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Abstract. In computer graphics, per-pixel lighting is a widely used technique 
for achieving realistic lighting effects by computing light interactions at the 
pixel level. This approach allows for detailed representation of surface 
characteristics, such as textures and fine details, which are crucial for high-
quality visual rendering. To enhance per-pixel lighting, normal mapping is 
often employed to simulate complex surface details without increasing the 
geometric complexity of the model. However, accurate normal vector 
calculations become challenging in multi-object models where adjacent 
surfaces with differing orientations and geometries share vertices. This paper 
presents a method for calculating proper normal vectors for multi-object 
models, ensuring visually consistent and realistic lighting effects in complex 
scenes. The proposed technique addresses common issues such as normal 
interpolation artifacts and lighting inconsistencies by dynamically adjusting 
normal vectors based on the spatial relationships of multi-objects models. 
Results demonstrate that the method significantly improves the visual quality 
of per-pixel lighting with normal mapping, providing a more robust solution 
for real-time rendering in computer graphics applications. 
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1. Introduction 
 

Computer graphics have become an integral part of modern technology, 

influencing a wide range of industries from entertainment and virtual reality to 

scientific visualization and industrial design. The ability to create realistic and 

immersive 3D environments has not only revolutionized visual media but also 

enhanced our capacity to simulate and analyze complex systems in fields such as 

engineering, medicine, and education. As the demand for more lifelike and 

dynamic visualizations grows, the techniques used to render these 3D environments 

must continually evolve to meet the expectations of realism and performance. 

One of the most critical aspects of 3D visualization is the accurate simulation of 

light. Lighting is not merely a cosmetic feature; it is fundamental to how we 

perceive shapes, textures, and spatial relationships within a virtual scene. The way 

light interacts with surfaces, casting shadows, reflecting off objects, and refracting 

through transparent materials, contributes significantly to the visual realism and the 

immersive quality of the rendered scene. Without effective lighting, even the most 

detailed 3D models can appear flat and lifeless, undermining the viewer's ability to 

interpret the visual information accurately [9]. 

In multi-object 3D models, where numerous surfaces and materials interact within 

a shared space, the complexity of lighting calculations increases significantly. Each 

object not only receives light from various sources but also influences the lighting 

environment by casting shadows, reflecting light onto neighboring objects, and 
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contributing to global illumination effects. Accurately modeling these interactions 

is essential for achieving photorealistic renderings that can be used in applications 

ranging from cinematic special effects to architectural visualization and virtual 

prototyping. 

This paper aims to explore advanced techniques for calculating and optimizing 

lighting in multi-object 3D models. We present how vertex attributes should be 

calculated and handled effectively in case of normal mapping technique. 

 

2. Lights in computer visualization 
 

The need for light modeling emerged at the very beginning of computer 

visualization. Initially, only offline implementations were possible due to limited 

hardware and low computational power. However, as hardware improved, the 

demand for real-time light modeling also arose. Nowadays, increasingly 

sophisticated solutions are available. Lighting is a fundamental element in 

computer graphics, playing a crucial role in defining the visual realism, mood, and 

depth of a scene. It significantly impacts the perception of objects and 

environments by simulating how light interacts with surfaces. In 3D graphics, 

lighting models are used to calculate the effects of light on surfaces, including 

specular highlights, shadows, and reflections. These effects help to create the 

illusion of depth and enhance the realism of scenes. Advanced techniques like 

global illumination and ray tracing take into account the complex interactions of 

light, such as scattering, refraction, and indirect lighting, further improving visual 

fidelity.  

 

2.1. Lighting models 

 

In real-world environments, the appearance of objects is affected by light sources. 

These effects can be simulated using a lighting model. A lighting model is a set of 

equations that approximates (models) the effect of light sources on an object. A 

Lighting Equation in computer science refers to a formula used to calculate the 

final color value of an object. The equation helps in determining how light interacts 

with objects in a scene to create realistic visual effects. The lighting model may 

include reflection, absorption, and transmission of a light source. The lighting 

model computes the color at one point on the surface of an object, using 

information about the light sources, the object position and surface characteristics, 

and perhaps information about the location of the viewer and the rest of the 

environment containing the object (such as other reflective objects in the scene, 

atmospheric properties, and so on): 

 

 
Figure 1. Basic elements of modeling light in a 3D space 
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The traditional approach in real-time computer graphics has been to calculate 

lighting at a vertex as a sum of the ambient, diffuse, and specular light. In the 

simplest form (used by OpenGL and Direct3D), the function is simply the sum of 

these lighting components (clamped to a maximum color value). Thus we have an 

ambient term and then a sum of all the light from the light sources [15]. 

