

Production Systems and Information Engineering

Volume 11 (3), pp. 51�42
doi: 10.32968/psaie.2023.3.4

51

GAME LOOP: THE HEART OF THE GAME ENGINE

Péter Mileff

University of Miskolc, Hungary
Department of Information Engineering

mileff@iit.uni-miskolc.hu

[Received September 23, 2023 and accepted

]

Abstract. The world of gaming has come a long way since the days of
Pong and Space Invaders. Today, games are not only a form of entertain-
ment, but also a major industry that drives technological advancements
in multiple �elds. A game is a complex system, consisting of many com-
ponents. In this publication, we explore one of the most important part
of it, the concept of game loops and their role in game technology. A
game loop is a fundamental structure in game development that controls
the �ow of a game by constantly updating the game state and rendering
the graphics. This publication aims to provide a comprehensive under-
standing of various types of game loops and their importance in game
technology.

Keywords: Game loop, elapsed time, optimization

1. Introduction

Computer games have become an important form of entertainment and a major
part of popular culture. They o�er a wide range of bene�ts and have become
an important medium for storytelling, art, and education. Game technology is
a rapidly evolving �eld that encompasses the various tools and techniques used
to create and run video games. It includes everything from the programming
languages and development tools used to create the game, to the hardware
and software platforms that run it. With the increasing popularity of video
games and the growth of the gaming industry, game technology has become
an essential area of research and development.

Recent advances in game technology have led to a wide range of new possibil-
ities for game developers. From improved graphics and more realistic physics,
to new forms of player interaction and more immersive game worlds. The use

http://doi.org/10.32968/psaie.2023.3.4

52 P. Mileff

of machine learning, arti�cial intelligence and virtual and augmented reality,
have also opened up new opportunities for game developers to create more
realistic and engaging experiences for players. Multiplayer games have also be-
come increasingly popular, allowing players from all over the world to connect
and compete with one another in real time.

As the gaming industry continues to grow and evolve, game technology will play
an increasingly important role in shaping the future of the medium. Whether
it's through the development of new hardware and software platforms, or the
creation of new forms of player interaction and game design, game technology
will continue to drive innovation in the gaming industry. The aim of this
publication is to provide an overview about a very important component of a
game. We will discuss the importance of game loops, the types of game loops
and their advantages and disadvantags.

2. The Game loop

A game is a complex system that involves many interconnected components
working together to create a cohesive and enjoyable experience for the player.
To make this possible, developers create game engines.

A game engine is a complex system that serves as the foundation for the devel-
opment and operation of video games. It is a collection of software components,
tools, and libraries that provide developers with the necessary functionality to
create, test, and deploy games. The engine takes care of many of the technical
aspects of game development, such as rendering graphics, managing memory,
and handling input and output.

One of the key components of a game engine is the game loop, which controls
the �ow of the game in real-time. It is responsible for updating the game state,
handling player input, and rendering the game to the screen. The game loop
is typically implemented as an in�nite loop that runs continuously while the
game is in progress. It repeatedly processes input, updates game state, and
renders the game, providing the illusion of smooth animation and interaction.
The game loop is a fundamental concept in game development and is present
in nearly all video games. There are several types of game loops that are
commonly used in game development. Each type has its own advantages and
disadvantages, and the choice of which game loop to use depends on the speci�c
requirements of the game and the platform it is being developed for.

The most known type of loops:

1. The �xed-time step loop: This type of game loop runs at a �xed
interval, regardless of the amount of time that has passed since the last
update. This ensures that the game runs at the same speed on all devices

Game loop: the heart of the game engine 53

and reduces the chance of bugs caused by variable frame rates. But can
lead to issues if the game becomes too complex or if the player's device
is not powerful enough to handle the �xed frame rate.

2. The variable-time step loop: This type of game loop updates the
game state based on the amount of time that has passed since the last
update. This can help to ensure that the game runs smoothly on a wide
range of devices, but can lead to issues if the frame rate drops too low.

3. The semi-�xed time step loop: This type of game loop combines
elements of both �xed-time and variable-time step loops. It uses a �xed
time step for the game logic, but adjusts the rendering based on the
amount of time that has passed since the last update.

4. The event-based game loop: This type of game loop does not run
continuously, instead, it waits for speci�c events to occur (i.e. user input
or an update from the server) and then processes them. This approach
can be useful for games that require a lower update rate.

5. The Asynchronous game loop: This type of game loop allows the
game to update and render in an asynchronous fashion, meaning that the
game can continue to update and render even while waiting for input or
other resources to load. This approach can help to reduce the perceived
latency and make the game feel more responsive.

