
Computer architectures

How to increase the processor’s performance

Increase the performance © Vadász,
2007

Ea5 2

Today's topics

• CISC and RISC

• Parallelism

• Instruction level parallelism

• Pipeline processing

• Multiplication (superscalarity)

• Dealing with dependencies

• Maintaining the serial consistency

Increase the performance © Vadász,
2007

Ea5 3

Performance enhancement

• Non-structural methods
– Increase the clock frequency,

– Reducing the number of instructions (optimization)

• Structural methods
– Cycle number reduction: with RISC architectures ...

– Cycle number reduction with parallelization

Increase the performance © Vadász,
2007

Ea5 4

CISC and RISC

• CISC: Complex Instruction Set Computer

• RISC: Reduced Instruction Set Computer
– (These are CPU characteristics)

• Historically, CISCs come first
– the more you use the hardware,

– complex instructions with micro-programs,

– programming is easier with complex instructions (e.g.
PUSHALL),

– provide complex addressing modes.

– The idea is very good, but ...

Increase the performance © Vadász,
2007

Ea5 5

The RISC idea

• Statistics show that simple instructions are more
common.

• Then let's “optimise" the CPU for them! (This is the
new idea!)

• The simple instructions have the same logic:
– simpler circuits are faster,

– simpler, uniform decoding, which is also faster,

– there can be more registers, this also speeds it up,

– the addressing methods are also simpler.

• More complex tasks, on the other hand, require more
instructions. Maybe the program will be longer.

Increase the performance © Vadász,
2007

Ea5 6

Additional benefits

• The cycle time is the same (mostly 1 instruction / 1 cycle)
This helps with super channeling (see later).

• Simple circuits (allowing higher frequency) allow
multiple internal units. Superscalarity is possible.

• "Speculative execution" is also easier.

• The cache also fits in the chip, it is getting bigger.

• Matching to operating system and compiler.

Increase the performance © Vadász,
2007

Ea5 7

Parallels

• Inside CPU :
– Application of a pipeline, channel,

– With multiplication: several instructions are processed in
parallel

• Apart from CPU:
– Fixed task distribution (co-processors)

• for floating point arithmetic,

• for graphics, image processing, etc.

– Multiprocessor systems with variable task distribution
(dual/quad systems).

Increase the performance © Vadász,
2007

Ea5 8

Available and utilized parallelism

• Concurrency is one of the best performance
enhancing techniques

• The available parallelism: what arises from the task,
from their solution, it is included in the solution of
the problem

• Utilized parallelism: what we can enforce during
execution

Increase the performance © Vadász,
2007

Ea5 9

The available and utilized parallelism

• It has two types: functional parallelism and data parallelism.
• Functional parallelism comes from the logic of the task

solution. It is conceivable that even in an imperative program
some threads could run in parallel.
Functional parallelism is usually irregular (except cycle-level
parallelism).
The level of parallelism is not high (weak parallelism).

• Data parallelism comes from the use of data structures whose
elements can be operated in parallel.
Mostly regular parallelism.
The parallelism can be strong (large, multi-digit sized).

Increase the performance © Vadász,
2007

Ea5 10

Data parallelism

• A data-parallel architecture is required.

• Vector processors.

Increase the performance © Vadász,
2007

Ea5 11

The levels of the available
functional parallelism

• Granulation can be different
– Instruction level parallelism (fine granularity);

• Instructions are executed in parallel

– Cycle level parallelism (medium granularity);
• Different consecutive iterations in parallel...

– Process-level parallelism (medium granularity);
• Procedures, function calls in parallel... Threads...

– Program level parallelism (coarse granularity).
• User level. Processes (tasks) in parallel.

• You need the help of the operating system to use them.
Also you need a multi-processor HW.

Increase the performance © Vadász,
2007

Ea5 12

Utilization of procedure-level parallelism

• Procedures in parallel .
– Threads must be applied

– You can use a development system,

– utilized with the help of the operating system

Utilization of cycle-level parallelism

• Iterations in parallel.
– The compiler helps you discover this

Increase the performance © Vadász,
2007

Ea5 13

Utilization of instruction-level parallelism

• Instructions are executed in parallel with instruction
level parallel architectures (Instuction-Level Parallel,
ILP processors)
– In traditional "serial" programs, this remains hidden

(transparent): the processor, or the compiler discovers the
possibility of parallelization inherent in the program.

• Pipeline processing and

• with multiplication of the functional elements within
the processor.

Increase the performance © Vadász,
2007

Ea5 14

Pipeline processing

• Processing of a single instruction goes through
several stages. At least:
– instruction retrieval (fetch),

– decoding (decode) (and instruction „dispatch or allocate”),

– the actual execution (commit),

– writing back the result (retire).

• Each stages are carried out by different units, they
can work in parallel:
– during the execution of the i. instruction

– i+1 can be decoded, instruction,

– i+2 can be retrieved etc.

Increase the performance © Vadász,
2007

Ea5 15

The benefits of the RISC

• Same instructions - same execution times.

