Peter Mileff PhD

SOFTWARE ENGINEERING

The Basics of Software Engineering

University of Miskolc
Department of Information Technology

Introduction

Péter Mileff - Department of Information Engineering

Room 210.
Email:
o main contact form

Software Engineering is mainly a theoretical
course

o No practical lessons
We learn the theory of making better softwares

We use only the second two lessons (10am-12am)
the second part (10-12) would be the practice
Practical lessons are not feasible at the University
o there will be homeworks :)

Important: lectures will be every two weeks

mailto:mileff@iit.uni-miskolc.hu

Course requirements

Task 1: make a Software Specification

o Imagine your new software

Can be anything: Game, Social site, Image converter, Music player,
Mobile application, Operating System, etc

o Collect any requirements, limitations, considerations
about this software
Formulate them into a Documentation.
o Task can be performed in groups
max. 2 persons in a group

The expected size of the document
o ~10 pages / person

Recommended Books

lan Sommerville:
o Software Engineering 10th Edition, 2015.

A. Bijlsma, B.J. Heeren, E.E. Roubtsova, S.
Stuurman:

o Software Architecture, 2011.

Ilvan Marsic:
o Software Engineering Textbook, 2009.

Software engineering
history...

The Sixties - the 60s

Typically very early computers
rudimentary hardware infrastructure
Problems to be solved:
only specific problems
small programs
Developer?

Special skilled person (researcher)
(¢) no teams, typically only one person

Development tool:

mainly Assembler or Memory map (machine code) was
used to make programs

(¢) lack of high level programming languages

The Software crisis

Preliminaries:
falling hardware prices
(¢) more and more people/company were able to buy a computer
iIncreasing hardware performance
increasing demand for softwares

The problem:

more software was needed

there was a sharp increase in the cost of software
e the software quality was not sufficient!

The 70s

The first high-level programming languages
appeared

Algol, Fortran, Cobol
The programming is becoming a profession

Developers realized:

more effective programming tools are necessary
(¢) high level tools

a systematic approach requires to develop for making better
software
Result: The the first programming methods was
developed

structural and modular programming
The born of Software technology

The software...

What is software?

There is no exact definition

Software is more than just a program code!

A program is an executable code, which serves some computational
purpose
(¢) E.g.totalcommander.exe

Software is considered to be:

collection of executable programming code,
associated libraries and documentations
data and configuration files

(¢) e.g. totalcommander has also help and config files

Software, when made for a specific requirement is called
Software product

Software products

Generic products

Stand-alone systems that are marketed and sold to any
customer who wishes to buy them.

o Examples — PC software such as editing, graphics programs, project
management tools; CAD software; Games, Voip applications, etc.

Customized products

Software that is commissioned by a specific customer
to meet their own needs

o E.g. embedded control systems, air traffic control software, traffic
monitoring systems

Important difference: Who writes the specification?

Generic products: the organization that develops the software
Customized products: the organization that is buying the software

The border is often blurred

11

Other considerations

Software itself is an IT-industry product

It can be compared to other industrial products
o E.g: Keyboard, Table, Door, etc

But Software is different:

It is more complicated (consist of algorithms, complex
program codes)

It does not wear out with use
It does not need to be repaired like a table, or bicycle
Instead it becomes outdated (E.g. browsers)

Software needs continuous development

o Due to the continuous development of hardware devices and
operating systems

o Because new user requirements arise during usage
E.g. a website needs facebook login function

Why is software engineering
needed?

(® Developing a software is a complex process
Usually performed by a team

It has multiple stages
E.g: Analysis, Design, Implementation, etc

Without managing the developing process
The project may fail
The whole development process may result in chaos

The product will have poor quality
o bugs
o rely on bad design concepts

13

What is Software engineering?

Software is costly
Software costs often dominate computer system costs
Software costs more to maintain than it does to develop.

For systems with a long life, maintenance costs may be several
times higher than development costs.

Software engineering:

It is an engineering discipline that is concerned with all aspects of
software production

It is a collection of different models and concepts
it is concerned with cost-effective software development.

The main objective is:

e make the development process more effective
e improve software quality

14

The software process...

The Software process

A software process is a sequence of activities that
leads to the production of a software product.
It can be very complex
a lot of activities, developers, processes, etc
It highly depends on human activities

There is no ideal, suitable development process for every
software

o The process is different at every organization!
different members, different rules, different environment, stb

Problem: it cannot really automate with CASE tools
e.g: robots cannot write softwares yet

16

The Software process

Objective:

It should be designed to exploit the capabilities of the people in the
organization and the characteristics of the development environment.