Each iteration of the game loop is known as a frame. Most real-time games
update several times per second: 30 and 60 are the two most common intervals.
If a game runs at 60 FPS (frames per second), this means that the game loop
completes 60 iterations every second.

2.1. Game loop parts

A game loop (or main loop) is typically an in�nite loop. A traditional game
loop can be broken up into the following parts:

1. Input handling: The game loop starts by handling any input from
the player, such as keyboard, mouse, or gamepad input. This step is
responsible for updating the game state based on the player's actions.

2. Updating game state: The game state is updated based on the input
received in the previous step, as well as any other factors that a�ect the
game, such as physics and AI. This step is responsible for updating the
position of characters, checking for collisions, and updating the game's
internal logic.

3. Rendering graphics: The game loop then renders the updated game
state to the screen. This step is responsible for drawing the characters,
objects, and environments to the screen.

54 P. Mileff

4. Wait/Sleep: After the graphics have been rendered, the game loop
waits for a speci�c amount of time, known as the frame rate, before
starting the next iteration. This helps to ensure that the game runs at
a consistent speed on di�erent devices.

The game loop then repeats these steps, over and over again, until the game
is closed. It's worth noting that the order of the steps can vary depending on
the game, and on the game engine used. For example, some game engines may
handle physics and collision detection on a separate thread, this is known as
multi-threading.

2.1.1. The problem with the game loop

From a programming point of view, the basic game loop can be described as
follows:

while game i s running

Process inputs

Update game world

Render world

Loop

By �lling the loop with appropriate content, our software will be functional.
Even before we think that the game loop is so simple, unfortunately, this
approach has a very important �aw. Due to the nature of the hardware and
the operating system, the loop will run at di�erent performance on di�erent
computers. The loop is performed faster on fast machines and slower on slow
machines [10]. As a result, the game speed will not be the same.

Consider the following movement as an example:

newpos (x , y) = currentpos (x , y) + v e l o c i t y (v)∗ d i r e c t i o n (x , y)

During movement, we perform the above operation for every object in every
frame in the game loop, so the movement will be continuous. However, for a
slow machine, the speed of movement will be slow, and for a fast computer, it
will be too fast. This was a phenomenon in very early games (especially in the
DOS era). So there is a need for better approaches that solve this problem.

3. Game loop types

Today's software therefore prefers a modi�ed version of the simple solution
outlined above, Time Based Movement, or some modi�ed version of this tech-
nique. The algorithm, as its name suggests, starts from the dimension of time.
Its basic idea is the following: if we are able to measure the time elapsed

Game loop: the heart of the game engine 55

between two executed game loops with a higher resolution clock (at least mil-
liseconds), we will obtain a factor that can be used to standardize the speed
between machines. This ensures that the objects move at the same speed even
on machines with di�erent speeds.

It's an important value for game loops and it is used in many calculations and
decisions. It's a common practice to use elapsed time to make the game updates
and animation independent from the frame rate and the device performance.
This ensures a consistent game experience on di�erent devices and platforms.
For example, if the game's physics are calculated using a �xed time step, the
elapsed time is used to determine how far objects should move and how they
should respond to forces and collisions.

Elapsed time is ideally a double-precision �oating-point number between 0.0
and 1.0. Since some time certainly passes between two consecutive frames,
we cannot get a negative value. If the value of the elapsed time is zero, then
the resolution of the timer used is not high enough. This means that we
need to use a more accurate operating system level clock device for the game
implementation that can also measure smaller changes.

In addition, elapsed time can be used to implement time-based e�ects, such as
slowing down or speeding up time in the game.

3.1. Fixed-time step loop

Fixed-time step loops are a type of game loop that provide a consistent and
predictable update rate for game logic. In this approach, the game loop op-
erates at a �xed interval, such as 60 times per second. This ensures that the
game logic and physics calculations are performed at a consistent rate, provid-
ing a stable and predictable gaming experience. For example we want to �x the
frames per second (FPS) in our game at 60. In practice, 60 FPS means that
approximately 16 milliseconds are available to execute the game loop (1000 ms
/ 60 = 16.6667 ms). The operation of the algorithm is as follows: if the game
loop is able to complete its task within this time interval, or even in less time,
then as the last step of the game loop it will wait for exactly the time required
to reach 16.6667 ms. As long as we can reliably do all of the game processing
and rendering in less than that time, we can run at a steady frame rate.