• One instruction can actually executed in one cycle!

There are also problems
• Timing risk: an instruction needs the result of the

previous one. You have to wait for it. Dependency.

Increase the performance © Vadász,
2007

Ea5 16

The superpipe of the R3000

• It divides the execution of the instructions into 5
stages. Each stage divided to 2 phases.

• 1 stage/1 cycle

• The stages:
– Instruction retrieval (Fetch) IF

– Readings, inspection RD

– ALU operations ALU

– Data memory access MEM

– Register write back WB

R3000 case study

Increase the performance © Vadász,
2007

Ea5 17

Used during the execution of the instruction

• Address translation is supported by an associative memory
(TLB, Translation Lookaside Buffer),

• the instruction cache (I-Cache),

• the data cache (D-Cache),

• the register file (RF).

IF RD ALU MEM WB

TLB

I-Cache RF ALU D-Cache RF

01 01 01 01 0102 02 02 02 02

TLB

R3000 case study

Increase the performance © Vadász,
2007

Ea5 18

The activities of the stages and phases

IF
01 Mapping a virtual address to a physical one using a TLB

02 Sends the mapped address to I-Cache

RD

01 Retrieves from the I-Cache, decodes, checks

02 Reading registry file
Address

calculation

ALU
01 Arithmetic

calculation

Data address calculation Decision

02 Data address mapping

MEM
01 Send address to D-Cache

02 Moving data

WB 01
Write registry

file
Write

registry file

R3000 case study

Arithmetic
instruction

Store instruction Load
instruction

Jump
instruction

Increase the performance © Vadász,
2007

Ea5 19

The 5-depth pipeline

RDIF ALU MEM WB

RDIF ALU MEM WB

RDIF ALU MEM WB

RDIF ALU MEM WB

RDIF ALU MEM WB

i-2

i-1

i

i+1

i+2

Current
cycle

R3000 case study

Increase the performance © Vadász,
2007

Ea5 20

PowerPC 601 assembly lines

• Branches
– Extraction + Decoding-Dispatch-Execution-Estimation (2

stages)

• Fixed-point arithmetic
– Fetch + Decode-dispatch + Execute + Writeback (4 stages)

• Load/Store instructions
– Fetch + Decode-dispatch + Address calculation + Cache +

Writeback (5 stages)

• Floating point arithmetic
– Fetch + Decode + Dispatch + Execution1 + Execution2 +

Writeback (6 stages)

Increase the performance © Vadász,
2007

Ea5 21

Comments

• The super-channel CPU: a lot of stages

• The ppipeline technique can be applied not only
within the processor (at the micro level).

• It is also used at the macro level (several processors
form a pipeline).

• Also on a logical level (pay attention to the shell
pipeline)

• Dataflow machines can be also considered pipeline

Increase the performance © Vadász,
2007

Ea5 22

Multiplication of functional units

• Multiplication of functional units is a common
parallelization technique

• Multiplication is also possible in instruction-level
parallelization:
– Multiple decoders

– Multiple execution units (ALU/EU) etc.

• Multiplication is also natural at the macro level
– See MIMD parallelism

Increase the performance © Vadász,
2007

Ea5 23

Pipeline versus Multiplication

FU 1 FU 3FU 2

FU 3

FU 2

FU 1

FU - functional unit

Pipe-lined CPU

Superscalar CPU

Increase the performance © Vadász,
2007

Ea5 24

Multiplication within the processor

• One type: VLIW (Very Long Instruction Word)
architectures
– E.g. Trace, Intel IA64

– A special compiler produces the long instruction (e.g. a
floating-point and a fixed-point ADD or MUL in a long
instruction, possibly even "wider")

– Several ALUs, in parallel, the long instruction is
"decomposed" by the decoder

– Static dependency resolution (see dependency later)

• Another: superscalar processors

Increase the performance © Vadász,
2007

Ea5 25

Multiplication within a processor,
superscalar processors

• In one step (time window) several traditional
instructions are fetched in

• Several traditional instructions are analyzed by
(possibly several) decoders, and multiple instructions
are issued for execution

• Several ALUs (execution unit, EU) work in parallel

• "How many" channels?

F D

EU EU EU

Registry file

…

I-Cache

Increase the performance © Vadász,
2007

Ea5 26

Superscalar processors

• It is characterized by dynamic dependency resolution

• The pipeline technique is also common

• Typical tasks in superscalar processing
– Parallel decoding

– Superscalar (multipath) instruction issue

– Parallel execution

– Maintaining serial consistency of execution

– Maintaining serial consistency of exception
(The idea came up as early as 1970 [Tjaden and Flynn]. The first superscalar processor

Released in 1982-83 [IBM]. The name superscalar has been used since 1989.)