Example:

(® For some systems, such as critical systems
e a very structured development process is required.
o Because requirements do not change

(© For business systems
e a less formal, flexible process is likely to be more effective.
o Because the requirements may change rapidly

17

Fundamental Activities

(¢) Software specification:
(¢) where customers and engineers define the software that is
to be produced and the constraints on its operation.

(o Software design and implementation:
(¢) where the software is designed and programmed.

(o Software validation:

() where the software is checked to ensure that it is what the
customer requires.

o Software evolution:

(¢) where the software is modified to reflect changing customer
and market requirements.

18

The software process
models...

What is a Software process model?

() A software process model is a simplified representation
of a software process.

Each process model represents a process from a particular
perspective

thus provides only partial information about that process.

There are generic models

e they are not definitive descriptions of software processes

they are abstractions of the process that can be used to explain
different approaches to software development

20

Well known models...

Waterfall model

The first Process Model to be introduced.
It is also referred to as a linear-sequential life cycle model. It
Is very simple to understand and use.

Requirements
Definition

System and
Software Design

Implementation

and Unit Testing

Integration and
System Testing

Operation and
Maintenance

Stage 1: Requirements analysis and
definition

The system’s services, constraints, and goals are

established
by consultation with system users and the customer

They are then defined in detail and serve as a system
specification

23

Stage 2: System and software design

Software design involves
identifying and describing the fundamental software
system abstractions
describe the system components and their relationships

Establish the overall architecture of the system

What type of architecture will be used?
(¢) E.g: p2p, client-server, webservices, etc.
Determine the subsystems and their relationships

How the subsystems will be controlled?
(¢) centralized or decentralized approach

Stage 3: Implementation and unit
testing

During this stage, the software design is realized
as a set of programs or program units.
= applying programming languages
= and tools (IDE, Compiler, Debugger, etc)

The objective of unit testing
to verifying that each unit meets its
specification.

Stage 4: Integration and system
testing

Integrate the individual program units or

programs
(¢) such as playing “Lego”

All the programs are tested as a complete
system
to ensure that the software meets the requirements

After testing, the software system can be
delivered to the customer

26

Stage 5: Operation and maintenance

Objective:
Install the system and put into practical use.

Normally this is the longest lifecycle stage.

Maintenance involves
correcting errors which were not discovered in
earlier stages,
(o) bugfix
improving the implementation of system units
(¢) E.g: long response time

enhancing the system’s services as new

requirements are discovered.
(¢) E.g: customer needs a new button

Advantages

This model is simple and easy to understand and use.
e documentation is produced at each stage

It is easy to manage due to the rigidity of the model
each stage has specific deliverables and a review process.

In this model stages are processed and completed one

at a time.
e Stages do not overlap each other

Waterfall model works well
for smaller projects
where requirements are very well understood
(¢) E.g: airplane control system

28

Disadvantages

In the testing stage, it is very difficult to go back and
change something that was not well-thought out in the

concept stage.
results inflexibility

No working software is produced until late during the life
cycle.

The model has high amounts of risk and uncertainty

Not a good model for complex and object-oriented
projects.

Poor model for long and ongoing projects.

Not suitable for the projects where requirements are at a
moderate to high risk of changing.

Incremental development...

Incremental development

Basic conception:
developer team creates an initial implementation
review this basic implementation
with users and customer
evolving it through several versions until an
adequate system has been developed

This is a different approach:
better enforce parallelism between activities
and rapid feedbacks

31

Incremental model

Concurrent
Activities

Specification

Outline Intermediate
Description Development Versions
Version

Incremental development

The model is better than a waterfall approach
for most business, e-commerce, and personal systems

It reflects the way like we solve problems
We rarely work out a complete problem solution in
advance

By developing the software incrementally
it is cheaper and easier to make changes in the software
as it is being developed
Usually early increments include the most important

features
(¢) Therefore these functions are more stable

Rapid feedbacks

Due to continual iterations any feedback can be
performed at any time

Disadvantages

From a management perspective it has two
problems:
The process is not visible: managers need regular

deliverables to measure progress.
Problem: continuous iteration, lack of full specification

The systems are often poorly structured: regular

changes tend to corrupt the system structure.

(¢) from time to time the system requires to be refactored, restructured
It is suggested to use in case of:

short-life systems

small and medium-sized systems.

(~ 500,000 lines of code)

34

Reuse-oriented software
engineering...