The following code shows a sample game loop working with this algorithm:

double MS_PER_UPDATE = 1.0 / 6 0 . 0 ;

while (true)

{

double s t a r t = getCurrentTime () ;

p roce s s Input () ;

56 P. Mileff

Figure 1. Fixed-time step loop

update () ;

render () ;

s l e e p (s t a r t + MS_PER_FRAME − getCurrentTime ()) ;

}

One of the advantages of using a �xed-time step loop is that it helps to elimi-
nate inconsistencies and �uctuations in the game's performance. This is partic-
ularly important for games that require precise timing and interactions, such
as physics-based games or fast-paced action games. A �xed-time step loop
ensures that all calculations are performed consistently, even if the frame rate
varies, ensuring a smooth and stable gaming experience.

Another advantage of �xed-time step loops is that they can make it easier
to develop and test the game logic. Developers can rely on a predictable
update rate, making it easier to debug and re�ne the game mechanics. This
can be especially useful for developing games that require precise timing or
interactions.

It's important to note that �xed-time step loops can also have some drawbacks.
If the �xed interval is too short, the game may become too demanding for
older or less powerful devices, leading to a lower frame rate and less enjoyable
experience. In addition, if the �xed interval is too long, the game may become
less responsive to player inputs, leading to a less enjoyable experience.

3.2. The variable-time step loop

A variable-time step game loop is a design pattern used in video game develop-
ment to control the update and render cycles of a game. This loop does not use
waiting as the last step of the loop. Instead it applies the elapsed time concept
as a measured factor to update the whole game logic. This method helps to
prevent "slow motion" or "fast forward" e�ects when the game is running on
slower or faster devices. The longer the frame takes, the bigger steps the game
takes. The logical steps of the loop can be described as follows:

double lastTime = getCurrentTime () ;

Game loop: the heart of the game engine 57

while (game_is_running)

{

double cur rent = getCurrentTime () ;

double elapsed_time = current − lastTime ;

proce s s Input () ;

update (elapsed_time) ;

render () ;

lastTime = current ;

}

In each frame, we determine how much real time passed since the last game
update (elapsed_time). When we update the game state, we use this time
factor to calculate every type of movement in the game.

Consider the same movement equation, but now extended with the new elapsed
time factor:

newpos (x , y) = currentpos (x , y) + elapsed_time∗ v e l o c i t y (v)∗ d i r e c t i o n (x , y)

Elapsed_time is used as a multiplying factor and therefore a zero value cannot
be used. On faster machines, this time will be smaller, because the loop is exe-
cuted faster due to the higher computational capacity, and on slower machines,
we get a higher number value. So, this factor can therefore compensate for the
speed di�erence between the computers. Consider the following example:

In the game, a projectile is shooted that travels across the screen. On slower
computers, the value of newpos(x,y) will be a higher number due to the bigger
elapsed_time. In practice, this means that the projectile jumps up to several
pixels. Of course, this is not a problem, because the dynamics of the game
cover it up, and it only becomes confusing for the human eye when the position
distance between the two phases of the projectile is too large. Whereas on a
fast computer, due to the small value of elapsed_time, the projectile moves
in smaller jumps, even smaller than a pixel (that's why coordinates are usually
stored in �oat type). In this case, the movement and gameplay will be very
smooth. Overall, the projectile travels the (almost) the same distance in both
cases, just not on the same scale.

The disadvantage of this type of game loop is that the game can be non-
deterministic. This means that on a new PC, the physics engine updates
the projectile's position 50 times, but on an old PC only does it ten times.
Most games use �oating point numbers, and those are subject to rounding
error. Each time we add two �oating point numbers, the answer you get back
can be a bit o�. The fast computer does �ve times as many operations, so
therefore it will accumulate a bigger error than the old PC. The result is: the

58 P. Mileff

same projectile will end up in di�erent places on their machines. The precise
calculation of collisions thus becomes signi�cantly more di�cult.

Besides all that, the variable-time step game loop can greatly improve the
overall responsiveness and control feel of the game, especially in games that
require precise and responsive game play, such as platformers or �rst-person
shooters.

The variable-step loop solution is almost suitable for our graphics application.
But it is advisable to add two more small adjustments.