Increase the performance © Vadász,
2007

Ea5 27

Dependencies between instructions

• Dependencies are the fundamental limitation of
parallel execution

• Data dependency: an instruction uses the result of
the previous one

• Control dependency: conditional jump (control
transfer) the control branches are depending on the
result of the instruction

• Resource dependency: instructions require the same
resource (e.g. some execution unit, ALU)

Increase the performance © Vadász,
2007

Ea5 28

Data dependencies
• A real dependency is the RAW (Read after Write)

dependency
i1: load r1, a // r1 ← (a)

i2: add r2, r1, r1 // r2 ← (r1) + (r1)

• False dependencies are WAR (Write after Read) and
WAW (Write after Write) dependencies,
i1: mul r1, r2, r3 // r1 ← (r2) * (r3)

i2: add r2, r4, r5 // r2 ← (r4) + (r5)

They can be resolved by registry renaming
i1: mul r1, r2, r3 // r1 ← (r2) * (r3)

i2: add r36 , r4, r5 // r36 ← (r4) + (r5)

Increase the performance © Vadász,
2007

Ea5 29

Additional data dependencies,
dependency graph

• Cycle dependency (repetition dependency)
– In the case of k-th order cycle dependency, the instruction

in question is depending on the value calculated in the k.
previous cycles

• Data and control dependencies can be discovered and
recorded in a dependency graph.
– Directed graph: nodes are instructions, edges are

dependencies

• A dependency graph can help reorder instructions to
resolve true dependencies.

Increase the performance © Vadász,
2007

Ea5 30

Detecting and resolving dependencies

• Detection and resolution of dependencies can be
static or dynamic

• Static: the compiler detects and resolves it: it
generates a reordered sequence of instructions (code
optimization)

– VLIW (Very Long Instruction Word) processors expect a
sequence of instructions without dependencies

– It can also be used for superscalar and pipeline processors

• Dynamic: detection and management of
dependencies is the task of the processor
– Most superscalar processors are use it

Increase the performance © Vadász,
2007

Ea5 31

Dynamic dependency handling
• The processor uses two sliding windows

– Instruction window, in which
• there are the instructions that you would issue in the next cycle ;

– Execution window, in which
• The instructions are still being executed (there is no result yet).

• In every step, it checks if in the Instruction window
– there is an instruction dependent on the instructions of the

execution window (not ready yet) ,
– respectively is there a dependency between the instructions

of the instruction window.
– The dispatch depends on these (the independents can be

dispatched for execution) and the dispatch policy

The processor © Vadász, 2008. Ea5 32

AMD “ Zen 3 ” Microarchitecture

Increase the performance © Vadász,
2007

Ea5 33

Dispatch policies

• Blocking execution
– It blocks an instruction until its dependency is removed

• Out of order execution
– dispatch independents out of sequence after the blocked one

• Speculative execution
– It issues both branches to handle control dependency

Increase the performance © Vadász,
2007

Ea5 34

Speculative execution

• Each instruction (operation, elementary instruction)
is executed as soon as possible, and regardless of
whether its result will be needed or not ...
(as soon as possible + regardless of its necessity.
If it is unnecessary, it is needed to be ensured that it
does not cause an error!).

• The "load" instructions (are quite frequent and quite
expensive) e.g. it is advisable to perform it
speculatively (as soon as possible and in any case).

Increase the performance © Vadász,
2007

Ea5 35

Maintaining serial consistency

• Consistency here: free from contradiction
– If the order is "overturned" because of the static or

dynamic dependency management, or code optimization?
The programmer's intention? Logical integrity?

• Even with parallel execution, the logic of serial
execution must be maintained! (Instruction level parallelism)

• Serial consistency can be
– Serial consistency of instruction processing,

• Processor consistency (order of instructions)

• Memory consistency (order of memory accesses)

– Serial consistency of exception processing

Increase the performance © Vadász,
2007

Ea5 36

Processor consistency

• The order in which the instructions are completed is
the question

• In case of “Weak consistency”, the execution order
may differ from the programmed one, but this
should not cause an integrity error.

• In case of “Strong consistency”, the execution order
must be the programmed one
– Most of the time this is done by a reordering buffer

(ROB , ReOrder Buffer)

Increase the performance © Vadász,
2007

Ea5 37

ROB

• ROB is a circular buffer with start and end pointers.
The start pointer indicates the location of the next free
entry. The status of the instruction associated with the
entry (issued, in progress, completed) is recorded for
each entry. An instruction can only be written back,
when it has finished and all the instructions before it
has already been written back.

• ROB also supports the validation of instructions
resulting from speculative execution (if it turns out that it
is really necessary, or not) and non-validation (with
additional status indicator)

Increase the performance © Vadász,
2007

Ea5 38

The interrupt handling sequence

• This consistency is also supported by ROB

• interruptions and exceptions are accepted by the
processor when the instruction is written back
(validated) from the ROB

Increase the performance © Vadász,
2007

Ea5 39

Memory consistency

• In case of weak memory consistency, there may be a
deviation from the programmed order
– where the programmer's intention is not violated,

– Speculative execution is also possible with load-store
instructions: usually loads can precede stores

Computer architectures

How to increase the processor’s performance

End

