
Computer architectures

Architectures

Architectures © Vadász, 2008. Ea12

I introduce myself...

Dr. Dénes Vadász , associate professor
vadasz@iit.uni-miskolc.hu

http://www.iit.uni-miskolc.hu/vadasz
Informatics Institute building,

1st floor, room 111
University of Miskolc

Faculty of Mechanical Engineering and Informatics
IT and electrical engineering department group

Department of Information Technology
http://www.iit.uni-miskolc.hu

Architectures © Vadász, 2008. Ea13

I introduce myself...

Dr. Szilveszter Kovács, professor
szkovacs @ iit.uni-miskolc.hu

http://www.iit.uni-miskolc.hu/~szkovacs
Phone: +36 46 565-111 / 21-07
Informatics Institute building,

1st floor, 10 7A . room
University of Miskolc

Faculty of Mechanical Engineering and Informatics
Institute of Informatics

Department of Information Technology
http://www.iit.uni-miskolc.hu

Architectures © Vadász, 2008. Ea14

The purpose of the subject

• Computer
– A tool for performing a computational task described by a

programming language 1

• Architecture (structure, structure) 2

– If the goal is functional specification : specification,

– If the goal is implementation: units and their connection.

– Different levels of detail could happen in any orientation

• The purpose of the subject: to acquire general
hardware knowledge, and to learn about user
interfaces (command interpreter and graphical).
And the development of the attitude.

Architectures © Vadász, 2008. Ea15

Computer story

• Studying
https://en.wikipedia.org/wiki/Von_Neumann_architecture

• The Neumann principle in brief:
– The computer should be fully electronic

with a separate control and execution unit.
– Use a binary number system.
– The data and the programs should be in the same internal

storage, in the memory (Stored-program principle) .
– The computer should be a universal Turing machine 1 (the

principle of serial instruction execution should apply)
(Turing 1937) The hypothetical machine had an infinite
store that contained both instructions and data.

1 Operate without human intervention, automatically according to a program.

Architectures © Vadász, 2008. Ea16

Important milestones
Year Name Maker Comment

1834
Analytical
Engine

Babbage The first general purpose computer

1936 Z1 Zuse First working, with relay technology

1943 COLOSSUS
British
government

First electronic machine. Super secret

1944 Mark I Aiken First American general purpose (Harvard arch.)

1946 ENIAC Ecker/Mauchley The history of modern computers begins

1948 Neumann The Neumann principle is born

1949 EDSAC Wilkes First stored-program principle

1952 IAS Neumann The basics of today's machine design

1961 1401 IBM Business purpose, popular

1962 7094 IBM For scientific calculations

1964 360 IBM General purpose

Architectures © Vadász, 2008. Ea17

Important milestones
Year Name Maker Comment

1964 6600 CDC
First supercomputer for scientific
purposes

1965 PDP-8 DEC A widely used microcomputer

1970 PDP-11 DEC A widely used microcomputer

1974 8080 Intel General purpose machine on 8-bit chip

1974 CRAY-1 Cray First vector supercomputer

1976 Z80 Zilog For 8-bit embedded systems

1978 VAX DEC 32-bit minicomputer, 1 MIPS

1981 IBM PC IBM The age of personal computers begins

1985 MIPS MIPS The RISC era begins

1987 SPARC Sun SPARC -based workstations

1990 RS6000 IBM The first superscalar machine

Architectures © Vadász, 2008. Ea18

Important milestones
Year Name Maker Comment

1991 R4000 MIPS The processor is already 64-bit

1992 Alpha DEC Excellent RISC processor

1994 IA-64 Intel
He announces his plans, they plan to
introduce them in 1998-1999

2001 Itanium Intel True 64-bit

2003 PowerPC Apple Mac OS operating system

2003 AMD64 AMD
Compatible with 32-bit (emulates)
Opteron, Athlon

Simulation: make believe, pretending; Emulation: imitating, following an example

Architectures © Vadász, 2008. Ea19

The last decades in computing

The years 60's 70's 80's 90's

The
paradigm

Batch
processing

Time
allocation

Desktop
machines

Networks

Where?
In a

computer
center

In the
terminal

room
On a desk Mobile

The data
Numerical

data
Texts +

numbers
… +

drawings
Multimedia

Main goal Calculations Access Display
Communi-

cation

Paradigm : An example or sample suitable for proof and comparison. Following it can help you make good decisions.
A collection of accepted items and concepts, which can of course be a model.

