetration vector, a useful feature for physics simulation and other applications.

This fast and versatile algorithm eliminates the need for collision detection code for

each pair of shape types, ultimately reducing the amount of code needed and easing

maintenance efforts.

SAT states that two convex shapes are not intersecting if and only if there exists at

least one axis where the orthogonal projections of the shapes on this axis do not

22 P. Mileff

intersect.

Figure 14. Operation of Separating Axis Theorem

So, if we can draw a line between two shapes without touching either one, they do

not overlap. In a drawing, this is quite easy to do. In practice we can accomplish

this by projecting the shapes onto an axis and checking for overlap. If we can find

one axis where the projections don’t overlap, then we can say that the two shapes

don’t collide. The projection of a two-dimensional object is a one dimensional

“shadow”. A line where the projections (shadows) of the shapes do not overlap is

called a separation axis.

From a programming point of view, it would be too intensive to check every

possible angle. Due to the nature of the polygons, there are only a few key angles

we need to check. When dealing with 2-dimensional polygons, it is only necessary

to examine the axes that are perpendicular to the edges of the shape. If the

projections don’t overlap in at least one of them, the shapes do not overlap. The

above image shows only two of those axes, but that particular case has 9 of them

(one for each edge).

Figure 15. Object’s side (edge) testing

The logic of the algorithm can be summarized as follows:

 For each edge of both polygons:

 Find the perpendicular axis to the current edge.

 Loop through every point on the first polygon and project it onto the axis.

 (Keep track of the highest and lowest values found for this polygon).

 Do the same for the second polygon

 Check the projections for overlap.

 If the polygons don't intersect exit the loop

5.1.1. The projection

COLLISION DETECTION IN 2D GAMES 23

Projection can be accomplished by the following way: consider each edge as vector

A, and the projection axis as vector B, as in the following figure [13]:

Figure 16. Object’s side (edge) testing

There are two formula that can help to interpret this figure: the trigonometric

definition of cosine and the geometric definition of the cross-product:

 (1)

 (2)

These equations can be combined to get the projection formula:

Thus, given two vectors - one for the axis (which needs to be a unit vector), and

one to a corner of our collision polygon, we can project the corner onto the axis. If

we do this for all corners, we can find the minimum and maximum projection from

the polygon [13].

A helper method for finding min and max values:

private MinMax FindMaxMinProjection(BoundingPolygon poly, Vector2 axis)

{

 var projection = Dot(poly.Corners[0], axis);

 var min, max = projection;

 for (var i = 1; i < poly.Corners.length; i++)

 {

 projection = Dot(poly.Corners[i], axis);

 max = max > projection ? max : projection;

 min = min < projection ? min : projection;

 }

 return new MinMax(min, max);

}

If we determine the minimum and maximum projection for both shapes, we can see

if they overlap or not.

24 P. Mileff

Figure 17. Two Convex Shapes Intersection

testing with many sides check [15]

If there is no overlap, then we have found a separating axis, and can terminate the

search. Geometrically, it can be shown that the bare minimum we need to test is an

axis parallel to each edge normal of the polygon - that is, an axis at a right angle to

the polygon’s edge. Each edge has two normal, a left and right:

Figure 18. Edge normal

An edge normal is a unit vector perpendicular to the edge vector (a vector along the

edge) in 2D. It can be calculated by swapping the x and y components and negating

one of them. One of these normal will face out of and the other will face in the

polygon depending on the order of the points (clockwise / counter-clockwise). Both

directions can work if we keep the direction. So, normal are calculated by iterating

over our points and creating vectors to represent each edge, then calculating a

perpendicular vector to that edge.

public struct BoundingPolygon {

 Vector2[] mCorners;

 Vector2 mCenter;

 Vector2[] mNormals;

 public BoundingPolygon(Vector2 _center, Vector2 _corners) {

 mCenter = _center;

 mCorners = _corners;

 var normals = new HashSet<Vector2>();

 var edge = Corners[mCorners.length - 1] - mCorners[0];

 var perp = new Vector2(edge.Y, -edge.X);

 perp.Normalize();

 normals.Add(perp);

COLLISION DETECTION IN 2D GAMES 25

 for (var i = 1; i < mCorners.length; i++) {

 edge = mCorners[i] - mCorners[i - 1];

 perp = new Vector2(edge.Y, -edge.X);

 perp.Normalize();

 normals.Add(perp);

 }

 mNormals = normals.ToArray();

 }

}

To detect a collision between two BoundingPolygons, we iterate over their

combined normals, generating the MinMax of each and testing it for an overlap.

