
University of Miskolc

Faculty of Mechanical Engineering and Informatics

Java Web Application Development Technology
N13020008

XML – Extensible Markup Language

Tamás Tompa, PhD
assistant professor

Department of Information Technology

University of Miskolc

2024.

What is XML?

 XML stands for Extensible Markup Language
⚫ Markup: defines set of rules for encoding documents in a format that is both

human-readable and machine-readable

 Text-based markup language derived from Standard

Generalized Markup Language (SGML)

 XML tags identify the data and are used to store and

organize the data

 There are three important characteristics of XML:
⚫ XML is extensible − XML allows you to create your own self-descriptive

tags, or language, that suits your application

⚫ XML carries the data, does not present it − XML allows you to store

the data irrespective of how it will be presented

⚫ XML is a public standard − XML was developed by an organization

called the World Wide Web Consortium (W3C) and is available as an open

standard

What is XML?

 It facilitates information exchange between organizations and

systems

 XML supports database offloading and reloading

 It can store and organize data, tailoring it to your needs

 XML integrates with style sheets to generate flexible output

 Almost any data type can be represented in XML format

 XML does not qualify to be a programming language as

it does not perform any computation or algorithms

⚫ It is usually stored in a simple text file and is processed by special software

that is capable of interpreting XML

 Used to storing and exchanging data in a flexible and widely

supported format (platform-independent)

Syntax

 Markup:

<contact-info>

 Data:

Tutorials Point

and (011) 123-4567

<?xml version = "1.0"?>

<contact-info>

<name>Tanmay Patil</name>

<company>TutorialsPoint</company>

<phone>(011) 123-4567</phone>

</contact-info>

Syntax - Declaration

 The XML document can optionally have an XML declaration:

 XML version and encoding specifies the character encoding used in the

document

 Syntax Rules for XML Declaration

⚫ The XML declaration is case sensitive and must begin with "<?xml>"

where "xml" is written in lower-case

⚫ If document contains XML declaration, then it strictly needs to be the

first statement of the XML document

⚫ An HTTP protocol can override the value of encoding that you put in the

XML declaration

<?xml version = "1.0" encoding = "UTF-8"?>

Syntax – Tag and Elements

 An XML file is structured by several XML-elements, also called XML-

nodes or XML-tags

 The names of XML-elements are enclosed in triangular brackets < >:

 Each XML-element needs to be closed:

 Nesting of Elements − An XML-element can contain multiple XML-

elements as its children:

<element>

<element>....</element>

<?xml version = "1.0"?>

<contact-info>

 <company>TutorialsPoint</company>

<contact-info>

Syntax – Tag and Elements

 Root Element: An XML document can have only one root element:

 The names of XML-elements are case-sensitive

⚫ <contact-info> is different from <Contact-Info>

 Attributes:

⚫ an attribute specifies a single property for the element, using a name/value

pair:

⚫ here href is the attribute name and http://www.tutorialspoint.com/ is

attribute value

<root>

 <x>...</x>

 <y>...</y>

</root>

Tutorialspoint!

Documents

 A simple document:

 Prolog: at the top of the document, before the root element

 Elements: the building blocks of XML. These divide the document into a

hierarchy of sections, each serving a specific purpose

<?xml version = "1.0"?>

<contact-info>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</contact-info>

document prolog

document elements

Declaration

 XML declaration contains details that prepare an XML processor to

parse the XML document

⚫ it is optional, but when used, it must appear in the first line of the XML document

<?xml

 version = "version_number"

 encoding = "encoding_declaration"

 standalone = "standalone_status"

?>

Parameter Parameter_value Parameter_description

Version 1.0
Specifies the version of the XML
standard used.

Encoding

UTF-8, UTF-16, ISO-10646-UCS-2,
ISO-10646-UCS-4, ISO-8859-1 to
ISO-8859-9, ISO-2022-JP, Shift_JIS,
EUC-JP

It defines the character encoding used
in the document. UTF-8 is the default
encoding used.

