
SOFTWARE ENGINEERING

Requirements Engineering

Peter Mileff PhD

University of Miskolc
Department of Information Technology



Requirements Engineering
⦿ The requirements for a system are the descriptions of 

what the system should do
● the services that it provides 
● the constraints on its operation

⦿ Requirements engineering:
● The process of finding out, analyzing, documenting and 

checking these services and constraints
⦿ The term ‘requirement’ is not used consistently in the 

software industry.
● Sometimes a requirement is simply a high-level, abstract 

statement of a service. 
● Sometimes it is a detailed, formal definition of a system 

function.

2

Let's see it from different perspectives!



Interpretation 1.

User Requirements: natural language statements
⦿ Describes the system services and constraints
⦿ They are high-level abstract descriptions with

● diagrams,
● tables,
● figures, etc
● anything which serves better understanding

Objective: the document should be readable by anyone 
without deep technical knowledge.

● For example: 
○ managers
○ and my Grandma :)

3



Interpretation 2.

System Requirements: natural language statements
⦿ more detailed descriptions about 

● system’s functions, services, and operational constraints.
⦿ Sometimes called a functional specification
⦿ This document should define exactly what is to be 

implemented!
● It may be part of the contract between the customer and the software 

developers

Objective: the document should be contain anything related 
to the software

● Usually it is a low level description, readable only with (deep) technical 
knowledge.

4



Who reads the requirements?
⦿ Different levels are very important!
⦿ User requirements are not usually concerned with how the system will be 

implemented. 
⦿ System requirements readers need to know more precisely what the system 

will do because they are involved in the system implementation.

5



Other perspectives

⦿ There are other perspectives for grouping requirements

⦿ Usually 2 groups are mentioned:

⦿ Functional requirements

⦿ Non-functional requirement

6



Functional requirements…

7



Functional requirements
⦿ The functional requirements for a system describe what 

the system should do:
● how the system should react to particular inputs, 
● how the system should behave in particular situations.

○ E.g.: What if I press the Login button?
○ What if my internet connection has gone?

⦿ Focuses only to system functions!
● In some cases, the functional requirements may also explicitly 

state what the system should not do.
⦿ These requirements depend on

● the type of software being developed, 
● the expected users of the software, 
● and the general approach taken by the organization when 

writing requirements.

8



Functional requirements
⦿ The functional requirements specification of a system 

should be both complete and consistent.

⦿ Completeness:
● means that all services required by the user should be 

defined.
○ nothing is forgotten

⦿ Consistency:
● means that requirements should not have 

contradictory

9



Functional requirements
⦿ About consistency and completeness:

● For large, complex systems, it is practically impossible to 
achieve

● Reason 1: it is easy to make mistakes and omissions when 
writing specifications for complex systems.
○ we are humans!

● Reason 2: stakeholders have different and often 
inconsistent needs.
○ there are many stakeholders in a large system.

⦿ Who is a stakeholder?
● A stakeholder is a person or role that is affected by the 

system in some way.
○ Managers, employers, security guard, etc.

10



Non-Functional 
requirements…

11



Non-Functional requirements
⦿ Non-functional requirements are not directly concerned 

with the specific services
● They are not focusing to functions!

⦿ So what is their role?
● They may relate mainly to emergent system properties
● Non-functional requirements specify or constrain 

characteristics of the system as a whole.
Example:

● reliability, response time, and store occupancy.
⦿ They may define constraints on the system 

implementation 
● e.g: the capabilities of I/O devices 
● or the data representations used in interfaces
● CPU time and Memory limitation, etc

12



Non-Functional requirements
⦿ They are often more critical than individual 

functional requirements!
● System users can usually find ways to work around a system 

function that doesn’t really meet their needs.
● However, failing to meet a non-functional requirement can mean 

that the whole system is unusable.

⦿ Example:
● if an aircraft system does not meet its reliability requirements, 

it will not be certified as safe for operation

● if an embedded control system fails to meet its performance 
requirements, the control functions will not operate correctly.

13



Non-Functional requirements
⦿ These requirements can be dangerous!

● The implementation of these requirements may be diffused 
throughout the system.