�total = ���� + ∑(����+����) 

where itotal is the intensity of light (as an rgb value) from the sum of the intensity of 

the global ambient value and the diffuse and specular components of the light from 

the light sources. This is called a local lighting model since the only light on a 

vertex is from a light source, not from other objects.  
 

During the years many lighting models with different purposes have been 

developed. These models range from simple approximations to highly sophisticated 

algorithms, each with its strengths and trade-offs between computational efficiency 

and visual realism. The most well-known models are: 

 

Types of Lighting Models [5][13]: 

 

1. Phong Lighting Model (1975): One of the earliest and most widely 

used lighting models, Phong lighting introduces the concept of 

specular highlights (shiny spots), ambient light, and diffuse reflection. 

It simplifies light calculations by computing reflections based on the 

viewer’s perspective, making it ideal for real-time rendering. 

 

2. Blinn-Phong Model: A variant of Phong lighting developed by Jim 

Blinn, this model introduces a slight modification to the specular 

reflection calculation, offering improved performance and more 

accurate highlights for a wider range of viewing angles. 

 

3. Lambertian Reflection Model: This model is used to simulate diffuse 

reflection where the surface scatters light equally in all directions. It’s 

based on Lambert’s cosine law, which states that the intensity of light 

is directly proportional to the cosine of the angle between the light 

source and the surface normal. 

 

4. Physically-Based Rendering (PBR): Recent advancements have 

shifted towards PBR, where lighting is modeled to match real-world 

physical properties more closely. PBR integrates concepts like energy 

conservation, fresnel effects, and microfacet theory to deliver highly 

realistic lighting simulations, essential for modern gaming and film 

industries. 

5. Oren-Nayar Model: An extension of the Lambertian model, the Oren-

Nayar model simulates rough surfaces by considering the scattering of 

light due to micro-occlusions on the surface. 

 

6. Ward Anisotropic Model: This model is designed to handle 

anisotropic reflections, which occur on surfaces like brushed metal or 

hair, where the reflection varies depending on the direction. 

 

Lighting Techniques [5]: 

 

 

1. Global Illumination (GI): GI techniques simulate how light interacts with 

multiple surfaces in a scene, allowing light to bounce and scatter, 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/computer-graphic
https://www.sciencedirect.com/topics/physics-and-astronomy/light-source
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contributing to more realistic ambient lighting and soft shadows. 

Techniques such as ray tracing and radiosity are commonly used for GI. 

2. Ray Tracing: This technique traces the path of individual rays of light as 

they travel through a scene, interacting with surfaces, materials, and light 

sources. While computationally expensive, ray tracing produces highly 

accurate reflections, refractions, and shadows. 

3. Radiosity: Radiosity focuses on how diffuse surfaces exchange light. It 

calculates the light reflecting off surfaces and how this contributes to the 

overall scene’s lighting. Radiosity is particularly effective in rendering 

interiors and architectural models, where indirect lighting plays a 

significant role. 

 

 

2.2. How lighting fits into the graphics pipeline 

 

A graphics pipeline is a conceptual framework used in computer graphics to 

describe the steps involved in rendering 2D or 3D images from a scene description. 

It is called a "pipeline" because the data passes through several sequential stages, 

where different operations are performed to transform the scene’s geometry, apply 

textures and colors, and calculate the lighting, shading, and final image [2].  

The fixed-function graphics pipeline and the programmable graphics pipeline 

represent two different approaches to how graphics hardware handles lighting, 

shading, and other rendering tasks. While the fixed-function pipeline offers 

predefined, limited functionality, the programmable pipeline provides more 

flexibility and control for developers. 

Nowadays, we almost exclusively use the programmable graphics pipeline in 

computer visualization. With the introduction of programmable shaders (vertex and 

fragment/pixel shaders), modern GPUs allow developers to customize every step of 

the rendering process, including lighting. This flexibility allows for more 

sophisticated and realistic lighting effects. The following image shows the OpenGL 

4 pipeline [8]. 

 

 
Figure 2. The OpenGL 4 pipeline 
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In the case of previous fixed-function pipelines, pre-programmed lighting models 

could be used. Based on Figure 2, it is clear that today the implementation of the 

applied lighting algorithm has shifted to the programmer's side. It is the 

programmer's task to develop and program the given lighting model using vertex 

and fragment shaders [6][7]. The following table compares the two approaches. 