35

Reuse-oriented software
engineering

In majority of software projects, there is software
reuse

It is natural, we wouldn’t want to write everything from zero
() it is cheaper and faster to reuse something

This approach relies on
a large base of reusable software components

and an integrating framework for composition of these
components

Reuse-oriented software
engineering

A general process model for reuse-based
development

The initial requirements specification stage and the validation
stage are comparable with other software processes,

e the intermediate stages in a reuse-oriented process are different

Requirements Component Requirements System Design
Specification Analysis Modification with Reuse

Development System
and Integration Validation

Reuse-oriented software
engineering

1. Component analysis

A search is made for components

which are suitable to implement the specification
Usually, there is no exact match
Problem:

the components that may be used only provide some
of the functionality required.

38

Reuse-oriented software
engineering

2. Requirements modification (!)

(¢ During this stage, the requirements are analyzed

we use information about the components that have been
discovered.

They are often modified to reflect the available
components.

Where modifications are impossible:

the component analysis activity may be re-entered to
search for alternative solutions.

Or decide to implement a new component in house

39

Reuse-oriented software
engineering

. System design with reuse

During this phase, the framework of the system is
designed

e or an existing framework is reused

The designers take into account

e the components that are reused

e and organize the framework to cater for this.

Some new software may have to be designed if reusable
components are not available.

40

Reuse-oriented software
engineering

4. Development and integration

Objective: create a new system

(o) If a software component cannot be externally procured is
developed in house
more time and money
(¢ Components and COTS (commercial off-the shelf systems)
systems are integrated

(#) System integration, in this model, may be part of the
development process rather than a separate activity.

41

Advantages [Disadvantages

Reduce the amount of software to be developed
e reduce cost and risk!
() Usually leads to faster delivery of the software

(® Requirements compromises are inevitable

this may lead to a system that does not meet the real needs of
users

Some control over the system evolution is lost

as new versions of the reusable components are not under the
control of the organization using them.

The Spiral model...

OJOJO

The Spiral Model

Proposed by Boehm in 1988
It is a risk driven process framework
The software process:

e represented as a spiral
(¢) rather than a sequence of activities with backtracking
e each loop in the spiral represents a phase of the software
Process
(¢) the innermost loop might be concerned with system feasibility
(¢) the next loop with requirements definition,
(¢) the next loop with system design, etc

The spiral symbolizes that the software development
process never ends!

44

The Spiral Model

Determine Objectives,
Alternatives, and
Constraints

Risk
Analysis

Risk

Risk

Analysis | Proto-
REVIEW | ype 1

Risk
Analysis

Evaluate Alternatives,
Identify, Resolve Risks

Analysis

Plan Next Phase

Requirements Plan

Life-Cycle Plan Concept of

Operation

Requirement

Development Validation

Plan

Integration Design
and Test Plan vay

Acceptance

Service Test

Product B -
Design Detailed
Design

Code

Unit Test

Integration
Test

Develop, Verify
Next-Level Product

The Spiral Model

® Each loop in the spiral is split into four sectors:

@® 1. Objective setting:
e Specific objectives for that phase of the project are defined
e Constraints on the process and the product are identified
e A detailed management plan is drawn up.

e Project risks are identified. Alternative strategies,
depending on these risks, may be planned.

46

The Spiral Model

(® 2. Risk assessment and reduction

e For each of the identified project risks, a detailed analysis is
carried out.

e Steps are taken to reduce the risk.

e For example:

(@ if there is a risk that the requirements are inappropriate, a prototype
system may be developed

to better understand the requirements
to investigate, the requirements are feasible

47

The Spiral Model

(® 3. Development and validation

e After risk evaluation, a development model for the system is

chosen.

e The software is developed in this phase
(¢) design, implementation, validation

This phase can contain a whole software development
model like Waterfall or Component based development,
etc.

48

The Spiral Model

@® 4. Planning

e Closes the current spiral loop

e The project is reviewed and a decision made whether to
continue with a further loop of the spiral.
() it is appropriate to continue?
objectives are good?
human and financial resources?

e [f it is decided to continue, plans are drawn up for the next
phase of the project.

49

The Spiral Model
Why is this model different?

The risk is an integral part of the model

not only a software process model, because risk handling is a project
management activity

Risk minimization is a very important:

risks lead to proposed software changes and
project problems
such as schedule and cost overrun

This model explicitly calculates with alternative ways to
achieve objectives

50

Thank you for your attention!