3.2.1. Correction of the elapsed time

So far, the above solution only deals with the ideal case where nothing interferes
with the gameplay. However, in practice, many disturbing factors can occur,
for example the computer lagging. During the gameplay, sometimes certain
background processes in the operating system can use more resources (for
example, we compress in the background, or the antivirus performs some kind
of background check, etc.), so the elapsed time can increase many times, which
means that the objects perform much larger movements, more pixels in one
loop. Another typical example of this is debugging. When the software is
stopped for debugging purposes, and then restarted, the value of the elapsed
time will be very high, since the time measured in the previous frame is far away
from the current one. This behavior, the needle-like spikes in the elapsed_time
results in a non-smooth gameplay.

It is therefore advisable to set an upper limit for the value, for example a value
of 1.0.

i f (elapsed_time > 1 .0 f) {

elapsed_time = 1 .0 f ;

}

With this solution, although it is possible to maximize the peaks of the elapsed_time
values, the sudden change in the elapsed_time value over a wide interval due
to the load of the computer is still a problem. These changes can be seen in
the gameplay. In the case of an FPS game, even the movement in space can be
"trembling". Another very useful optimization of the variable-time step loop
is the "smoothing" of the elapsed_time. A very simple but well-functioning
solution is to calculate the value with which the game state will be updated
from the average of the current and previous elapsed_time values.

elapsed_time += curr_frame_tick − prev_frame_tick ;

elapsed_time ∗= 0 . 5 ;

Game loop: the heart of the game engine 59

Although it is not possible to eliminate random loads on the computer, their
e�ects can be corrected by this method. The result is a much smoother game-
play.

Figure 2. Elapsed time smoothing

Figure 2. shows a sample possible series of the elapsed time values. The red
line is the upper limit and the green value is the average of the current and
the previous time.

3.3. Semi-�xed timestep

The semi-�xed timestep game loop is a commonly used method for controlling
the simulation of physics and other real-time processes in video games. It
combines the bene�ts of both �xed timestep and variable timestep approaches
to create a balance between stability and e�ciency. The algorithm uses a �xed
timestep for most of the simulation updates, but allows for variable timestep
updates in certain cases, such as when the game is running slowly and needs
to catch up. This allows for smoother and more consistent simulations, while
also allowing for more e�cient use of processing resources.

The semi-�xed timestep game loop works as follows:

1. Initialization: Initialize the game state and variables, including the time
step (dt) and the accumulator (acc).

2. Input handling: Process user input, update the game state accordingly.
3. Fixed timestep simulation: The game state is updated using a �xed

timestep (dt), with the number of simulation steps determined by the
accumulator (acc).

60 P. Mileff

4. Variable timestep simulation: If the accumulator (acc) is larger than
the �xed timestep (dt), additional simulation steps are taken using a
variable timestep until the accumulator is reduced to a value less than
dt.

5. Render: The game state is rendered to the screen, using the updated
simulation data.

6. Repeat: Repeat the game loop until the game is terminated.

Figure 3. The semi-�xed timestep loop

The loop can be described as follows:

double prev ious = getCurrentTime () ;

double frameTime = 0 . 0 ;

double MS_PER_UPDATE = 1.0 / 6 0 . 0 ;

while (true)

{

double cur rent = getCurrentTime () ;

double e lapsed = current − prev ious ;

p rev ious = current ;

frameTime += elapsed ;

proce s s Input () ;

while (frameTime >= MS_PER_UPDATE)

{

update () ;

frameTime −= MS_PER_UPDATE;

}

render () ;

}

At the beginning of each frame, we update frameTime based on how much real
time passed. This measures how far the game's clock is behind compared to

Game loop: the heart of the game engine 61

the real world. After that we process the inputs and then we reach the inner
loop whose task is to update the game state, one �xed step at a time, until
the frameTime is bigger than the MS_PER_UPDATE. Finally we render and start
over again. The shorter the MS_PER_UPDATE is, the more processing time it
takes to catch up to real time. The longer it is, the choppier the gameplay is.

3.3.1. The residual lag problem

Residual lag refers to the discrepancy between updating the game at regular
�xed time steps while rendering occurs at arbitrary time points. Consequently,
from the user's standpoint, the game frequently appears to display at a time
between two consecutive updates.

Figure 4. The residual lag problem

Although the update phase occurs at regular intervals, the render phase lacks
determinism. Its occurrence is less frequent than updates and it is not steady
either. The challenge lies in the fact that rendering does not always coincide
precisely with the point of updating. In Figure 4, the instances where this
discrepancy occurs are denoted by red circles.

Consider the following scenario: A moving object traverses across the screen.
During the �rst update, the object is on the left side, and the subsequent
update places it on the right side. When the game is rendered at a time
between these two updates, users naturally expect to see the object positioned
in the center of the screen. However, due to the current solution, the object
remains on the left side, causing the motion to appear jagged or stuttery.

