
LINEAR TABLES



LEARNING OBJECTIVES

1. Master the concepts of linear tables: Understanding their definitions, 

characteristics, and general operations.

2. Comprehend the fundamentals of linear tables and their type definitions: 

Familiarize yourself with various types of linear data structures such as sequential 

lists and linked lists.

3. Be proficient in designing algorithms and implementing sequential and singly 

linked lists: Ability to develop basic operations like insertion, deletion, and search.

4. Acquire the operations of circular and doubly linked lists: Perform insertions, 

deletions, and searches in these types of linked lists efficiently.



BASIC CONCEPTS OF LINEAR TABLES AND TYPE 
DEFINITIONS

• Definition of Linear Tables: A linear table (also known as a list) is a collection of 

elements arranged sequentially. Each element has a unique position, and the order in 

which elements are stored is significant.

• Types of Linear Tables:

• Sequential Storage Structure: Also known as an array, where elements are stored in 

contiguous memory locations.

• Linked Storage Structure: Uses nodes that contain the data and a pointer to the next node in 

the sequence.



SEQUENTIAL STORAGE STRUCTURE OF LINEAR 
TABLES

• Definition: In a sequential storage structure (like arrays), elements are stored in contiguous 

memory blocks.

• Insertion and Deletion Operations:

• Insertion: When inserting an element, if the array has free space, elements may need to be shifted to 

accommodate the new element at the desired position.

• Deletion: Deleting an element involves removing it from the list and shifting the following elements to fill 

the gap.

• Key Points and Challenges:

• Maintaining efficient space usage and minimizing the shifting of elements.

• Handling the fixed size of arrays, which can limit the number of elements.



LINKED STORAGE STRUCTURE OF LINEAR TABLES

• Definition: A linked list stores elements as nodes where each node contains the data 

and a pointer to the next node.

• Types of Linked Lists:

• Singly Linked List: Each node points to the next node in the list, with the last node pointing to 

null.

• Circular Linked List: Similar to a singly linked list, but the last node points back to the head, 

creating a circular structure.

• Doubly Linked List: Each node contains two pointers—one pointing to the next node and one 

to the previous node, allowing traversal in both directions.



LINKED STORAGE STRUCTURE OF LINEAR TABLES

• Insertion and Deletion Operations:

• Singly Linked List:

• Insertion: Inserting a new node at the head or in the middle of the list requires modifying the 

pointers.

• Deletion: Deletion involves bypassing a node by adjusting the pointers to skip the node being 

deleted.

• Circular Linked List:

• Insertion: New elements can be added at any position, but the circular structure must be maintained 

by adjusting the tail node’s pointer.

• Deletion: Similar to a singly linked list, but care must be taken to maintain the circular reference.



LINKED STORAGE STRUCTURE OF LINEAR TABLES

• Insertion and Deletion Operations:

• Doubly Linked List:

• Insertion: When inserting a node, both the previous and next pointers need to be adjusted.

• Deletion: Both the previous and next pointers must be correctly updated when removing a 

node from the list.



LINKED STORAGE STRUCTURE OF LINEAR TABLES

• Key Points and Challenges:

• Managing memory dynamically.

• Understanding pointer manipulation to avoid errors like memory leaks or dangling 

pointers.

• Efficiently searching, inserting, and deleting nodes while maintaining list integrity.



CIRCULAR LINKED LIST

• Definition: A variation of a linked list where the last node points back to the first 

node, forming a circle.

• Applications: Circular linked lists are used in scenarios such as round-robin 

scheduling, buffer management, and repetitive traversals.

• Key Operations:

• Insertion: Can be performed at any position, but care must be taken to maintain the circular 

reference.

• Deletion: Similar to singly linked lists but requires special handling when the deleted node is 

the head or tail.



DOUBLY LINKED LIST AND CIRCULAR DOUBLY 
LINKED LIST

• Doubly Linked List:

• Each node has two pointers: one to the next node and one to the previous node.

• Allows traversal in both forward and backward directions.

• Efficient for operations where bidirectional traversal is needed (e.g., undo operations in 

software).

• Circular Doubly Linked List:

• The last node points to the first node, and the first node’s previous pointer points to the last 

node.

• This structure is useful for certain data management tasks where circular navigation is 

required, such as playlist management.



SUMMARY

• This theoretical material covers the key aspects of linear tables and their 

types, including sequential lists, singly linked lists, circular linked lists, and 

doubly linked lists. Each type has its own characteristics, strengths, and 

challenges, which must be understood to design efficient algorithms and data 

structures. Through a combination of lectures, task-based assignments, and 

hands-on programming exercises, students will gain a solid understanding of 

these important data structures and how to manipulate them in real-world 

scenarios.


	1. dia: Linear Tables
	2. dia: Learning Objectives
	3. dia: Basic Concepts of Linear Tables and Type Definitions
	4. dia: Sequential Storage Structure of Linear Tables
	5. dia: Linked Storage Structure of Linear Tables
	6. dia: Linked Storage Structure of Linear Tables
	7. dia: Linked Storage Structure of Linear Tables
	8. dia: Linked Storage Structure of Linear Tables
	9. dia: Circular Linked List
	10. dia: Doubly Linked List and Circular Doubly Linked List
	11. dia: Summary