Architectures © Vadász, 2008. Ea110

The last decades in computing 2
The years 60's 70's 80's 90's

The
paradigm

Batch
Time

sharing
Desktop Network

The
interface

Punch card
Keyboard

+ CRT
See and

click
Ask and

tell

Remote
connection

There isn't
Terminal

lines
LAN Internet

Owner
Institute
computer

center
Classes

Employees
of

departments
Everyone

Architectures © Vadász, 2008. Ea111

Attitudes...
• Computer

– A tool for performing a computational task described by a
programming language 1

• Architecture (structure, structure) 2

– If the goal is functional specification : specification,

– If the goal is implementation: units and their connection.

– Different levels of detail could happen in any orientation

• The purpose of the subject: to acquire general
hardware knowledge, and to learn about user
interfaces (command interpreter and graphical).
And the development of the attitude.

• There are also different perspectives of user roles ...

Architectures © Vadász, 2008. Ea112

General user view

• Mostly upper level

• Graphic, or command language user interface (icons,
windows, tools, files, directories, etc., command,
open, start, click drag, etc.)

• Services
– Office

– Communication

– Information collection

– Defense, management

– Specific purpose applications

Architectures © Vadász, 2008. Ea113

The programmer's view

• We are getting closer to the specifics...

• What the user sees, the programmer also sees

• Development interface (editors, make , compiler and
task builder, debugger , etc.)
– We teach this approach in other subjects

The administrator’s view
• Closer to the real machine

• Need to know the management of the operating
system and their services.

Architectures © Vadász, 2008. Ea114

Hardware knowledge

• Should I know?
– It is also easier for the simple user if he has certain

knowledge

– More for programmers...

– A system administrator has many...

– A lot for hardware, electrical engineering level

• Note that a computer is defined by the hardware and
software architecture together. We declare: this is an
idea that can be derived from the Neumann
principle!

Architectures © Vadász, 2008. Ea115

The original Neumann machine

Storage
(Memory)

Control
unit

Executive
unit

(ALU+Accum.)

I/O unit

Architectures © Vadász, 2008. Ea116

The Neumann architecture (in today's terms)

• CU: Control unit

• ALU: Arithmetic and logical unit

• Regs: Registers

• Central Memory: Central memory, store ("Operative store")

• I/O Peripheries: I/O units, peripherals

• Bus: Rail, data transmission circuits

• Central Processing Unit: Central processing unit, processor

CU

ALU

Reg

Central
Memory

CPU

I/O
Peripheries

Bus

Periphery : edge, outer part beyond the border.

Architecture: here, the main parts and their connections.

Architectures © Vadász, 2008. Ea117

Another functional model

Architectures © Vadász, 2008. Ea118

The central storage and peripherals

• The memory
– Data (bit, byte, word, block, record of fields, file, etc.) and

– containing machine instructions,

– set of addressable cells (compartments).

– A state or state change due to some physical effect (magnetization,
charge, voltage level, refraction of light, etc.)

• Peripherals (I/O units)
– Devices connected with peripheral control circuits (controller, adapter) .

• The CPU
– The processor is the unit that processes machine instructions.

It consists of several functional elements (CU , ALU, Regs , etc.)

Architectures © Vadász, 2008. Ea119

The operation of the Neumann machine

• The machine instructions (the code, the program)
and the data are in the memory.

• The CPU fetches the next machine instruction from
memory

• The CU analyzes the instruction. It interprets.
• If necessary, it fetches the operand of the instruction

from memory
• The ALU executes the instruction
• The result of the execution is written back to the

registers, or possibly to the corresponding
compartment of the memory

• Continues with the next instruction ...