 

 
Table 1. Fixed vs Programmable pipeline comparison 

Feature Fixed-function Pipeline Programmable Pipeline 

Lighting Model Predefined models (e.g., Phong) Customizable lighting models, 

including PBR 

Number of Light Sources Limited (usually up to 8) Customizable lighting models, 

including PBR 

Lighting Calculation Per-vertex lighting, interpolated 
across surfaces 

Per-pixel lighting (more 
detailed and realistic) 

Shadows and Advanced Effects Limited or absent Real-time shadows, global 

illumination, custom effects 

Control and Flexibility Little to no control over lighting 
equations 

Full control over how lighting 
is calculated 

Surface Detail Basic lighting; limited ability to 

represent fine details 

Fine surface detail through 

bump mapping, normal 

mapping, etc. 

Shader Use No shaders, hard-coded operations Custom vertex and fragment 

shaders for fine control 

Performance Faster, but less realistic More demanding, but much 
more realistic 

2.3. Lighting in the virtual world 

 

In computer graphics, lighting models play a crucial role in rendering realistic 

images by simulating how light interacts with surfaces. Two widely used 

techniques for light computation are vertex-based lighting (also known as 

Gouraud shading) and per-pixel lighting (commonly implemented through Phong 

shading or more advanced pixel shaders). Both approaches have distinct 

characteristics, strengths, and limitations that influence their use in different 

contexts [3]. 

 
2.3.1 Vertex-Based Lighting 

 

Vertex-based lighting calculates lighting at the vertices of a 3D model and 

interpolates these values across the surface of the polygon. This method is 

computationally efficient because it requires lighting calculations only at the 

model's vertices, significantly reducing the number of operations required. The 

efficiency of vertex-based lighting makes it particularly suitable for real-time 

applications where rendering speed is crucial, such as older video games or 

applications running on low-power devices. The technique is straightforward to 

implement and demands less processing power, which was especially advantageous 

in the early days of computer graphics when hardware capabilities were limited. 

However, vertex-based lighting has notable limitations. Because the lighting is 

interpolated between vertices, it can result in visual artifacts or a lack of fine detail, 
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particularly on surfaces with low tessellation. For instance, specular highlights may 

appear blurry or washed out. Additionally, vertex-based lighting struggles with 

complex lighting scenarios, such as sharp reflections, spotlights, or fine surface 

details, because the interpolation cannot accurately capture rapid changes in light 

intensity or color. 

 

 
2.3.2 Per-Pixel Lighting 

 

Per-pixel lighting,  also known as Phong shading, on the other hand, performs 

lighting calculations for each individual pixel on a surface, allowing for a much 

finer granularity in how light interacts with the surface's material properties. This 

method results in more detailed and realistic images. The primary advantage of per-

pixel lighting is its high visual fidelity. It provides much more detailed and 

accurate lighting effects than vertex-based methods, accurately modeling specular 

highlights, reflections, and other intricate lighting phenomena, which greatly 

enhances realism [10]. In modern graphics programming, per-pixel lighting is 

implemented using programmable shaders. This approach allows developers to 

create highly realistic effects like bump mapping, normal mapping, and dynamic 

shadows, making it a cornerstone of contemporary 3D rendering in video games, 

simulations, and virtual reality. However, per-pixel lighting comes with higher 

computational costs. Calculating lighting for each pixel requires significantly more 

processing power and memory bandwidth, which can be a limiting factor in real-

time applications, especially on less capable hardware. Moreover, implementing 

per-pixel lighting often involves more complex algorithms and shader 

programming, which can increase development time and complexity. 

 

 

2.3.3. Choosing Between the Two Approaches 

 

The choice between vertex-based and per-pixel lighting depends on the specific 

requirements of the application, the desired level of visual fidelity, and the 

available hardware resources. Vertex-based lighting remains useful in scenarios 

where simplicity and speed are more important than fine visual details, such as 

mobile games or applications with low-poly models. In contrast, per-pixel lighting 

is favored in applications where high-quality visuals are essential, such as modern 

video games, CGI in movies, or virtual reality experiences. 

The evolution from vertex-based to per-pixel lighting reflects a broader trend in 

computer graphics towards achieving photorealism [15]. As hardware capabilities, 

including CPUs and GPUs, have advanced, it has become feasible to employ more 

complex and computationally demanding techniques like per-pixel lighting, which 

offer significant improvements in visual quality. Today, many graphics engines 

dynamically adjust the level of detail, using a combination of vertex-based and per-

pixel lighting techniques to optimize performance while maintaining high-quality 

visuals. 

 

 
Figure 3. Vertex vs per-pixel lighting 
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In this paper our objective is to apply per-pixel lighting in the rendering process.  