Reason 1:

⦿ Non-functional requirements may affect the overall 
architecture of a system 

○ rather than the individual components.
Example: 
● To meet the performance requirements: we may have to organize the 

system to minimize communications between components.

14



Non-Functional requirements
Reason 2:

⦿ A single non-functional requirement can generate 
numerous new functional requirements
● such as a security requirement

⦿ In addition, it may also generate requirements that 
restrict existing requirements.

15



Non-Functional requirements
⦿ Classification

16



Non-Functional requirements
⦿ 1. Product requirements:

● These requirements specify or constrain the 
behavior of the software.

⦿ Examples:
● performance requirements 

○ how fast the system must execute
○ how much memory should be used
○ loading time

● reliability requirements 
○ e.g. setting the acceptable failure rate, 

● security requirements
○ e.g. password encryption method

● usability requirements

17



Non-Functional requirements
⦿ 2. Organization requirements:

● broad system requirements derived from policies and 
procedures in the customer’s and developer’s 
organization.

⦿ Examples
● operational process requirements

○ define how the system will be used
⦿ e.g software should operate only between 1am and 2am

● development process requirements
○ specify the programming language, the development 

environment or process standards
● environmental requirements

○ specify the operating environment of the system.

18



Non-Functional requirements
⦿ 3. External requirements:

● all requirements that are derived from factors external 
to the system and its development process.

⦿ Examples:
● regulatory requirements

○ set out what must be done for the system to be approved for use by a 
regulator

● legislative requirements 
○ must be followed to ensure that the system operates within the law;

● ethical requirements 
○ must be followed to ensure that the system will be acceptable to its 

users and the general public.

19



Problems with Non-Functional 
requirements?

20



Non-functional requirements 
(Common problems)

⦿ Users or customers often propose these 
requirements as general goals.

⦿ Example:
“The system should be easy to use by medical staff and 
should be organized in such a way that user errors are 
minimized.”

⦿ Goals are good, so what is the problem? 

⦿ These goals cannot be measured objectively!
● these cause problems for system developers

21



Non-functional requirements 
(Common problems)

⦿ If we cannot exactly define a goal:
● developers cannot implement it properly
● can cause problems when the system is delivered to the 

customer
⦿ Example: 

● Customer goal: My website must be easy to use and 
beautiful 

⦿ Problem: 
● terms like “easy to use” and “beautiful” cannot defined 

exactly
○ therefore they cannot be measured or validated

22



And the real life...

23



The Software design

24



25



Software requirements 
document...

26



Software requirements document

⦿ It is an official statement of what the system 
developers should implement.
● every part of the software is described here

⦿ It should include:
● the user requirements for a system 
● and a detailed specification of the system requirements.

⦿ Sometimes, the user and system requirements are 
integrated into a single description.

⦿ In case of large number of requirements
● the detailed system requirements may be presented in 

a separate document.

27



Who reads the document?

⦿ In short: everybody!

28



Software requirements document

⦿ The level of detail
● depends on the type of system that is being developed and 

the development process used.
● Critical systems need to have detailed requirements

○ because safety and security have to be analyzed in detail
⦿ e.g. nuclear power plant, aircraft control systems

● When the system is to be developed by a separate 
company
○ the system specifications need to be detailed and precise.

● If an inhouse, iterative development process is used
○ the document can be much less detailed 
○ and any ambiguities can be resolved during development of the 

system.

29



Software requirements document

⦿ The structure of the document
● can be organized in any way 
● only requirement is to describe the system properly

There is an IEEE standard (1998):

1. Preface: define the expected readership, the version history, who made it and 
when, etc
2. Introduction: describe the need for the system. Brief description of system’s 
functions and how it works. 
⦿ How system fits into the overall business objectives of the organization.
3. Glossary: define the technical terms
4. User requirements definition: describes the services for the user and 
customer
5. System architecture: a high level overview of the system’s logical structure

30



Software requirements document

IEEE standard (1998):

6. System requirements specification: describes functional and non-functional 
requirements in detail.

7. System models: this might include graphical system models about the 
system. How the components are connected.

⦿ e.g. object models, data-flow models, semantic data models

8. System evolution: describes the needs of the long-term operation 

9. Appendices: specific information about the part of the system. E.g. hardware 
or database descriptions

31



32

Thank you for your attention!


