
SOFTWARE ENGINEERING

The Basics of Software Engineering

Peter Mileff PhD

University of Miskolc
Department of Information Technology



Introduction
⦿ Péter Mileff - Department of Information Engineering

● Room 210.
● Email: mileff@iit.uni-miskolc.hu

○ main contact form

⦿ Software Engineering is mainly a theoretical 
course

○ No practical lessons
⦿ We learn the theory of making better softwares

⦿ We use only the second two lessons (10am-12am)
● the second part (10-12) would be the practice
● Practical lessons are not feasible at the University

○ there will be homeworks :)
Important: lectures will be every two weeks

2

mailto:mileff@iit.uni-miskolc.hu


Course requirements 

Task 1: make a Software Specification
○ Imagine your new software 
⦿ Can be anything: Game, Social site, Image converter, Music player, 

Mobile application, Operating System, etc
○ Collect any requirements, limitations, considerations 

about this software
⦿ Formulate them into a Documentation. 

○ Task can be performed in groups
⦿ max. 2 persons in a group

● The expected size of the document
○ ~10 pages / person

3



Recommended Books

● Ian Sommerville:
○ Software Engineering 10th Edition, 2015.

● A. Bijlsma, B.J. Heeren, E.E. Roubtsova, S. 
Stuurman:
○ Software Architecture, 2011.

● Ivan Marsic:
○ Software Engineering Textbook, 2009.

4



Software engineering 
history…

5



The Sixties - the 60s
⦿ Typically very early computers

● rudimentary hardware infrastructure
⦿ Problems to be solved:

● only specific problems
● small programs

⦿ Developer?
● Special skilled person (researcher)
⦿ no teams, typically only one person

⦿ Development tool:
● mainly Assembler or Memory map (machine code) was 

used to make programs
⦿ lack of high level programming languages

6



The Software crisis
⦿ Preliminaries:

● falling hardware prices
⦿ more and more people/company were able to buy a computer

● increasing hardware performance
● increasing demand for softwares

⦿ The problem:
● more software was needed
● there was a sharp increase in the cost of software
● the software quality was not sufficient!

7



The 70s
⦿ The first high-level programming languages 

appeared
● Algol, Fortran, Cobol

⦿ The programming is becoming a profession
⦿ Developers realized:

● more effective programming tools are necessary
⦿ high level tools

● a systematic approach requires to develop for making better 
software

⦿ Result: The the first programming methods was 
developed
● structural and modular programming

The born of Software technology
8



The software…

9



What is software?
⦿ There is no exact definition
⦿ Software is more than just a program code!

● A program is an executable code, which serves some computational 
purpose
⦿ E.g. totalcommander.exe

⦿ Software is considered to be: 
● collection of executable programming code, 
● associated libraries and documentations
● data and configuration files
⦿ e.g. totalcommander has also help and config files

⦿ Software, when made for a specific requirement is called 
Software product

10



Software products
⦿ Generic products

● Stand-alone systems that are marketed and sold to any 
customer who wishes to buy them.
○ Examples – PC software such as editing, graphics programs, project 

management tools; CAD software; Games, Voip applications, etc.

⦿ Customized products
● Software that is commissioned by a specific customer 

to meet their own needs 
○ E.g. embedded control systems, air traffic control software, traffic 

monitoring systems

⦿ Important difference: Who writes the specification?
● Generic products: the organization that develops the software
● Customized products: the organization that is buying the software

⦿ The border is often blurred

11



Other considerations
⦿ Software itself is an IT-industry product

● It can be compared to other industrial products
○ E.g: Keyboard, Table, Door, etc

● But Software is different:
⦿ It is more complicated (consist of algorithms, complex 

program codes)
⦿ It does not wear out with use
⦿ It does not need to be repaired like a table, or bicycle
⦿ Instead it becomes outdated (E.g. browsers)

● Software needs continuous development
○ Due to the continuous development of hardware devices and 

operating systems
○ Because new user requirements arise during usage

⦿ E.g. a website needs facebook login function

12



Why is software engineering 
needed?

⦿ Developing a software is a complex process
● Usually performed by a team

⦿ It has multiple stages
● E.g: Analysis, Design, Implementation, etc

⦿ Without managing the developing process
● The project may fail
● The whole development process may result in chaos
● The product will have poor quality

○ bugs
○ rely on bad design concepts

13



What is Software engineering?

⦿ Software is costly
● Software costs often dominate computer system costs
● Software costs more to maintain than it does to develop. 
● For systems with a long life, maintenance costs may be several 

times higher than development costs.
⦿ Software engineering:

● It is an engineering discipline that is concerned with all aspects of 
software production

● It is a collection of different models and concepts
● it is concerned with cost-effective software development.

⦿ The main objective is:
● make the development process more effective
● improve software quality

14



The software process...

