
SOFTWARE ENGINEERING

Agile Software Development

Peter Mileff PhD

University of Miskolc
Department of Information Technology

Introduction...

2

Introduction

⦿ Today businesses operate in a global, rapidly changing
environment

⦿ They have to respond to
● new opportunities and markets,
● changing economic conditions,
● and the emergence of competing products and services

⦿ Software is part of almost all business operations
● new software is developed quickly to take advantage of new

opportunities
○ and to respond to competitive pressure.

● Rapid development and delivery is therefore often the most
critical requirement for software systems.

3

Introduction

⦿ Because of the rapidly changing environment
● it is often practically impossible to derive a complete set of

stable software requirements

● The initial requirements inevitably change
○ customers find it impossible to predict how a system will affect working

practices
○ how it will interact with other systems
○ and what user operations should be automated

⦿ All of these caused the development processes that
focus on rapid software development and deliver

4

Introduction

⦿ Rapid software development processes are designed to
produce useful software quickly.

⦿ The software is not developed as a single unit
● but as a series of increments,
● each increment includes new system functionality

5

Rapid software development
characteristics

⦿ The processes of specification, design, and
implementation are interleaved:

● There is no detailed system specification

● Design documentation is minimized or generated
automatically by the programming environment

● The user requirements document only defines the
most important characteristics of the system.

6

Rapid software development
characteristics

⦿ The system is developed in a series of versions:

● End-users and system stakeholders are involved in
specifying and evaluating each version.

● They may propose changes to the software and new
requirements
○ that should be implemented in a later version of the

system.

7

Rapid software development
characteristics

⦿ System user interfaces are often developed using an
interactive development system:

● that allows the interface design to be quickly created
by drawing and placing icons on the interface.

● The system may then generate
○ a web-based interface for a browser
○ or an interface for a specific platform such as Microsoft

Windows or Linux.

8

Agile software
development...

9

Agile development

⦿ In the 1980s and early 1990s:
● Typically plan driven development approaches
● Principle: the best way to achieve better software was

through
○ careful project planning,
○ formalized quality assurance,
○ rigorous software development processes

⦿ Disadvantage for small and medium-sized business systems

● Significant overhead in
○ planning, designing and system documentation

● More time is spent on requirement analysis and design
○ rather than on program development and testing

10

Agile development

⦿ In the 1990s, software developers propose new “agile methods”.
⦿ The main goal was

● The development team should focus on the software itself
○ rather than on its design and documentation.

What is Agile Development?

Agile Development is an approach, a family of methodologies and
not a particular software development method.

11

Agile manifesto

⦿ The philosophy behind agile methods is reflected in the
Agile Manifesto
● Published in 2001 by many of the leading developers

This manifesto states:

● Individuals and interactions over processes and tools
● Working software over comprehensive documentation
● Customer collaboration over contract negotiation
● Responding to change over following a plan

12

Agile Development
⦿ Agile software development is a theoretical framework
⦿ There are many Agile software development processes

● most of all seeks
○ to achieve a low-risk software development
○ width short development cycles (iterations)

⦿ Every iteration is a complete software development
cycle:
● requirements analysis
● design
● implementation
● testing and documentation

⦿ The goal of an iteration is to perform
● a tested and workable release of the application at the end of

the cycle.

13

Agile Development
⦿ Agile software development is a theoretical framework
⦿ There are many Agile software development processes

● most of all seeks
○ to achieve a low-risk software development
○ width short development cycles (iterations)

⦿ Every iteration is a complete software development
cycle:
● requirements analysis
● design
● implementation
● testing and documentation

⦿ The goal of an iteration is to perform
● a tested and workable release of the application at the end of

the cycle.

14

Principles of Agile methods
⦿ Agile methods prefer face to face contact instead of

written documents.
● Therefore typical agile teams are located in one a large office.

⦿ At agile methods, the main measure of progress is the
operating software.

⦿ Rapid adaptation to changing conditions
⦿ KISS principle:

● “Keep it simple, stupid”. Make everything as simple as
possible.

⦿ Projects are lead by motivated and trustworthy persons
⦿ Self-organizing teamwork
⦿ Tight, daily communication between the developer and

the customer

15

Agile methods

⦿ Agile methodology is recommended to use
● in case of small size projects,
● few (but experienced) developers and
● often under changing requirements.

⦿ It is not recommended for use
● with large projects,
● distributed developments and
● critical projects.

16

Extreme Programming...

17

Extreme Programming
⦿ Perhaps the best known and widely used agile

method
⦿ The name was coined by Beck in 2000

⦿ The main idea behind:
● pushing recognized good practice to ‘extreme’ levels.

○ such as iterative development

⦿ For example:

● in XP, several new versions of a system may be
developed by different programmers,

● integrated and tested in a day.

18

Extreme Programming
⦿ In XP, requirements are expressed as scenarios

● called “user stories”,
● which are implemented directly as a series of tasks

⦿ Programmers work in pairs and develop tests for each
task before writing the code.

⦿ All tests must be successfully executed when new code
is integrated into the system.

⦿ There is a short time gap between releases of the
system.

19

Extreme Programming
⦿ XP practices which reflect the principles of agile

methods:

● Incremental development is supported through small,
frequent releases of the system.