Standalone yes or no

It informs the parser whether the
document relies on the information
from an external source, such as
external document type definition
(DTD), for its content. The default
value is set to no.

Tags

 The beginning of every non-empty XML element is marked by a start-tag:

 Every element that has a start tag should end with an end-tag:

 An element which has no content is termed as empty tag:

 Rules:

⚫ XML tags are case-sensitive:

⚫ XML tags must be closed in an appropriate order, i.e., an XML tag opened inside

another element must be closed before the outer element is closed:

<address>

</address>

<hr></hr>

<address>This is wrong syntax</Address>

<outer_element>

 <internal_element>

 This tag is closed before the outer_element

 </internal_element>

</outer_element>

Elements

 XML elements can be defined as building blocks of an XML

⚫ elements can behave as containers to hold text, elements, attributes, media

objects or all of these

⚫ element-name is the name of the element. The name its case in the start and

end tags must match

⚫ attribute1 attribute2 are attributes of the element separated by white

spaces

⚫ Example:

<element-name attribute1 attribute2>

 content

</element-name>

<?xml version = "1.0"?>

<contact-info>

 <address category = "residence">

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

 </address>

</contact-info>

Elements

 Rules:

⚫ An element name can contain any alphanumeric characters

 The only punctuation mark allowed in names are the hyphen (-), under-score (_)

and period (.)

⚫ Names are case sensitive.

 For example, Address, address, and ADDRESS are different names

⚫ Start and end tags of an element must be identical

Attributes
 Attributes are part of XML elements.

 An element can have multiple unique attributes.

 Attribute gives more information about XML elements

 An XML attribute is always a name-value pair

 where attribute1 and attribute2 has form

 Example:

<element-name attribute1 attribute2 >

 content..

< /element-name>

name = "value"

<?xml version = "1.0" encoding = "UTF-8"?>

<!DOCTYPE garden [<!ELEMENT garden (plants)*>

 <!ELEMENT plants (#PCDATA)>

 <!ATTLIST plants category CDATA #REQUIRED>

]>

<garden>

 <plants category = "flowers"/>

 <plants category = "shrubs">

 </plants>

</garden>

Attributes

 Rules:

⚫ An attribute name must not appear more than once in the same

start-tag or empty-element tag

⚫ An attribute must be declared in the Document Type Definition

(DTD) using an Attribute-List Declaration

⚫ Attribute values must not contain direct or indirect entity references to

external entities

⚫ The replacement text of any entity referred to directly or indirectly in an

attribute value must not contain a less than sign (<)

Comments

 Comment syntax:

 Example:

 Comments

⚫ cannot appear before XML declaration

⚫ may appear anywhere in a document

⚫ must not appear within attribute values

⚫ cannot be nested inside the other comments

<!--Your comment-->

<?xml version = "1.0" encoding = "UTF-8" ?>

<!--Students grades are uploaded by months-->

<class_list>

 <student>

 <name>Tanmay</name>

 <grade>A</grade>

 </student>

</class_list>

CDATA

 CDATA: Character Data

 CDATA is defined as blocks of text that are not parsed by the parser,

but are otherwise recognized as markup

 Syntax:

 CDATA Start section − CDATA begins with the nine-character delimiter

<![CDATA[

 CDATA End section − CDATA section ends with]]> delimiter

 CData section − Characters between these two enclosures are interpreted

as characters, and not as markup. This section may contain markup

characters (<, >, and &), but they are ignored by the XML processor

<![CDATA[

 characters with markup

]]>

<script>

 <![CDATA[

 <message> Welcome to TutorialsPoint </message>

]] >

</script >

Encoding

 Encoding is the process of converting unicode characters into

their equivalent binary representation

⚫ UTF-8: 8-bits are used to represent the characters

⚫ UTF-16: 16-bits are used to represent the characters

⚫ Example:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no" ?>

<?xml version = "1.0" encoding = "UTF-16" standalone = "no" ?>

<?xml version = "1.0" encoding = "UTF-8" standalone = "no" ?>

<contact-info>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</contact-info>

