
University of Miskolc

Faculty of Mechanical Engineering and Informatics

Java Web Application Development Technology
N13020008

JSP – Java Servlet Pages
TomCat

JavaBeans

Tamás Tompa, PhD
assistant professor

Department of Information Technology

University of Miskolc

2024.

What is JSP?

 Java Server Pages (JSP) is a server-side programming technology that

enables the creation of dynamic, platform-independent method for

building Web-based applications

⚫ technology for developing Webpages that supports dynamic content

 JSP have access to the entire family of Java APIs, including the JDBC API

to access enterprise databases

 JavaServer Pages component is a type of Java servlet that is designed

to fulfill the role of a user interface for a Java web application

 Using JSP, you can collect input from users through Webpage forms,

present records from a database or another source, and create Webpages

dynamically

 JavaServer Pages often serve the same purpose as programs

implemented using the Common Gateway Interface (CGI)

Environment Setup

 Java Software Development Kit (SDK)

⚫ setting up the PATH environment variable appropriately

 Setting up Web Server: Tomcat

⚫ Apache Tomcat is an open source software implementation of the

JavaServer Pages and Servlet technologies (https://tomcat.apache.org/)

⚫ Since servlets are not part of the Java Platform, Standard Edition, you must

identify the servlet classes to the compiler

 set CATALINA = C:\apache-tomcat-5.5.29

⚫ After a successful startup, the default web-applications included with

Tomcat will be available by visiting http://localhost:8080/

⚫ Start the server: C:\apache-tomcat-5.5.29\bin\startup.bat

set PATH = C:\jdk1.5.0_20\bin;%PATH%

set JAVA_HOME = C:\jdk1.5.0_20

https://tomcat.apache.org/
http://localhost:8080/

Apache Tomcat

 Open-source web server and servlet container developed by the

Apache Software Foundation

 Completely open-source and free to use under the Apache License

 Widely used for running Java-based web applications and supports

technologies such as Java Servlets, JavaServer Pages (JSP), WebSockets,

and more

 Designed to be lightweight and easy to use

 Can be configured through XML files, making it flexible for different

development and production environments. For example, the server.xml

file is used to configure

 Servlet and JSP Support
⚫ implements the Java Servlet and JavaServer Pages (JSP) specifications,

allowing developers to run dynamic web applications written in Java

 Compontents: Catalina (servlet container), Coyote (HTTP connector),

Jasper (JSP engine), Cluster (load balancing)

Tomcat install

 Zip or Windows Service Installer (preferred)

⚫ https://tomcat.apache.org/download-11.cgi

https://tomcat.apache.org/download-11.cgi

Tomcat starting

 C:\Program Files\Apache Software Foundation\Tomcat 11.0\bin>

 startup.bat

Tomcat after starting

 http://localhost:8080/

JSP architecture

 The web server needs a JSP engine, i.e, a container to process JSP pages

 The JSP container is responsible for intercepting requests for JSP pages

JSP processing

1. As with a normal page, your browser sends an HTTP request to the

web server

2. The web server recognizes that the HTTP request is for a JSP page

and forwards it to a JSP engine. This is done by using the URL or JSP

page which ends with .jsp instead of .html

3. The JSP engine loads the JSP page from disk and converts it into a

servlet content. This conversion is very simple in which all template text

is converted to println() statements and all JSP elements are converted

to Java code. This code implements the corresponding dynamic behavior

of the page

4. The JSP engine compiles the servlet into an executable class and

forwards the original request to a servlet engine

Processing
5. A part of the web server called the servlet engine loads the Servlet

class and executes it. During execution, the servlet produces an output

in HTML format. The output is furthur passed on to the web server by

the servlet engine inside an HTTP response

6. The web server forwards the HTTP response to your browser in

terms of static HTML content

7. Finally, the web browser handles the dynamically-generated

HTML page inside the HTTP response exactly as if it were a static page

Lifecycle

1. Compilation

2. Initialization

3. Execution

4. Cleanup

Lifecycle

 Compilation
⚫ JSP engine first checks to see whether it needs to compile the page. If the