 

3. Per-pixel lightning for Multi-object models 

The field of lighting and its modeling within computer visualization already 

requires a more complex environment. In such cases, a minimal graphics engine 

(possibly as part of a game engine) is usually created, which is capable of 

performing the following functions in a structured form: 

● load different models, 

● store their data in an appropriate internal structure, 

● have some approach or structure to describe the "virtual world", 

● handle multiple cameras, which can even be movable (e.g., FPS camera), 

● handle basic shaders, 

● describe lights and their parameters with an internal object structure, 

● have a (simple) mathematical library, 

● possibly include additional utility components with various support 

services. 

We can see that a significant amount of work is required to create even a test 

environment where, by modifying a few lines of code, we are able to test a new 

setting and visually observe it. 

 

4.1 The process of applying lighting 

Naturally, the practical implementation of lighting depends on the API being used, 

which currently means OpenGL, Vulkan, or DirectX. We can also include 

software-implemented lighting solutions here. However, regardless of which 

graphics API we use, illuminating the virtual world requires a lot of preparation. 

First and foremost, we need the geometric information that makes up the virtual 

world (buildings, objects, vegetation, etc.), which we most commonly load from 

one or more model files. Although there are many different model descriptor 

structures/formats (Max, Blend, gITF, Obj, FBX, ASE, etc.), they all contain the 

basic geometry required for lighting. If the application goes beyond a world 

embedded in the sandbox of the programming environment, some sort of world 

description structure is usually applied, which also positions the models in space 

and defines the light sources (along with parameters) that illuminate the virtual 

world. The preparation phase of the geometric data is considered complete once 

they are uploaded to the GPU memory.  

The rendering process requires the presence of numerous modules/elements, which 

will not be covered in this article. Typically, this includes loading shaders, 

managing and switching between them. 

In practice, lighting can be implemented in various ways. Certain parts (e.g., 

matrices) can be calculated on the CPU side or even on the GPU side. This paper 

will not cover those details. Once all the necessary elements for operation are 

available, the rendering process within the rendering loop is as follows: 

 

Calculate projection, view and model matrix 

  for loop - model.object.size 

     Activate light shader 

           for loop - numberOfLights 
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        transfer light parameters to GPU shader: 

- position, constant linear, quadratic 

attenuation, ambient, diffuse, specular, etc 

   end for 

Set object texture(s) 

Set object’s other parameters 

           draw object i. 

        Stop light shader 

  end for 

This pseudo code assumes that all the objects in the scene are affected by the same 

type of lights, because the code uses the save light shader for all objects. In practice 

of course different types of light sources can require other types of shader. 

 

4.1 The importance of the normal vectors 

The visual effect of a light shining on a surface depends on the properties of the 

surface and of the light. But it also depends to a great extent on the angle at which 

the light strikes the surface. The angle is essential to specular reflection and also 

affects diffuse reflection. That's why a curved, lit surface looks different at 

different points, even if its surface is a uniform color. To calculate this angle, we 

need to know the direction in which the surface is facing. That direction is 

specified by a vector that is perpendicular to the surface. Another word for 

"perpendicular" is "normal," and a non-zero vector that is perpendicular to a 

surface at a given point is called a normal vector to that surface. 

It is therefore important that the normal vectors are calculated correctly to ensure 

that the lighting provides the expected visual results. Normal vectors are typically 

provided in two ways. Very often, the normal vectors are stored together with the 

model file on the storage medium. In this case, the consistency of the data is 

ensured by the modeling software used. The graphics engine's only task here is to 

read these data and apply them. 

Alternatively, the normal vectors can be calculated during the model's loading 

process. While this approach is indispensable during development, in finished 

games, storing the normals together with the model is preferred because, for larger 

models, calculating and transforming normals can take several seconds. This could 

significantly impact the gaming experience. 

Basically, two types of normal vectors are typically distinguished: 

● Face normal: this vector is a face (usually triangle) level vector, which 

is a perpendicular unit normal vector to the face. The vector's direction 

is determined by the order in which the vertices are defined and by 

whether the coordinate system is right- or left-handed. The face normal 

points away from the front side of the face. One face has one normal 

vector. 

● Vertex normal: Vertex normals (sometimes called pseudo-normals) 

are values stored at each vertex that are most commonly used by a 

renderer to determine the reflection of lighting or shading models, such 

as phong shading. 

 

4. Normal Mapping 

In computer visualization, increasing graphical realism has always played an 

important role. This is particularly emphasized in real-time software and games, as 

it is essential to achieve a level of graphical quality that is appropriate for the era in 
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real-time, compared to offline rendering. One straightforward approach to 

achieving this is to increase the number of polygons in the virtual world and the 

models. While this approach is correct and applicable, increasing the vertex count 

puts a significant burden (especially on early) GPUs: significantly more polygons 

pass through the graphics pipeline, requiring more polygons to be clipped, 

rasterized, etc [12].  