Fortunately, we possess precise information about the intermediate position
between update frames at the time of rendering, stored as "frameTime." In-
stead of stopping the update loop when frameTime reaches zero, we stop it
when it becomes less than the update time step. This approach leaves us with
a leftover time amount, representing how far we are into the next frame. As the
rendering phase commences, we can utilize this time information e�ectively:

62 P. Mileff

render (frameTime / MS_PER_UPDATE) ;

We divide by MS_PER_UPDATE here to normalize the value. The value passed to
render() will vary from 0 (right at the previous frame) to just under 1.0 (right
at the next frame), regardless of the update time step. This way, the renderer
doesn't have to worry about the frame rate. It just deals in values from 0 to
1.

The renderer possesses knowledge of every game object and its present velocity.
Let's consider a hypothetical scenario where an object is positioned 100 pixels
from the left side of the screen and is moving to the right at a speed of 400
pixels per frame. In the situation where we �nd ourselves precisely midway
between frames, the value 0.5 is passed to the render() function. Consequently,
the object is drawn half a frame ahead, resulting in its appearance at 250 pixels
from the starting point.

Certainly, sometimes the extrapolation may prove to be inaccurate. When
computing the next frame, it's possible to discover that the object encoun-
tered an obstacle, decelerated, or experienced other factors a�ecting its mo-
tion. During rendering, we interpolate the object's position between its last
known position and the anticipated position on the next frame. However, we
cannot con�rm the accuracy of this interpolation until we complete the full up-
date, incorporating physics and AI calculations. As a result, the extrapolation
occasionally yields partially incorrect values. Fortunately, these inaccuracies
typically go unnoticed or have minimal impact, especially when compared to
the jarring visual disturbances that arise when no extrapolation is employed.

4. Conclusion

Game loops play a crucial role in the design and development of video games.
They provide the foundation for gameplay and ensure a consistent and en-
joyable player experience. Game loops consist of various elements, including
input, rules, feedback, and progression, which work together to create a cycle
of interaction and challenge. A well-designed game loop keeps players moti-
vated to continue playing by providing a sense of progression, accomplishment,
and reward. This paper made an overview about the most common type of
game loops. Advantages and disadvantages were presented. Moreover some
optimization tips were also discussed. Understanding the importance of game
loops can help game developers to create engaging and satisfying games.

References

[1] Akenine-möller, T., Haines, E.: Real-Time Rendering. A. K. Peters. 3nd
Edition, 2008.

Game loop: the heart of the game engine 63

[2] João M. P. Cardoso, José Gabriel F. Coutinho, Pedro C. Diniz: Em-
bedded Computing for High Performance, E�cient Mapping of Computations
Using Customization, Code Transformations and Compilation, pp. 17-56., 2017.

[3] Charles Kelly.: Programming 2D Games, A K Peters/CRC Press; 1st edition,
2012.

[4] Jason Gregory: Game Engine Architecture, A K Peters/CRC Press; 3rd edi-
tion, 2018.

[5] MARÍN-LORA, C.; CHOVER, M.; REBOLLO, C., REMOLAR, I.: A

game development environment to make 2D games, Communication Papers, Vol.9
� No18, pp. 7-23, 2020.

[6] Pitt, C.: The Game Loop, In: Making Games. Apress, Berkeley, CA.,
https://doi.org/10.1007/978-1-4842-2493-9_2, 2016.

[7] Valente, Luis, Aura Conci, and Bruno Feijó: Real time game loop models
for single-player computer games,Proceedings of the IV Brazilian Symposium on
Computer Games and Digital Entertainment. Vol. 89. 2005.

[8] Zamith, Marcelo, Luis Valente, and Esteban Clua: Game loop model

properties and characteristics on multi-core cpu and gpu games, SBGames 2016
(2016).

[9] Ga�er On Games, https://gafferongames.com/post/fix_your_timestep/,
2023.

[10] P. Mileff, J. Dudra: E�ective Pixel Rendering in Practice, Production Sys-
tems and Information Engineering, Volume 10, No 1, pp. 1-15., 2022.

[11] Game Programming Patterns - Game Loop,
https://gameprogrammingpatterns.com/game-loop.html, 2023.

	1. Introduction
	2. The Game loop
	2.1. Game loop parts

	3. Game loop types
	3.1. Fixed-time step loop
	3.2. The variable-time step loop
	3.3. Semi-fixed timestep

	4. Conclusion
	References