page has never been compiled, or if the JSP has been modified since it was

last compiled, the JSP engine compiles the page

 Initialization
⚫ When a container loads a JSP it invokes the jspInit() method before

servicing any requests

 Execution
⚫ represents all interactions with requests until the JSP is destroyed

 Cleanup
⚫ represents when a JSP is being removed from use by a container

⚫ jspDestroy() method

Lifecycle

Syntax

 The Scriptlet
⚫ a scriptlet can contain any number of JAVA language statements

hello.jsp and put this file in C:\apache-tomcat7.0.2\webapps\ROOT

-> http://localhost:8080/hello.jsp

<% code fragment %>
<%= expression %>

<html>

<head>

<title>

Hello World

</title>

</head>

<body>

Hello World!

<% out.println("Your IP address is " + request.getRemoteAddr()); %>

</body>

</html>

Syntax

 The Scriptlet
⚫ a scriptlet can contain any number of JAVA language statements

hello.jsp and put this file in C:\apache-tomcat7.0.2\webapps\ROOT

-> http://localhost:8080/date.jsp

<% code fragment %>
<%= expression %>

<html>

<head><title>A Comment Test</title></head>

<body>

<p>Today's date: <%= (new java.util.Date()).toLocaleString()%></p>

</body>

</html>

Comments

 JSP comment marks text or statements that the JSP

container should ignore

<%-- This is JSP comment --%>

<html>

<head><title>A Comment Test</title></head>

<body>

<h2>A Test of Comments</h2>

<%-- This comment will not be visible in the page source --%>

</body>

</html>

Syntax

S.No. Syntax & Purpose

1
<%-- comment --%>
A JSP comment. Ignored by the JSP engine.

2
<!-- comment -->
An HTML comment. Ignored by the browser.

3
<\%
Represents static <% literal.

4
%\>
Represents static %> literal.

5
\'
A single quote in an attribute that uses single quotes.

6
\"
A double quote in an attribute that uses double quotes.

Decision-Making Statements

<%! int day = 3; %>

<html>

<head><title>IF...ELSE Example</title></head>

<body>

<% if (day == 1 || day == 7) { %>

<p> Today is weekend</p>

<% } else { %>

<p> Today is not weekend</p>

<% } %>

</body>

</html>

Actions

 The actions use constructs in XML syntax to control the behavior of

the servlet engine

 You can dynamically insert a file, reuse JavaBeans components, forward

the user to another page, or generate HTML for the Java plugin

 <jsp:include> Action

 Let us define the following two files date_action.jsp and main_action.jsp

as follows. Following is the content of the date_action.jsp file:

<jsp:action_name attribute = "value" />

<jsp:include page = "relative URL" flush = "true" />

<p>Today's date: <%= (new java.util.Date()).toLocaleString()%></p>

Actions

 main_action.jsp

<html>

<head>

 <title>The include Action Example</title>

</head>

<body>

<center>

<h2>The include action Example</h2>

<jsp:include page = "date_action.jsp" flush = "true" />

</center>

</body>

</html>

Task1: date and time

 Create a basic JSP web page that displays a welcome

message and dynamically shows the current date and

time

 Create a new JSP file called welcome.jsp

 Structure the JSP page:

⚫ Add the following elements to your JSP file:

⚫ A header (<h1>) that says "Welcome to My JSP Page!"

⚫ A paragraph that introduces the purpose of the page

⚫ Use JSP code to dynamically display the current date and

time

⚫ Inside the JSP file, add a scriptlet (<% %>) to get the

current date and time using Java's java.util.Date class.