Architectures © Vadász, 2008. Ea120

The state spaces

• Note the following abstractions
– The "next instruction" concept is an instruction stream

– A pointer can point to the next element on this stream.
This pointer is the program counter register (PC: Program Counter ,
IP: Instruction Pointer)

– The set of instructions in the instruction flow determines the control
state space. One of these states is determined by which instruction is
executed by the processor in the i-th step.

– There is also a data stream: the row of memory compartments and
registers that appear as operands in the successive instructions.

– The elements of the data stream determines the data state space.

– The execution of an instruction causes a state change.

Architectures © Vadász, 2008. Ea121

Questions

• Only one IS and DS can be imagined? No way!
– SIMD: can we imagine the same instruction stream on

variable (different, multiple) data streams?

– Where can it be? (e.g. vector processor)

• What is the control state space?
– What is the control state (an element of the state space)?

• Data state space? An element of this?

• State change? What causes it?

Architectures © Vadász, 2008. Ea122

Execution of the instruction stream

• Running the program (the instruction stream is the
code) is a chain of

state transitions.

• The control state-transitions chain described by the
successive values of the program counter register:

control flow

(this is the concept of process or thread)

• The Neumann machines has single control flow
(Single Instructions Stream) on a single data stream
(Single Data Stream): SISD

Flinn's 1966 classification (SISD, SIMD, MIMD)

Architectures © Vadász, 2008. Ea123

State dependence

• The state to which an instruction "tilts" depends on
the previous state ...

• The Neumann machine is state-sensitive

• Can we imagine a state-independent machine?
(Function)

Architectures © Vadász, 2008. Ea124

The Neumann machine and
imperative programming

• The imperative languages are munipulating the
course of control
– Do this with this, then this, etc.

– FORTRAN , C, Pascal, Basic

• Therefore, the imperative programming paradigm is
well suited to the Neumann machine

Imperative paradigm : fully specified steps on fully specified data

Architectures © Vadász, 2008. Ea125

Error and event handling on the Neumann
machine

• Events have a handler instruction flow
• When the event occurs, the course of the control

process changes, "jump to the handler" (after
"saving" the CPU state, the context)

• After the event handler (if possible), the control flow
should return to the "normal" instruction flow, the
process should continue running (after restoring the
status and context back, of course).

• In summary: error and event handling is done by
manipulating the control flow.

Architectures © Vadász, 2008. Ea126

A machine with a different principle:
Dataflow Machine

The Dataflow Machine (as a contrast) idea:
• separate processors for each operation (operation

can be: arithmetic, logical, function call, etc.)
• Operations (processors) wait until the value of their

operand is generated, and then produce their result.
• The processors (operations) are independent. They

give their results at the earliest possible moment.
• The order in which the operations are executed is

determined by the data stream.

programming with declarative languages

Architectures © Vadász, 2008. Ea127

Example: given a and b, let us calculate their mean and their
mean squares

IP theb sum av asq bsq sumsq avsq

1 x

2 x

3 x

4 x

5 x

sum := a + b

av := sum/2

asq := a * a

bsq := b * b

sumsq := asq + bsq

avsq := sumsq/2 6 x

A virtual Neumann machine (sequential execution)

The state vector after the execution of the 3rd abstract instruction

The flow of control

Architectures © Vadász, 2008. Ea128

Frequently used concepts

• Virtuality, virtual (apparent)
– Something that doesn't really exist, but we can still use it as

if it did

– E.g. virtual drive, emulated terminal, virtual machine, etc.

• Transparency, transparent
– Something that is there, but we don't see it, we don't notice

it, we don't have to care about it, because it is transparent.
(E.g. the aforementioned virtual disk drive is provided by a
file server over the network, then the network is
transparent, you don't have to worry about it.)

– Clear, clean, undisguised ...