15



The Software process
⦿ A software process is a sequence of activities that 

leads to the production of a software product. 
⦿ It can be very complex

● a lot of activities, developers, processes, etc
⦿ It highly depends on human activities
⦿ There is no ideal, suitable development process for every 

software
○ The process is different at every organization!
⦿ different members, different rules, different environment, stb

⦿ Problem: it cannot really automate with CASE tools
● e.g: robots cannot write softwares yet

16



The Software process
⦿ Objective:

● It should be designed to exploit the capabilities of the people in the 
organization and the characteristics of the development environment.

Example:
⦿ For some systems, such as critical systems

● a very structured development process is required.
○ Because requirements do not change

⦿ For business systems
● a less formal, flexible process is likely to be more effective.

○ Because the requirements may change rapidly

17



Fundamental Activities
⦿ Software specification: 

⦿ where customers and engineers define the software that is 
to be produced and the constraints on its operation.

⦿ Software design and implementation:
⦿ where the software is designed and programmed.

⦿ Software validation: 
⦿ where the software is checked to ensure that it is what the 

customer requires.

⦿ Software evolution:
⦿ where the software is modified to reflect changing customer 

and market requirements.

18



The software process 
models...

19



What is a Software process model?

⦿ A software process model is a simplified representation 
of a software process.

⦿ Each process model represents a process from a particular 
perspective
● thus provides only partial information about that process.

⦿ There are generic models
● they are not definitive descriptions of software processes
● they are abstractions of the process that can be used to explain 

different approaches to software development

20



Well known models…

21



Waterfall model
⦿ The first Process Model to be introduced.

⦿ It is also referred to as a linear-sequential life cycle model. It 
is very simple to understand and use.

22



Stage 1: Requirements analysis and 
definition

⦿ The system’s services, constraints, and goals are 
established 
● by consultation with system users and the customer

⦿ They are then defined in detail and serve as a system 
specification

23



Stage 2: System and software design

⦿ Software design involves
● identifying and describing the fundamental software 

system abstractions
● describe the system components and their relationships

⦿ Establish the overall architecture of the system
● What type of architecture will be used?

⦿ E.g: p2p, client-server, webservices, etc.
● Determine the subsystems and their relationships
● How the subsystems will be controlled?

⦿ centralized or decentralized approach

24



Stage 3: Implementation and unit 
testing

⦿ During this stage, the software design is realized 
● as a set of programs or program units.

⦿ applying programming languages
⦿ and tools (IDE, Compiler, Debugger, etc)

⦿ The objective of unit testing
● to verifying that each unit meets its 

specification.

25



Stage 4: Integration and system 
testing
⦿ Integrate the individual program units or 

programs
⦿ such as playing “Lego”

⦿ All the programs are tested as a complete 
system
⦿ to ensure that the software meets the requirements

⦿ After testing, the software system can be 
delivered to the customer

26



Stage 5: Operation and maintenance

⦿ Objective: 
● Install the system and put into practical use.

⦿ Normally this is the longest lifecycle stage.

⦿ Maintenance involves
● correcting errors which were not discovered in 

earlier stages,
⦿ bugfix

● improving the implementation of system units
⦿ E.g: long response time

● enhancing the system’s services as new 
requirements are discovered.
⦿ E.g: customer needs a new button

27



Advantages

⦿ This model is simple and easy to understand and use.
● documentation is produced at each stage

⦿ It is easy to manage due to the rigidity of the model
● each stage has specific deliverables and a review process.

⦿ In this model stages are processed and completed one 
at a time.
● Stages do not overlap each other

⦿ Waterfall model works well
● for smaller projects 
● where requirements are very well understood
⦿ E.g: airplane control system

28



Disadvantages

⦿ In the testing stage, it is very difficult to go back and 
change something that was not well-thought out in the 
concept stage.
● results inflexibility

⦿ No working software is produced until late during the life 
cycle.

⦿ The model has high amounts of risk and uncertainty
⦿ Not a good model for complex and object-oriented 

projects.
⦿ Poor model for long and ongoing projects.
⦿ Not suitable for the projects where requirements are at a 

moderate to high risk of changing.

29



Incremental development...

30



Incremental development

⦿ Basic conception: 
● developer team creates an initial implementation
● review this basic implementation 
⦿ with users and customer

● evolving it through several versions until an
● adequate system has been developed

⦿ This is a different approach:
● better enforce parallelism between activities
● and rapid feedbacks

31



Incremental model

32



Incremental development
⦿ The model is better than a waterfall approach

● for most business, e-commerce, and personal systems
⦿ It reflects the way like we solve problems

● We rarely work out a complete problem solution in 
advance 

⦿ By developing the software incrementally
● it is cheaper and easier to make changes in the software 

as it is being developed
● Usually early increments include the most important 

features
⦿ Therefore these functions are more stable

⦿ Rapid feedbacks
● Due to continual iterations any feedback can be 

performed at any time

33



Disadvantages
⦿ From a management perspective it has two 

problems:
● The process is not visible: managers need regular 

deliverables to measure progress.
⦿ Problem: continuous iteration, lack of full specification

● The systems are often poorly structured: regular 
changes tend to corrupt the system structure.
⦿ from time to time the system requires to be refactored, restructured

⦿ It is suggested to use in case of:
● short-life systems
● small and medium-sized systems. 
● (~ 500,000 lines of code)

34



Reuse-oriented software 
engineering...