Another approach that is actually advisable to apply alongside increasing the 

polygon count is to use larger, higher-resolution textures. However, when viewing 

surfaces up close, as when we are against a wall in a game, this approach does not 

result in drastic improvement. This is because, in reality, surfaces are not smooth; 

they have numerous holes, depressions, or protrusions, which appear in different 

shades and colors due to the varying angles at which light hits them.  

By combining these two approaches, we could model every small surface 

imperfection of a wall with a vertex mesh, onto which we apply a higher quality 

texture. However, today’s GPUs are not yet capable of handling this; while the 

result would be visually appealing, it would be slow in terms of performance. A 

typical example could be a brick wall. Such a wall has a rather rough surface and is 

certainly not completely smooth: it contains recessed cement sections and 

numerous smaller holes and cracks. If we view such a surface with the usual 

rendering, without effects, the sense of depth of the wall disappears. 

As a result, other alternative solutions for making surfaces more realistic have 

developed. These solutions generally work in image space and use additional 

textures to provide some level of extra detail to an otherwise flat 2D polygon. 

Several solutions have emerged in the literature (Bump mapping, Displacement 

mapping, Normal mapping, Parallax mapping) that successfully add “depth” to the 

2D image. In this article, we will focus on normal mapping, but what is presented 

can also be applied to the other methods. 

 

4.1 Normal mapping in practice 

When using classic per-pixel lighting, the intensity of light is calculated at the pixel 

level in the fragment shader. This is done using vertex-level normals. According to 

the barycentric coordinate system formed by the three vertices, we can linearly 

interpolate the normals within the shader, resulting in pixel-level normals. This 

achieves a nice, smooth light diffusion across the surface; however, the model does 

not interact with the surface material properties, depressions, and cracks. This is 

particularly noticeable in the deep grooves between bricks, as the surface remains 

simply smooth. 

Therefore, the industry needed a solution that could inform the lighting system 

about the details of the surface's depths. It is not sufficient to interpolate the 

normals solely within the triangle. A solution is needed that provides true pixel-

level normals. With this technique, the surface can be made much more complex. 

 

Figure 4. Comparison of surface normals and per-fragment normals [4] 

With this solution, we can achieve a visual effect that gives the surface a sense of 

depth due to the unique light reflections. The technique is essentially a trick that 

provides the viewer with a much more realistic experience. This approach is 

collectively referred to as normal or bump mapping. 
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To implement normal mapping, we need per-pixel normals. A straightforward 

approach is to use a two-dimensional texture to store the perturbation of the surface 

normals, similar to a diffuse texture. Since normal vectors can be geometrically 

interpreted and textures store color information, we need to map the vectors to 

specific colors in some way. 

Colors consist of r, g, b components. We can use these components to store the x, y, 

z components of the normals. Since the value range of normal vectors is between -1 

and 1, the first step is to transform this to the [0,1] range. 

 

// transforms from [-1,1] to [0,1] 

vec3 rgb_normal = normal * 0.5 - 0.5;  

This approach enables us to store the normals of a surface on a per-pixel basis in a 

2D texture. The following example showcases the normal map of a brick wall: 

 

 

Figure 5. Normal values stored in an RGB texture 

It is evident that the normal map has a bluish tint. This is because almost all 

normals point outward from the surface in the positive z direction (0, 0, 1), which 

corresponds to the blue color. Color variations can be observed where the surface 

deviates from the typical smoothness. At these points, the normals diverge from the 

positive z direction, and these areas will provide the viewer with a sense of depth. 

Note the top of the brick, which receives a greenish hue almost everywhere. This is 

because, at these points, the normals increasingly point in the positive y direction 

(0, 1, 0), which maps to the green color. 

 

4.2 Tangent Space 

The tangent space is a space that is locally defined as an orthogonal system relative 

to the surface of a triangle. Normals are specified in this reference coordinate 

system relatively. We can think of this local space as the space of the normal map 

vectors, where each normal is defined to point in the positive z direction. Using a 

special matrix that defines the tangent space, the normal vectors defined in the 

local space can be transformed into the world or camera space according to the 

final orientation of the given surface. 