Architectures © Vadász, 2008. Ea129

Example: given a and b, let us calculate their mean and their
mean squaresNeumann machine (sequential execution)

IP 800 804 808 80C 810 814

600 a

604 b

608 sum x

60C av x

610 asq x

614 bsq x

618 sumsq x

61C avsq x

800 ADD a,b,sum

804 DIV sum, 2, av

808 MUL a, a, asq

80C MUL b, b, bsq

810 ADD asq, bsq, sumsq

814 DIV sumsq, 2, avsq

Architectures © Vadász, 2008. Ea130

Example: given a and b, let us calculate their mean and their
mean squares

Dataflow Machine

**

+

+

/

/

th
e

b

2

2

avsq

asq sum bsq

av

The arrows: named or
unnamed values.

The circles: the
processors assigned to
the operations.

sumsq

Error handling:
with explicit
error values

sum := a + b

av := sum/2

asq := a * a

bsq := b * b

sumsq := asq + bsq

avsq := sumsq/2

Architectures © Vadász, 2008. Ea131

Example: given a and b, let us calculate their mean and their
mean squares

• Stream machine
– There are 6 processors for 6 operations,

– there are no "variables" (name, value, type, address),

– there are named values (a,b,asq,bsq,sum etc.).

– Named values cannot be redefined! In case of
redefinition, the processors would not know which
value to wait for!

– Named values have a type and an explicit error value!
P.s. a processor must definitely produce a value, which
can be an “error”! It may also get “error” as input.

Architectures © Vadász, 2008. Ea132

Computer - languages - computational
model

• Components of computational models
– basic elements of calculation

– model of problem description
• the nature of the description and

• the method of the description;

– model of execution
• the implementation semantics

• the control of execution

Architectures © Vadász, 2008. Ea133

The Neumann model

• The basic elements : (tipified) data assigned to
identifiable entities. (Variables, multiple value
giving)

• Problem description
– procedural/imperative (given step by step …)

• The model of the execution
– the semantics: state-transition semantics

– the control: direct control (… the course of the control…)

Semantics (Greek): semantics, the branch of linguistics dealing with the meaning and change of meaning of linguistic forms
Entity : Something that exists in substance. Element.

Architectures © Vadász, 2008. Ea134

The Dataflow model

• The basic elements : (tipified) data assigned to
identifiable entities . (One-time value delivery)

• Problem description
– declarative (listing operations, e.g. by using functions ...)

• Model of model of the execution
– the semantics : applicative

– the control : dataflow controlled

Declarative paradigm : A declarative program just enumerates.
The order of the "instructions" of such a program does not matter.
A logical programming language can also be declarative
(where the inference engine "travels" through the entire rule base).

Architectures © Vadász, 2008. Ea135

The Neumann principle machine
• Main parts of the machine, requirements:

– ALU, control unit, memory, peripherals,

– Number system 2, electronic. Before?

• Stored-program principle:
– The store contains both the data and the program. Before?

– Consequences: good and bad.

• Automatic operation (direct control):
– according to program, states, state-transitions, control

process, role of PC/IP.

• Babbage's Analytical Engine: Does it fit?

Architectures © Vadász, 2008. Ea136

The Neumann principle machine
• Babbage's Analytical Engine: Does it fit?

• The first fully automatic calculating machine. British
computing pioneer Charles Babbage (1791-1871)

• Foreground: "operational cards", for instructions ;
background: "variable cards", for inputting data .

Architectures © Vadász, 2008. Ea137

Computer: hardware and software
architecture

• The most common SW
architecture

• Direct run, monitor,
operating system

• Concept of OS
– Extended machine

– Resource manager

The layering
(layered architecture)
A layer hides the details of the layers below it.
It is enough to know only the interface of the layer below
you

Application User
interface

Operating
system

Hardware

Architectures © Vadász, 2008. Ea138

Operating system classification

• By purpose : general, purpose

• According to HW "size" : PC, small, large, super

• By number of processors, processes, and users

• According to time sharing : sequential,
time sharing: cooperative, preemtive

• According to memory management : real, virtual

• According to the implementation of the File system

Architectures © Vadász, 2008. Ea139

Summary

• Introduction

• A little history ...

• The Neumann principle machine and the

• Dataflow machine.

• Computational models

Computer architectures

Architectures

End