Validation

 Validation is a process by which an XML document is validated

 An XML document is said to be valid if its contents match with the

elements, attributes and associated document type declaration(DTD)

 Validation is dealt in two ways by the XML parser

⚫ Well-formed XML document

 each of its opening tags must have a closing tag

 must have only one attribute in a start tag, which needs to be quoted

 must follow the ordering of the tag. i.e., the inner tag must be closed before

closing the outer tag

 amp(&), apos(single quote), gt(>), lt(<), quot(double quote) entities other

than these must be declared

⚫ Valid XML document

 well-formed and has an associated Document Type Declaration (DTD)

DTD:

Document Type Declaration

 DTD: Document Type Declaration

⚫ a way to describe XML language precisely

⚫ DTDs check vocabulary and validity of the structure of XML documents

against grammatical rules of appropriate XML language

⚫ DTD can be either specified inside the document, or it can be kept in a

separate document and then liked separately

 Sytax:

<!DOCTYPE element DTD identifier

[

 declaration1

 declaration2

]>

•The DTD starts with <!DOCTYPE delimiter

•An element tells the parser to parse the

document from the specified root element

•DTD identifier is an identifier for the document

type definition, which may be the path to a file on

the system or URL to a file on the internet. If the

DTD is pointing to external path, it is called

External Subset.

•The square brackets [] enclose an optional list

of entity declarations called Internal Subset.

DTD - Internal

 Internal DTD if elements are declared within the XML files

 Syntax:

 Example:

<!DOCTYPE root-element [element-declarations]>

<?xml version = "1.0" encoding = "UTF-8" standalone = "yes" ?>

<!DOCTYPE address [

 <!ELEMENT address (name,company,phone)>

 <!ELEMENT name (#PCDATA)> <!ELEMENT company (#PCDATA)>

 <!ELEMENT phone (#PCDATA)>

]>

<address>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</address>

DTD - External

 In external DTD elements are declared outside the XML file

 Syntax:

 Example:

 address.dtd file:

<!DOCTYPE root-element SYSTEM "file-name">

<?xml version = "1.0" encoding = "UTF-8" standalone = "no" ?>

<!DOCTYPE address SYSTEM "address.dtd">

<address>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</address>

<!ELEMENT address (name,company,phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

DTD - External

 You can refer to an external DTD by using either system

identifiers or public identifiers

⚫ system identifier enables you to specify the location of an external file

containing DTD declarations:

⚫ public identifiers provide a mechanism to locate DTD resources:

 System identifiers are specific locations (URLs), while public identifiers are

more abstract names used to identify resources

<!DOCTYPE name SYSTEM "address.dtd" [...]>

<!DOCTYPE name PUBLIC "-//Beginning XML//DTD Address Example//EN">

<!DOCTYPE note SYSTEM "http://example.com/note.dtd">

<!DOCTYPE note PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Schemas

XML Schema Definition (XSD)

 XML Schema Definition (XSD)

⚫ describe and validate the structure and the content of XML data

⚫ defines the elements, attributes and data types

⚫ powerful tool for specifying and enforcing the structure and data rules in

XML documents

⚫ Example:

<?xml version = "1.0" encoding = "UTF-8"?>

<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">

 <xs:element name = "contact">

 <xs:complexType>

 <xs:sequence>

 <xs:element name = "name" type = "xs:string" />

 <xs:element name = "company" type = "xs:string" />

 <xs:element name = "phone" type = "xs:int" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

DTD vs. XSD

⚫ XML schemas are written in XML while DTD are derived from SGML syntax

⚫ XSD is more powerful, flexible, and modern, while DTD is simpler but less

capable

⚫ XSD is typically used for more complex XML structures and data validation

requirements

XML document validation
 Why is it necessary to validate the XML document?