This matrix is called the TBN matrix, whose components are the tangent, 

bitangent, and normal vectors. The vectors form an orthogonal system, meaning 

they are perpendicular to each other. The normal vector points outward from the 

surface, while the right and forward-pointing vectors represent the tangent and 

bitangent. The following figure illustrates the relationship between the three 

vectors: 
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Figure 6. Tangent space described by tangent, bitangent and normal 

vectors 

While the calculation of the normal vector is relatively straightforward, the 

calculation of the tangent and bitangent vectors is not self-evident. We know that 

the tangent vector is perpendicular to the normal vector. However, many such 

vectors can be defined: 

 

Figure 7. An arbitrary number of tangent vectors can be defined 

alongside the normal vector indicated in blue 

 

Theoretically, any perpendicular vector can be used as a tangent vector, but it is 

advisable to be consistent with adjacent faces; otherwise, the edges between the 

faces will look unattractive during shading. The accepted solution is to direct the 

tangent vector in the direction indicated by the texture coordinates. Once the 

tangent vector is determined, the bitangent can be easily calculated. The figure 

below illustrates this. 

 
Figure 8. The orientation of the tangent vector always 

corresponds to the direction of the texture coordinates 

 

In the figure, the texture coordinate differences of the triangle's edge E2 are 
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denoted by ΔU2 and ΔV2. Their direction corresponds to the directions of the 

tangent (T) and bitangent (B) vectors. Based on this, both edges (E1, E2) can be 

expressed as a linear combination of the T and B vectors: 

E1=ΔU1T + ΔV1B 

E2=ΔU2T + ΔV2B 

Based on this: 

(E1x,E1y,E1z) = ΔU1(Tx,Ty,Tz) + ΔV1(Bx,By,Bz), 

(E2x,E2y,E2z) = ΔU2(Tx,Ty,Tz) + ΔV2(Bx,By,Bz) 

 

The value of E can be calculated from the position difference of two vectors, while 

ΔU and ΔV are the differences in the texture coordinates. Thus, we have two 

unknowns (T and B) and two equations. Therefore, the problem is solvable. We 

can express the problem differently, in the form of matrix multiplication: 

 

Writing the equations in this form greatly facilitates the solution of the T and B 

vectors. If we multiply both sides by the inverse of the ΔUΔV matrix, we arrive at 

the following: 

 

 

 

 

This allows us to solve the system of equations for T and B. For this, we need to 

compute the inverse of the texture coordinate matrix as follows: The resulting 

system of equations provides the calculation of the T and B vectors. 

The following sample example demonstrates the calculation of the T and B vectors 

in practice for a triangle: 

 

// Edges of the triangle : position delta 

vec3 deltaPos1 = v1 - v0; 

vec3 deltaPos2 = v2 - v0; 

 

// UV delta 

vec2 deltaUV1 = uv1 - uv0; 

vec2 deltaUV2 = uv2 - uv0; 

// calculate tangent and bitangent 

float r = 1.0f / (deltaUV1.x * deltaUV2.y - deltaUV1.y * deltaUV2.x); 

vec3 tangent = (deltaPos1 * deltaUV2.y - deltaPos2 * deltaUV1.y) * r; 

vec3 bitangent = (deltaPos2 * deltaUV1.x - deltaPos1 * deltaUV2.x) * r; 

// Normalize results 

normalize(tangent); 

normalize(bitangent); 
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Since a triangle is always a planar shape, we need a tangent/bitangent pair, 

meaning that each vertex of the triangle will have one corresponding pair. In the 

following, we will demonstrate the results of the implemented lighting model on a 

relatively more complex sample model, on a head [1]. Every illustration rendering 

scene, test case run in our self made platform independent 3D engine. The engine 

was implemented in C++ and uses OpenGL/GLSL for GPU related programming. 

We use two light sources for better demonstration results. 

 

Figure 9. Head rendering with face level normal/tangent/bitangent 

attributes. The result is similar to flat shading 

It is evident that the result does not meet the expectations; it resembles flat shading. 

Several errors can also be detected on the model, which occur because in this case 

we intentionally applied face-level vertex attributes (normal vector, tangent, 

bitangent) for the triangles to illustrate the problem. In the case of a more complex 

model, where most of the displayed surfaces are curved, the face-level normal 

cannot provide satisfactory results. 

 

5. Lighting correction 

 

5.1 Vertex attributes smoothing 

 

The rendering result presented in Figure 9 is not satisfactory because the normal 

vectors of adjacent triangles that make up the model are “far” apart in direction, 

leading to noticeable light refraction during lighting calculations. To achieve 

satisfactory lighting results, we need to switch to using vertex-level normal vectors. 

Vertex-level normals mean that we can define the values of normal vectors for each 

vertex, which can be interpolated within the triangle during rasterization thanks to 

the barycentric coordinate system defined inside the triangle. 