35



Reuse-oriented software 
engineering

⦿ In majority of software projects, there is software 
reuse
● It is natural, we wouldn’t want to write everything from zero

⦿ it is cheaper and faster to reuse something

⦿ This approach relies on 
● a large base of reusable software components
● and an integrating framework for composition of these 

components

36



Reuse-oriented software 
engineering

⦿ A general process model for reuse-based 
development
● The initial requirements specification stage and the validation 

stage are comparable with other software processes, 
● the intermediate stages in a reuse-oriented process are different 

37



Reuse-oriented software 
engineering

1. Component analysis

⦿ A search is made for components 
● which are suitable to implement the specification

⦿ Usually, there is no exact match 
⦿ Problem:

● the components that may be used only provide some 
of the functionality required.

38



Reuse-oriented software 
engineering

2. Requirements modification (!)

⦿ During this stage, the requirements are analyzed 
● we use information about the components that have been 

discovered.
● They are often modified to reflect the available 

components.
⦿ Where modifications are impossible: 

● the component analysis activity may be re-entered to 
search for alternative solutions.

● Or decide to implement a new component in house

39



Reuse-oriented software 
engineering

3. System design with reuse

⦿ During this phase, the framework of the system is 
designed 
● or an existing framework is reused

⦿ The designers take into account
● the components that are reused
● and organize the framework to cater for this.

⦿ Some new software may have to be designed if reusable 
components are not available.

40



Reuse-oriented software 
engineering

4. Development and integration

Objective: create a new system

⦿ If a software component cannot be externally procured is 
developed in house
● more time and money

⦿ Components and COTS (commercial off-the shelf systems) 
systems are integrated

⦿ System integration, in this model, may be part of the 
development process rather than a separate activity.

41



Advantages / Disadvantages

⦿ Reduce the amount of software to be developed
● reduce cost and risk!

⦿ Usually leads to faster delivery of the software
⦿ Requirements compromises are inevitable

● this may lead to a system that does not meet the real needs of 
users

⦿ Some control over the system evolution is lost
● as new versions of the reusable components are not under the 

control of the organization using them.

42



The Spiral model...

43



The Spiral Model

⦿ Proposed by Boehm in 1988
⦿ It is a risk driven process framework
⦿ The software process:

● represented as a spiral
⦿ rather than a sequence of activities with backtracking

● each loop in the spiral represents a phase of the software 
process
⦿ the innermost loop might be concerned with system feasibility
⦿ the next loop with requirements definition,
⦿ the next loop with system design, etc

⦿ The spiral symbolizes that the software development 
process never ends!

44



The Spiral Model

45



The Spiral Model
⦿ Each loop in the spiral is split into four sectors:

46

⦿ 1. Objective setting: 
● Specific objectives for that phase of the project are defined
● Constraints on the process and the product are identified
● A detailed management plan is drawn up.
● Project risks are identified. Alternative strategies, 

depending on these risks, may be planned.



The Spiral Model

47

⦿ 2. Risk assessment and reduction
● For each of the identified project risks, a detailed analysis is 

carried out.
● Steps are taken to reduce the risk.

● For example: 
⦿ if there is a risk that the requirements are inappropriate, a prototype 

system may be developed
⦿ to better understand the requirements
⦿ to investigate, the requirements are feasible



The Spiral Model

48

⦿ 3. Development and validation

● After risk evaluation, a development model for the system is 
chosen.

● The software is developed in this phase
⦿ design, implementation, validation

● This phase can contain a whole software development 
model like Waterfall or Component based development, 
etc.



The Spiral Model

49

⦿ 4. Planning

● Closes the current spiral loop 
● The project is reviewed and a decision made whether to 

continue with a further loop of the spiral.
⦿ it is appropriate to continue?

⦿ objectives are good?
⦿ human and financial resources?

● If it is decided to continue, plans are drawn up for the next 
phase of the project.



The Spiral Model

50

Why is this model different?

⦿ The risk is an integral part of the model
● not only a software process model, because risk handling is a project 

management activity

⦿ Risk minimization is a very important:
● risks lead to proposed software changes and 

project problems
⦿ such as schedule and cost overrun

⦿ This model explicitly calculates with alternative ways to 
achieve objectives



51

Thank you for your attention!