Implemented sample code:

public bool Collides(BoundingPolygon p1, BoundingPolygon p2) {

 foreach(var normal in p1.mNormals){

 var mm1 = FindMaxMinProjection(p1, normal);

 var mm2 = FindMaxMinProjection(p2, normal);

 if (mm1.Max < mm2.Min || mm2.Max < mm1.Min) return false;

 }

 foreach (var normal in p2.mNormals) {

 var mm1 = FindMaxMinProjection(p1, normal);

 var mm2 = FindMaxMinProjection(p2, normal);

 if (mm1.Max < mm2.Min || mm2.Max < mm1.Min) return false;

 }

 return true;

}

SAT may test many axes for overlap, however, the first axis where the projections

are not overlapping, the algorithm can immediately exit, determining that the

shapes are not intersecting. Because of this early exit, SAT is ideal for applications

that have many objects but few collisions (games, simulations, etc.).

6. Conclusion

Collision detection is an integral part of today's computer visualization, be it a

game or any application where interaction is required. Although today's software is

more and more complex and works with more and more moving objects, collisions

implemented in the background are detected using well-known professional

solutions. Although the performance of hardware has increased a lot in recent

years, pixel-level collision detection still does not offer an effective alternative due

to its high computational demand, instead, algorithms based on bounding objects

dominate. These solutions have the error of false collision detection. Therefore, a

modern graphics engine usually implements several solutions to offer the

possibility of some level of combination of methods to achieve the right result.

This paper reviewed the most important approaches from a practical point of view.

Examining the advantages and disadvantages of the presented methods, they

provide an opportunity to design and create an effective collision system.

References

[1] Wil van der Aalst: Process Mining: Data Science in Action, Springer Berlin, Heidelberg,

Second Edition, 15 April 2016

[2] João M. P. Cardoso, José Gabriel F. Coutinho, Pedro C. Diniz: Embedded Computing for

High Performance, Efficient Mapping of Computations Using Customization, Code

Transformations and Compilation, pp. 17-56, 2017

[3] Charles Kelly: Programming 2D Games, A K Peters/CRC Press; 1st edition, 2012.

[4] Jason Gregory: Game Engine Architecture, A K Peters/CRC Press; 3rd edition, 2018.

26 P. Mileff

[5] MARÍN-LORA, C., CHOVER, M., REBOLLO, C., yREMOLAR, I.: A game development

environment to make 2D games, Communication Papers, Vol.9 – No18, pp. 7/23, 2020

[6] Tomas Akenine-Moller, Eric Haines, Naty Hoffman: Real-Time Rendering, 3rd Edition, A

K Peters/CRC Press; 2008.

[7] Lazaridis, L., Papatsimouli, M., Kollias, KF., Sarigiannidis, P., Fragulis, G.F.: Hitboxes: A

Survey About Collision Detection in Video Games. In: Fang, X. (eds) HCI in Games:

Experience Design and Game Mechanics. HCII 2021. Lecture Notes in Computer

Science(), vol 12789. Springer, Cham. https://doi.org/10.1007/978-3-030-77277-2_24,

2021.

[8] K. Guo and J. Xia: An Improved Algorithm of Collision Detection in 2D Grapple Games,

2010 Third International Symposium on Intelligent Information Technology and Security

Informatics, Jian, China, pp. 328-331, 2010, https://doi.org/10.1109/IITSI.2010.176 .

[9] Benjamin Rodrigue: Algorithmic and Architectural Gaming Design: Implementation and

Development, Chapter 10: Collision Detection in Video Games, DOI: 10.4018/978-1-4666-

1634-9.ch010, 2012.

[10] Thomas Schwarzl: 2D Game Collision Detection: An introduction to clashing geometry in

games, Createspace Independent Publishing Platform, 2012.

[11] Intro to Collision Detection: Collision Detection Basics, http://www.kilobolt.com/collision-

detection-basics, 2023.

[12] Learn OpenGL - Collision detection: http://learnopengl.com/#!In-Practice/2D-

Game/Collisions/Collision-detection, 2023

[13] Nathan Bean, Foundations of Game Programming, CIS 580 Textbook, Kansas State

University, 2021.

[14] EsotericsSoftware: Spine - 2D animation tool, http://esotericsoftware.com/, 2023

[15] SAT (Separating Axis Theorem), https://dyn4j.org/2010/01/sat/, 2023

https://doi.org/10.1007/978-3-030-77277-2_24
https://doi.org/10.1109/IITSI.2010.176
http://www.kilobolt.com/collision-detection-basics
http://www.kilobolt.com/collision-detection-basics
http://learnopengl.com/#!In-Practice/2D-Game/Collisions/Collision-detection
http://learnopengl.com/#!In-Practice/2D-Game/Collisions/Collision-detection
http://esotericsoftware.com/
https://dyn4j.org/2010/01/sat/