One effective solution to reduce the “error” caused by the refraction of light 

between surfaces with different orientations is to smooth the normals of triangles 

that share common vertices. 
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This method is depicted in the diagram below, which presents two surfaces, S1 and 

S2, viewed edge-on from above. The normal vectors for S1 and S2 are indicated in 

blue, while the vertex normal vector is highlighted in red. The angle formed 

between the vertex normal vector and the surface normal of S1 is identical to the 

angle between the vertex normal and the surface normal of S2. When these two 

surfaces are illuminated and shaded using Gouraud shading, the result is a smooth, 

rounded edge between them. The following illustration displays the two surfaces 

(S1 and S2) along with their corresponding normal vectors and the vertex normal 

vector: 

 

Figure 10. The red arrow indicates the vertex normal vector shared 

by the two surfaces (S1, S2) 

 

If the vertex normal leans toward one of the faces with which it is associated, it 

causes the light intensity to increase or decrease for points on that surface, 

depending on the angle it makes with the light source (Figure 10, right image). The 

vertex normal leans toward S1, causing it to have a smaller angle with the light 

source than if the vertex normal had equal angles with the surface normals. 

Although we have specifically focused on normal vectors in this case, we must not 

forget that normal mapping was also applied alongside the lighting model in this 

example. The tangent and bitangent vectors used for the tangent space also appear 

as vertex attributes, so the smoothing must also be applied to the vectors in the 

tangent space. 
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Figure 11. While smoothing vertex attributes greatly 

improves the results, additional problems/glitches can still be 

observed in the outcome 

 

5.2 Model level smoothing 

The errors observed during rendering, such as the appearance of different “line 

breaks” on various areas of the model, clearly indicate that further enhancements 

are necessary. The problem arises because the model was not created as a single set 

of vertices, but rather as multiple different parts crafted as separate objects. In 

practice, there can be several reasons for implementing a more complex model in 

this way. It could be a decomposition based on some logical ordering principle or 

simply because it was easier to create the final shape this way. 

While the previously introduced vertex attribute smoothing approach works well, 

an algorithm needs to be developed that can take into account the different objects 

during attribute smoothing. The algorithm should also be extended to neighboring 

objects that share common vertices. The following sample code demonstrates such 

an approach: 

 
void ComputeAndSmoothVertexAttributes(t3DModel model) { 

     CVector3 vVector1, vVector2, vNormal, vPoly[3]; 

     pModel.numOfAllVertex = 0; 

 

    for (index = 0; index < model.numOfObjects; index++) { 

        t3DObject pObject = model.pObject[index]; 

        model.numOfAllVertex += pObject.numOfFaces*3; 

 

        CVector3 pTempNormals = new CVector3 [pObject.numOfFaces]; 

        pObject.pNormals = new CVector3 [pObject.numOfVertices]; 

        pObject.pTangents = new CVector3 [pObject.numOfVertices]; 

        pObject.pBitangents  = new CVector3 [pObject.numOfVertices]; 

 

        for (i = 0; i < pObject.numOfFaces; i++) { 

            vPoly[0] = pObject.pVerts[pObject.pFaces[i].vertIndex[0]]; 

            vPoly[1] = pObject.pVerts[pObject.pFaces[i].vertIndex[1]]; 

            vPoly[2] = pObject.pVerts[pObject.pFaces[i].vertIndex[2]]; 

 

             // Calculate the face normals 

             vVector1 = Vector(vPoly[0], vPoly[2]); 

             vVector2 = Vector(vPoly[2], vPoly[1]); 

             vNormal = Cross(vVector1, vVector2); 

             vNormal = Normalize(vNormal); 

 

             pTempNormals[i] = vNormal;               

        } 



 

 

 

PER-PIXEL LIGHTING FOR MULTI-OBJECT MODELS 57 

 
 

        CVector3 vSum(0.0, 0.0, 0.0); 

        CVector3 vTagentSum(0.0, 0.0, 0.0); 

        CVector3 vBiTagentSum(0.0, 0.0, 0.0); 

        CVector3 vZero = vSum; 

 

        int shared = 0; 

 

        for (i = 0; i < pObject.numOfVertices; i++) { 

            CVector3 vvertex = pObject.pVerts[i]; 

 

            for (subindex = 0; subindex < model.numOfObjects; subindex++) { 

                t3DObject pModelObject = model.pObject[subindex]; 

 

                for (int j = 0; j < pModelObject.numOfFaces; j++) { 

CVector3 v1 = 

pModelObject.pVerts[pModelObject.pFaces[j].vertIndex[0]]; 

CVector3 v2 = 

pModelObject.pVerts[pModelObject.pFaces[j].vertIndex[1]]; 

CVector3 v3 = 

pModelObject.pVerts[pModelObject.pFaces[j].vertIndex[2]]; 