● Requirements are based on simple customer stories or
scenarios
○ that are used as a basis for deciding what functionality should be

included in a system increment.

● Customer involvement: supported through the continuous
engagement of the customer in the development team.
○ The customer takes part in the development
⦿ is responsible for defining acceptance tests for the system.

20

Extreme Programming

⦿ People are supported through pair programming,
● collective ownership of the system code,
● and a sustainable development process that does not involve

excessively long working hours.

⦿ Change is embraced through regular system releases
● test-first development and refactoring to avoid code

degeneration

⦿ Maintaining simplicity is supported by constant refactoring
● that improves code quality by using simple designs

○ that do not unnecessarily anticipate future changes to the system.

21

XP release cycle

22

Extreme Programming
⦿ Customers are involved in specifying system

requirements.
● Together with the team, a ‘story card’ is developed

○ a story card encapsulates the customer needs
⦿ The story cards are the main inputs to the XP

planning process

⦿ Once the story cards have been developed
● 1. the development team breaks these down into tasks
● 2. estimates the effort and resources required for

implementation
● 3. the customer then prioritizes the stories for implementation

○ choosing those stories that can be used immediately to deliver
useful business support.

23

Extreme Programming
⦿ The aim is to break down functionalities to be

implemented in about two weeks
● when the next release of the system is made available to the

customer

⦿ When requirements change, the unimplemented stories
change or may be discarded.

⦿ If changes are required for a system that has already
been delivered, new story cards are developed
● and again, the customer decides the priority of these changes

24

Extreme Programming

⦿ XP takes an ‘extreme’ approach to incremental
development:
● New versions of the software may be built several times per

day

● releases are delivered to customers roughly every two
weeks

● Release deadlines are never slipped;

● If there are development problems
○ the customer is consulted
○ and functionality is removed from the planned release.

25

Extreme Programming
⦿ A fundamental precept of traditional software engineering

is to design for change.
● to prepare for possible future features

⦿ XP has discarded this principle
● ‘designing for change is often wasted effort’

○ It isn’t worth taking time to add generality to a program to
cope with change.

○ The anticipated changes are often never materialized or
they are completely completely different

⦿ The XP approach:
● changes will be implemented when real requirements

arise

26

Extreme Programming
⦿ A general problem with incremental development is that

it tends to degrade the software structure,
● changes to the software become harder and harder to

implement
● Common problems:

○ the code is often duplicated
○ parts of the software are reused in inappropriate ways
○ the overall structure degrades as code is added to the system

⦿ XP solution: the software should be constantly
refactored
● the programming team look for possible improvements to the

software
○ and implement them immediately.

● When a team member sees code that can be improved, they
make these improvements

27

Testing in Extreme
Programming...

28

Extreme Programming
⦿ XP emphasizes the importance of program testing
⦿ XP includes an approach to testing

● that reduces the chances of introducing undiscovered
errors into the current version of the system.

The key features of testing in XP are:
⦿ 1. Test-first development
⦿ 2. Incremental test development from scenarios
⦿ 3. User involvement in the test development and

validation
⦿ 4. The use of automated testing frameworks.

29

Test First Development
⦿ Test-first development is one of the most important

innovations in XP
● we write the tests before you write the code!

⦿ This means that we can run the test as the code is being
written
● and discover problems during development.

⦿ Writing tests implicitly defines the interface and a
specification of the functionality being developed.

⦿ Problems of requirements and interface
misunderstandings are reduced.

30

Test First Development
⦿ The role of the customer in the testing process:

● to help develop acceptance tests for the stories in the next
release
○ Acceptance testing is the process where the system is tested

using customer data to check that it meets the customer’s real
needs.

⦿ In XP, acceptance testing is also incremental.
⦿ The customer who is part of the team writes tests as

development proceeds.

⦿ All new code is therefore validated to ensure that it is
what the customer needs.

31

Test First Development
⦿ Test automation is essential for test-first development
⦿ Tests are written as executable components before the

task is implemented.
⦿ These testing components should be

● standalone,
● should simulate the submission of input to be tested, and

should check that the result meets the output specification.

⦿ An automated test framework is:
● a system that makes it easy to write executable tests and

submit a set of tests for execution.
○ E.g.: JUnit

32

Pair Programming...

33

Pair Programming
⦿ Another innovative practice that has been introduced in

XP
⦿ Programmers work in pairs to develop the software

⦿ They actually sit together at the same workstation to
develop the software.

⦿ However, the same pairs do not always program
together:
● Rather, pairs are created dynamically
● so that all team members work with each other during

the development process.

34

Advantage of pair programming
⦿ 1. It supports the idea of collective ownership and

responsibility for the system

● The software is owned by the team as a whole

● Individuals are not held responsible for problems with
the code

● Instead, the team has collective responsibility for
resolving these problems.

35

Advantage of pair programming

⦿ 2. It acts as an informal review process

● because each line of code is looked at by at least two
people.

● Much cheaper than code inspections and reviews

● Does not introduce delays into the development
process.

36

Advantage of pair programming

⦿ 3. It helps support refactoring

● refactoring is is a long-term benefit.

● An individual who practices refactoring may be judged
to be less efficient than one who simply carries on
developing code.

● Where pair programming and collective ownership are
used, others benefit immediately from the refactoring
○ so they are likely to support the process.

37

38

Thank you for your attention!