⚫ Ensure Structural Accuracy: Validation guarantees that the XML document

follows the defined structure and rules (using DTD or XSD)

⚫ Data Quality and Format Verification: It checks that the data adheres to

expected types and constraints (e.g., integers, dates, string lengths)

⚫ Maintain Consistency: Ensures that the elements and attributes are

consistently structured, which is crucial for data processing

⚫ Interoperability: Validation helps ensure that XML documents can be correctly

processed by different systems or services. XML is often used as a data exchange

format between different systems. Validation ensures that the XML document

meets the expectations of the given system, helping to avoid compatibility issues

⚫ Error Detection and Prevention: Quickly identifies issues such as missing

elements or incorrectly formatted data, preventing further problems down the

line

⚫ Increased Security: Prevents malicious or unexpected data from entering the

system by enforcing strict validation rules

⚫ Maintainability and Extensibility: A validated XML is easier to maintain and

extend, as its structure and content are clearly defined

Tree strucutre

 The tree structure is often referred to as

XML Tree and plays an important role

to describe any XML document easily

 The tree structure contains root (parent)

elements, child elements and so on.

Task: Create a Basic XML Document and

and Validate it with XSD

 Create a simple XML document that stores information about books

and validate it using an XML Schema Definition (XSD)

⚫ Create an XML file called books.xml

 In this XML file, you will define a collection of books, where each book has:

 A title

 An author

 A year (publication year)

 A price

 Create an XSD to validate the XML:

⚫ Create a file called books.xsd

⚫ Define the structure and rules for the XML file, ensuring that:

 The title and author are strings

 The year is an integer

 The price is a decimal

 Validate the XML doc. based on the XSD using online validator
(https://www.xmlvalidation.com/)

https://www.xmlvalidation.com/

Task: Create a Basic XML Document and

and Validate it with XSD

<?xml version="1.0" encoding="UTF-8"?>

<bookstore xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"xsi:noNamespaceSchemaLocation="books.xsd">

<book>

<title>Harry Potter and the Philosopher's Stone</title>

<author>J.K. Rowling</author>

<year>1997</year>

<price>29.99</price>

</book>

<book>

<title>The Hobbit</title>

<author>J.R.R. Tolkien</author>

<year>1937</year>

<price>19.99</price>

</book>

</bookstore>

books.xml

Task: Create a Basic XML Document and

and Validate it with XSD
books.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="bookstore">

<xs:complexType>

<xs:sequence>

<xs:element name="book" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="title" type="xs:string"/>

<xs:element name="author" type="xs:string"/>

<xs:element name="year" type="xs:integer"/>

<xs:element name="price" type="xs:decimal"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Thank you for your attention!

	1. dia
	2. dia: What is XML?
	3. dia: What is XML?
	4. dia: Syntax
	5. dia: Syntax - Declaration
	6. dia: Syntax – Tag and Elements
	7. dia: Syntax – Tag and Elements
	8. dia: Documents
	9. dia: Declaration
	10. dia: Tags
	11. dia: Elements
	12. dia: Elements
	13. dia: Attributes
	14. dia: Attributes
	15. dia: Comments
	16. dia: CDATA
	17. dia: Encoding
	18. dia: Validation
	19. dia: DTD: Document Type Declaration
	20. dia: DTD - Internal
	21. dia: DTD - External
	22. dia: DTD - External
	23. dia: Schemas XML Schema Definition (XSD)
	24. dia: DTD vs. XSD
	25. dia: XML document validation
	26. dia: Tree strucutre
	27. dia: Task: Create a Basic XML Document and and Validate it with XSD
	28. dia: Task: Create a Basic XML Document and and Validate it with XSD
	29. dia: Task: Create a Basic XML Document and and Validate it with XSD
	30. dia: Thank you for your attention!

