Embarrassingly Parallel Computations
Creating the Mandelbrot set

Péter Kacsuk

Laboratory of Parallel and Distributed Systems
MTA SZTAKI Research Institute
kacsuk@sztaki.hu
www.lpds.sztaki.hu
Definition of the Mandelbrot set

Definition:
A Mandelbrot set is a set of points in a complex plane computed by iterating a function. Usually the function is:

\[Z_{k+1} = Z_k^2 + c \]

where \(Z_k \) is the \(k \)th iteration of the complex number:

\[z = a + bi \quad \text{and} \quad z_0 = 0 \]

\(c \) is a complex number giving the position of the point in the complex plane.
First iterations of the Mandelbrot set

Notice that

\[z_k^2 = a^2 + 2abi + bi^2 = a^2 - b^2 + 2abi \]

therefore:

\[
\begin{align*}
z_{k+1,\text{real}} &= z_{k,\text{real}}^2 - z_{k,\text{imag}}^2 + c_{\text{real}} \\
z_{k+1,\text{imag}} &= 2z_{k,\text{real}}z_{k,\text{imag}} + c_{\text{imag}}
\end{align*}
\]

Computing the first iterations:

\[
\begin{align*}
z_{1,\text{real}} &= c_{\text{real}} \\
z_{1,\text{imag}} &= c_{\text{imag}} \\
z_{2,\text{real}} &= c_{\text{real}}^2 - c_{\text{imag}}^2 + c_{\text{real}} \\
z_{2,\text{imag}} &= 2c_{\text{real}}c_{\text{imag}} + c_{\text{imag}}
\end{align*}
\]
The iterations are stopped when the magnitude of z is greater than 2 (which indicates that z will eventually become infinite)

$$z_{\text{length}} = \text{square}(a^2 + b^2) < 2$$

or the number of iterations reaches some arbitrary limit.

Given the termination condition, all the Mandelbrot points must be within a circle with its center at the origin and of radius 2.

Termination condition of iterations

- Z should be computed for each point of this circle
- C should be taken from this circle
Computing the Mandelbrot set

A routine for computing the value of one point of the set and returning the number of iterations could be of the form:

```c
int cal_pixel(complex c)
{
    /* declarations: z_k = 0 */
    count = 0;
    do {
        /* compute z_{k+1} = z_k^2 + c */
    } while ((lengthsq < 4.0) && (count < max));
    return count;
}
```
Visualisation of the Mandelbrot set

Area of full set

Area to visualise

Display screen

c.real = real_min + x * (real_max - real_min)/disp_width

c.imag = imag_min + y * (imag_max - imag_min)/disp_height
Visualisation of the Mandelbrot set

For each point of a rectangle of the circle we compute the iterations. We allocate different colours to the iteration numbers where the iteration terminated for a particular \(c\) point.

```c
for (x = 0; x < disp_width; x++) /* x, y are screen coord.s */
    for (y = 0; y < disp_heigth; y++) {
        c.real = real_min + ((float)x * scale_real);
        c.imag = imag_min + ((float)y * scale_imag);
        color = cal_pixel( c );
        display(x, y, color); }

where

scale_real = (real_max - real_min)/disp_width;
scale_imag = (imag_max - imag_min)/disp_heigth;
```
A typical image of the Mandelbrot set
Expanding resolution during the visualisation of the Mandelbrot set

- The resolution is expanded at will to obtain fascinating images.
- After computing one image we can zoom to a smaller part of the original area and enlarge it to the size of the screen window.
- Computing and visualising again the Mandelbrot set we have the impression to travel in the world of fractals deeper and deeper.
- The zoom area is selected by the mouse.
Expanding resolution

- Display screen
- Area of full set
- Area to visualise; 1st image
- 1st display
- 2nd display
- Area to visualise; 2nd image
Parallelising the Mandelbrot set computation

- Basic principle: **process farm (master-slave)** approach
- Two orthogonal methods of parallelising the code:
 1. **Data partitioning**
 - by square regions
 - by row (or column) regions
 2. **Task assignment**
 - Static
 - Dynamic
The process farm parallelisation approach

The code of each slave is the same.
Static row region
data partitioning

Process 1
Map

Process 2
Map

Process 24
Analysis of the Mandelbrot set computation

- **Problem of exact analysis**: we do not know how many iterations are needed for each pixel.

- **The number of iterations** for each \((n)\) pixel is some function of \(n\) but cannot exceed \(\text{max}\). Therefore, the sequential time is

\[
t_s \leq \text{max} \times n
\]

or a sequential **time complexity** of \(O(n)\).
Analysis

- Three phases of the parallel program:
 - Phase 1: Communication
 - First the row number is sent to each slave, one data item to each of \(s \) slaves:
 \[
 t_{\text{comm1}} = s \times (t_{\text{startup}} + t_{\text{data}})
 \]
 - Phase 2: Computation
 - The slaves perform their Mandelbrot computation in parallel:
 \[
 t_{\text{comp}} \leq (\text{max} \times n) / s
 \]
 - Phase 3: Communication
 - The results are passed back to the master by each slave:
 \[
 t_{\text{comm2}} = s \times (t_{\text{startup}} + t_{\text{data}})
 \]
Analysis

- **Total parallel time:**
 \[t_p \leq \frac{(\text{max} \times n)}{s} + 2s \times (t_{\text{startup}} + t_{\text{data}}) \]

- **Speed-up:**
 \[SP = \frac{t_s}{t_p} \]
 \[1/SP = \frac{(\text{max} \times n)}{s} + 2s \times (t_{\text{startup}} + t_{\text{data}}) \]
 \[= 1/s + 2s \times (t_{\text{startup}} + t_{\text{data}}) / \text{max} \times n \rightarrow 1/s \]

 if \(\text{max} \) or \(n \) is large.
Coarse-grain, static, row region data partitioning with few processors

Drawback: unbalanced computation among processors
Fine-grain, static, row region data partitioning with few processors

Advantage: more balanced computation among processors

See implementation in **GRAPNEL**
Dynamic row region data partitioning with few processors

Advantage: even more balanced computation among processors

Exercise: rewrite GRAPNEL program to dynamic partition, compare with the static one by PROVE.
Exercise: rewrite the row partitioned GRAPNEL program to square partitioned one. Write both static and dynamic version. Compare all versions by PROVE.
A typical image of the Mandelbrot set