 

if (vvertex == v1 || vvertex == v2 || vvertex == v3) { 

          vSum = AddVector(vSum, pModelObject.pFaces[j].normal); 

           vTagentSum = AddVector(vTagentSum, pModelObject.pFaces[j].tangent); 

  vBiTagentSum = AddVector(vBiTagentSum, 

pModelObject.pFaces[j].bitangent); 

              shared++; 

 } 

     } 

            } 

 

            // Get the normal by dividing the sum by the shared  

    // Negate the shared so it has the normals pointing out 

            pObject.pNormals[i] = DivideVectorByScaler(vSum, shared); 

            pObject.pNormals[i] = Normalize(pObject.pNormals[i]); 

            pObject.pTangents[i] = DivideVectorByScaler(vTagentSum, shared); 

            pObject.pTangents[i] = Normalize(pObject.pTangents[i]); 

            pObject.pBitangents[i] = DivideVectorByScaler(vBiTagentSum, shared); 

            pObject.pBitangents[i] = Normalize(pObject.pBitangents[i]); 

 

            vSum = vZero;                                   // Reset the sum 

            vTagentSum = vZero;                             // Reset the tangent sum 

            vBiTagentSum = vZero;                           // Reset the bitangent sum 

            shared = 0;                                     // Reset the shared 

        } 

    } 

 

The following image shows the result of the algorithm. The generated vertex 

attributes are now correctly calculated, taking into account the vertices that are 

shared across the object boundaries. 

 
Figure 12. Multi-object model with smoothing of vertex 

attributes between objects 
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5.3 Tangent space orthogonality 

 

It is necessary to mention one final addition to the presented solution, which can 

further enhance image quality with a slight increase in performance requirements. 

When working with larger shapes, a vertex can be part of multiple faces. We 

already know that if we do not smooth or average the tangent vectors, the result is 

often unsatisfactory. However, the smoothing can have the side effect of causing 

the new TBN vectors to lose their perpendicularity to each other during the 

averaging process, meaning the resulting TBN matrix will no longer be orthogonal. 

Although this is less noticeable in the visual result, it is advisable to take this small 

detail into account. 

To address this issue, we can apply the Gram-Schmidt mathematical procedure 

[14], which allows us to (re)orthogonalize the TBN vectors so that they are 

perpendicular to each other. This can be done in two ways: after calculating and 

averaging the TBN vectors or within the vertex shader. The Gram-Schmidt solution 

is as follows: 

 

 

Figure 13. Geometric illustration of the Gram-Schmidt 

orthogonalization procedure 

In the example, the n and t vectors are nearly perpendicular to each other. To 

orthogonalize, we simply need to “push” the t vector in the direction of -n by the 

amount of the scalar product of n and t (dot(n, t)). That is: 

t = normalize(t - n * dot(n, t)); 

Performed in the vertex shader: 

 
vec3 T = normalize(vec3(modelMatrix * vec4(tangent, 0.0))); 

vec3 N = normalize(vec3(modelMatrix * vec4(normal, 0.0))); 

T = normalize(T - dot(T, N) * N);     // Re-orthogonalization 

vec3 B = cross(T, N);      // Bittangent vector calculation 

mat3 TBN = mat3(T, B, N) 

 

 

5.4 Coordinate system rotation 

 

In the case of symmetric models, it may occur that the direction of the UV 

coordinate orientation is incorrect, which will also result in a wrong orientation for 

the tangent vector. Checking this is very simple. The TBN vectors must define a 

right-handed coordinate system. For example, the cross product of the n and t 

vectors should yield an orientation equal to b. To mathematically verify this, the 

scalar product can be used, stating that vectors A and B have the same orientation if 

their scalar product is greater than zero. Therefore, dot(A, B) > 0. For the TBN 

vectors, we need to check the result of dot(cross(n, t), b): 
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if (dot(cross(n, t), b) < 0.0f) { 

     t = t * -1.0f; 

 } 

 

By performing this check for each vertex, we can correct any errors arising from 

incorrect UV orientations. 

 

6. Conclusion 

Real-time lighting modeling plays an important role in computer visualization. The 

rapid advancement of hardware over the years has allowed for the development of 

numerous different solutions. While only very limited lighting models could be 

applied in the early years, today we can enhance image quality with various visual 

effects, creating a more detailed environment. This article focused on per-pixel 

lighting for multi-object models. To make the surfaces more lifelike, we applied 

normal mapping. Achieving the final result required the combined application of 

several techniques. An important aspect is that, in the case of multi-object models, 

different objects should always be examined together, and vertex attributes should 

be calculated and transformed accordingly. This helps eliminate visual problems 

that may arise at the boundaries of the objects. The presented procedures can be 

applied even for complex models. 
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