
SOFTWARE ENGINEERING

Software Specification
Software Design and Implementation

Software Validation

Peter Mileff PhD

University of Miskolc
Department of Information Technology

Software Specification...

2

Software Specification

⦿ Software specification is a process, where
⦿ we understand and define what services are required from

the system
⦿ we identify the constraints on the system’s operation and

development.

⦿ It is a particularly critical stage of the software process
⦿ errors at this stage inevitably lead to later problems in the

system design and implementation.

3

Software Specification

⦿ The process aims to produce an agreed requirements
document
● that specifies a system satisfying stakeholder requirements.

⦿ Requirements are usually presented at two levels of
detail:
● End-users and customers

○ need a high-level statement of the requirements;
● System developers:

○ need a more detailed system specification.

4

The Software Specification
process

5

Four main activities of the
process

⦿ Feasibility study:
⦿ This is an estimation process:

● verify that software is feasible using current software and
hardware technologies.

⦿ The result of the process is a study
⦿ The study considers the followings:

● whether the proposed system will be cost-effective from a
business point of view and

● if it can be developed within existing budgetary constraints.
⦿ A feasibility study should be relatively cheap and quick.
⦿ The result should inform the decision of whether or not to

go ahead with a more detailed analysis.

6

Four main activities of the
process

⦿ 2. Requirements elicitation and analysis
● This process collects the system requirements

○ through observation of existing systems
● Discussions with potential users and procurers

and stakeholders
○ Talk to everybody who can provide information about

the new software
● The process may involve the development of one

or more system models and prototypes.
○ These help you understand the system to be

specified.

7

Four main activities of the
process

⦿ 3. Requirements specification
● It is the activity of translating the information into a

document
○ gathered during the analysis activity
○ that defines a set of requirements.

● Two types of requirements may be included in this
● document.

○ User requirements are abstract statements of the system
requirements for the customer and end-user of the
system;

○ System requirements are a more detailed description of
the functionality to be provided.

8

Four main activities of the
process

⦿ 4. Requirements validation
● This activity checks the requirements for realism,

consistency, and completeness.
○ Are they feasible?
○ Are they rational?
○ Is something missing?

● The aim is to discover errors in the requirements
document
○ It must then be modified to correct these problems.

9

Four main activities of the
process

⦿ The activities in the requirements process are not simply
carried out in a strict sequence.

● Requirements analysis continues during definition and
specification

● New requirements come to light throughout the process.

⦿ Therefore, the activities of analysis, definition, and
specification are interleaved.

10

Software design and
implementation...

11

The Software design process

⦿ Software design: is a description of the structure of
the software to be implemented
● the data models and structures
● the interfaces between system components
● sometimes, the used algorithms

⦿ Designers develop the design iteratively
● A structure cannot be described without iteration
● New information may become available

○ as we go forward
⦿ They add formality and detail as they develop their

design with constant backtracking to correct earlier
designs.

12

The Software design process

13

The Software design process

⦿ The diagram suggests that the stages of the design
process are sequential.
● However design process activities are interleaved.
● Feedback from one stage to another inevitable in all design

processes.
⦿ The activities in the design process can vary

● depending on the type of system being developed.
⦿ Example:

● real-time systems require timing design
○ but may not include a database
⦿ there is no database design involved.

14

Design activities

1. Architectural design:
⦿ here we identify the overall structure of the system

● What are the principal components
○ sometimes called sub-systems or modules

● What are their relationships, and how they are distributed.

2. Interface design:
⦿ defines the interfaces between system components.
⦿ This interface specification must be unambiguous.

● With a precise interface, a component can be used without
other components having to know how it is implemented.

⦿ Once interface specifications are agreed,
● the components can be designed and developed concurrently.

15

Design activities

3. Component design:
⦿ we take each system component and design how it will

operate.
● This may be a simple statement of the expected functionality

to be implemented
○ the specific design left to the programmer.

● Alternatively, it may be a list of changes to be made to a
reusable component or a detailed design model.

⦿ The design model may be used to automatically
generate an implementation.

16

Design activities

4. Database design:
⦿ Design the system data structures

● if software functionality requires a database
● how the data structures are to be represented in a database

○ database type, table names, connections, stored procedures, etc

⦿ The work here depends on whether an existing database
is to be reused or a new database is to be created.

17

Design activities

⦿ These activities lead to a set of design outputs
● Architectural Design
● Database Specification
● Interface Specification
● Component Specification

⦿ The detail and representation of these can be different
● depends on the software we design

⦿ For critical systems
● detailed design documents
● and accurate descriptions must be produced

⦿ In other cases
● Sometimes “lighter-style” documents with diagrams are enough
● Or design is represented only in the code of the program

18

Implementation

⦿ The implementation follows naturally the system design
processes
● It is more common for the later stages of design and program

development to be interleaved.
⦿ Software development tools may be used to generate a

skeleton program from a design
⦿ Programming is a personal activity and there is no

general process that is usually followed.
● Some programmers start with components that they

understand
○ develop these, and then move on to less-understood components.

● Others take the opposite approach

19

Implementation
⦿ Basic rules of development:

● Well working code: the code performs what is expected.
○ Reacts adequately even in case of an error.

⦿ no freezing

● Aesthetically adequate code: the code shall be
readable. We cannot presume that the code will be read
only by us
○ we should apply certain rules that enhance readability.

⦿ For example the "CamelCase” naming convention.
⦿ Often the company specifies these rules by which it ensures

subsequent further development of its software.

20

Implementation

⦿ Documented code:
● the quality of a code increases if it is documented on a

certain level.
● Especially good if we modify the code of somebody else

○ it is a great help if at the beginning of the fourfold for
cycle you find a brief explanation on its aim.

⦿ Comments should answer basic questions:
● What does this code part do?
● Why are these lines necessary?
● Why should we be careful at the modification?
● etc.

21

Implementation

⦿ Normally, programmers carry out some testing of the
code they have developed
● This often reveals program defects that must be removed from

the program.
● This is called debugging.

⦿ Defect testing and debugging are different
processes.
● Testing establishes the existence of defects.
● Debugging is concerned with locating and correcting these

defects.
⦿ IDEs usually support debugging

● the offered interactive debugging tools are usually very
intelligent

22

Software validation...

23

Software Validation

⦿ More generally: Verification and Validation (V&V)
⦿ Goal: to show that a system conforms

● to its specification (Verification)
● and it meets the expectations of the system customer

(Validation)
⦿ The principal validation technique is program testing.

● where the system is executed using simulated test data
⦿ Validation may also involve other checking processes

● at each stage of the software process from user requirements
definition to program development.
○ such as inspections and reviews
○ verify the requirements, the specification document, the design, etc

24

Software evolution...

25

Software Evolution

⦿ Software development does not stop when a system
is delivered
● but continues throughout the lifetime of the system.

⦿ After a system has been deployed, it inevitably has to
change if it is to remain useful.

⦿ The usually reason of continuously evolution:
● Business changes

○ new user expectations generate new requirements for the existing
software

● Parts of the software may have to be modified
○ to correct errors that are found in operation,
○ to adapt it for changes to its hardware and software platform,
○ or to improve its performance or other non-functional characteristics

26

Software Evolution
⦿ Software evolution is important!

● organizations have invested large amounts of money in
their software
○ they are now completely dependent on these systems

● Usually large companies spend more on maintaining
existing systems than on new systems development

⦿ As the software is modified:
● its structure tends to degrade and changes become more

and more expensive.
○ it is getting harder to maintain the codebase

● This often happens after a few years of use
○ when other environmental changes, such as hardware and operating

systems, are also often required.

27

28

Thank you for your attention!