⚫ Display the result inside your HTML content

Task1: date and time

<%@ page language="java" contentType="text/html; charset=UTF-8"

pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

<head> <meta charset="UTF-8">

 <title>JSP Welcome Page</title>

</head>

<body>

<h1>Welcome to My JSP Page!</h1>

<p>This page dynamically shows the current date and time using JSP.</p>

<p>Current date and time:

<% java.util.Date currentDate = new java.util.Date();

out.println(currentDate.toString());

%>

</p>

</body>

 </html>

Form processing

 The browser uses two methods to pass this information to

the web server
⚫ These methods are the GET Method and the POST Method

 GET method
⚫ sends the encoded user information appended to the page

request. The page and the encoded information are separated by

the ? character

 POST method
⚫ packages the information in exactly the same way as the GET

method, but instead of sending it as a text string after a ? in the

URL it sends it as a separate message
 using getParameter() method to read simple parameters and

getInputStream() method to read binary data stream coming from the

client

http://www.test.com/hello?key1=value1&key2=value2

Form processing

 GET Method Example Using URL

http://localhost:8080/main.jsp?first_name=ZARA&last_name=ALI

<html>

<head>

 <title>Using GET Method to Read Form Data</title>

</head>

<body>

<h1>Using GET Method to Read Form Data</h1>

<p>First Name: <%= request.getParameter("first_name")%> </p>

<p>Last Name: <%= request.getParameter("last_name")%> </p>

</body>

</html>

http://localhost:8080/main.jsp?first_name=ZARA&last_name=ALI

main.jsp

Form processing

 GET Method Example Using URL

http://localhost:8080/main.html

http://localhost:8080/main.html

main.html

<html>

<body>

<form action = "main.jsp" method = "GET">

First Name: <input type = "text" name = "first_name">

Last Name: <input type = "text" name = "last_name" />

<input type = "submit" value = "Submit" />

</form>

</body>

</html>

Form processing

 POST Method Example Using URL

http://localhost:8080/main2.jsp

main2.jsp

<html>

<head>

 <title>Using GET and POST Method to Read Form Data</title>

</head>

<body>

<center>

<h1>Using POST Method to Read Form Data</h1>

 <p>First Name: <%= request.getParameter("first_name")%> </p>

 <p>Last Name: <%= request.getParameter("last_name")%> </p>

</body>

</html>

Form processing

 POST Method Example Using URL

http://localhost:8080/hello.html

hello.html

<html>

<body>

<form action = "main.jsp" method = "POST">

 First Name: <input type = "text" name = "first_name">

 Last Name: <input type = "text" name = "last_name"/>

 <input type = "submit" value = "Submit"/>

</form>

</body>

</html>

Task2: input form

 Create a JSP web page that takes a user’s name through

an input form and displays a personalized greeting

message based on the input

 Create two JSP files:
⚫ input.jsp and greet.jsp

 Create the input form (input.jsp):
⚫ In the input.jsp file, create a simple form that asks for the user’s

name

⚫ When the user submits the form, the input will be sent to greet.jsp.

Task2: input form

<%@ page language="java" contentType="text/html; charset=UTF-8"

pageEncoding="UTF-8"%>

 <!DOCTYPE html>

<html>

<head> <meta charset="UTF-8">

 <title>User Input Form</title>

</head>

<body>

<h1>Welcome! Please Enter Your Name</h1>

 <form action="greet.jsp" method="post">

<label for="name">Name:</label>

 <input type="text" id="name" name="userName">

<input type="submit" value="Submit">

</form>

</body>

</html>

input.jsp

Task2: input form

greet.jsp

<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>Greeting Page</title>

</head>

<body>

<h1>Greeting Page</h1>

<%

String userName = request.getParameter("userName");

if (userName != null && !userName.trim().isEmpty()) {

 out.println("<h2>Hello, " + userName + "!</h2>"); }

else {

 out.println("<h2>Hello, Guest!</h2>");

 }%>

</body>

</html>

JSP cont…

 More examples on the

https://www.w3schools.com/html/default.asp web page...

https://www.w3schools.com/html/default.asp

JSP - JavaBeans

 A JavaBean is a specially constructed Java class written in

the Java and coded according to the JavaBeans API

specifications

 Following are the unique characteristics that distinguish a

JavaBean from other Java classes:

⚫ It provides a default, no-argument constructor

⚫ It should be serializable and that which can implement

the Serializable interface

⚫ It may have a number of properties which can be read

or written

⚫ It may have a number of "getter" and "setter" methods

for the properties

JavaBeans Properties

 JavaBean property is a named attribute that can be accessed

by the user of the object

 The attribute can be of any Java data type, including the

classes that you define

 Property may be read, write, read only, or write only

 Accessed through two methods
⚫ getPropertyName()

 if property name is firstName, your method name would be

getFirstName() to read that property. This method is called accessor

 read-only

⚫ setPropertyName()
 if property name is firstName, your method name would be

setFirstName() to write that property. This method is called mutator

 write-only

JavaBeans example
public class StudentsBean implements java.io.Serializable {

private String firstName = null;
private String lastName = null;
private int age = 0;

 public StudentsBean() {
}

public String getFirstName(){
 return firstName;
}
public String getLastName(){
 return lastName;
}
public int getAge(){
 return age;
}
public void setFirstName(String firstName){
 this.firstName = firstName;
}
public void setLastName(String lastName){
 this.lastName = lastName;
}
public void setAge(Integer age){
 this.age = age;
}

}

Accessing JavaBeans

 useBean action declares a JavaBean for use in a JSP

 Example:

<jsp:useBean id = "bean's name" scope = "bean's scope" typeSpec/>

<html>

 <head>

 <title>useBean Example</title>

 </head>

 <body>

 <jsp:useBean id = "date" class = "java.util.Date" />

 <p>The date/time is <%= date %>

 </body>

</html>

Accessing JavaBeans Properties

 <jsp:getProperty/> action to access the get methods

 <jsp:setProperty/> action to access the set methods

 The property attribute is the name of the get or the set methods that

should be invoked

<jsp:useBean id = "id" class = "bean's class" scope = "bean's scope">

 <jsp:setProperty name = "bean's id" property = "property name" value = "value"/>

 <jsp:getProperty name = "bean's id" property = "property name"/>

 ………………………….............

</jsp:useBean>

Accessing JavaBeans Properties

<html>

<head>

 <title>get and set properties Example</title>

</head>

<body>

 <jsp:useBean id = "students" class = "StudentsBean">

 <jsp:setProperty name = "students" property = "firstName" value = "Zara"/>

 <jsp:setProperty name = "students" property = "lastName" value = "Ali"/>

 <jsp:setProperty name = "students" property = "age" value = "10"/>

 </jsp:useBean>

 <p>Student First Name: <jsp:getProperty name = "students" property = "firstName"/> </p>

 <p>Student Last Name: <jsp:getProperty name = "students" property = "lastName"/> </p>

 <p>Student Age: <jsp:getProperty name = "students" property = "age"/> </p>

</body>

</html>

 Example:

 Output:
⚫ Student First Name: Zara

⚫ Student Last Name: Ali

⚫ Student Age: 10

Thank you for your attention!

	1. dia
	2. dia: What is JSP?
	3. dia: Environment Setup
	4. dia: Apache Tomcat
	5. dia: Tomcat install
	6. dia: Tomcat starting
	7. dia: Tomcat after starting
	8. dia: JSP architecture
	9. dia: JSP processing
	10. dia: Processing
	11. dia: Lifecycle
	12. dia: Lifecycle
	13. dia: Lifecycle
	14. dia: Syntax
	15. dia: Syntax
	16. dia: Comments
	17. dia: Syntax
	18. dia: Decision-Making Statements
	19. dia: Actions
	20. dia: Actions
	21. dia: Task1: date and time
	22. dia: Task1: date and time
	23. dia: Form processing
	24. dia: Form processing
	25. dia: Form processing
	26. dia: Form processing
	27. dia: Form processing
	28. dia: Task2: input form
	29. dia: Task2: input form
	30. dia: Task2: input form
	31. dia: JSP cont…
	32. dia: JSP - JavaBeans
	33. dia: JavaBeans Properties
	34. dia: JavaBeans example
	35. dia: Accessing JavaBeans
	36. dia: Accessing JavaBeans Properties
	37. dia: Accessing JavaBeans Properties
	38. dia: Thank you for your attention!

