
University of Miskolc

Faculty of Mechanical Engineering and Informatics

Java Web Application Development Technology
N13020008

Servlet technology

Tamás Tompa, PhD
assistant professor

Department of Information Technology

University of Miskolc

2024.

What are Servlets?

 Servlets provide a component-based, platform-

independent method for building Web-based

applications

 Servlets have access to the entire family of Java APIs,

including the JDBC API to access enterprise databases

 Using Servlets, you can collect input from users through

web page forms, present records from a database or another

source, and create web pages dynamically

 Java Servlets often serve the same purpose as programs

implemented using the Common Gateway Interface (CGI)

What are Java Servlets?

 Java Servlets are
⚫ programs (classes) that run on a Web or Application server

⚫ act as a middle layer between a requests coming from a Web

browser or other HTTP client and databases or applications on

the HTTP server

 Servlets can be created using the javax.servlet and

javax.servlet.http packages
⚫ which are a standard part of the Java's enterprise edition

 Tasks
⚫ read the explicit data sent by the clients, read the implicit HTTP

request data sent by the clients, process the data and generate the

results, send the explicit data (i.e., the document), send the implicit

HTTP response, and so on…

OOP principles

⚫ Objects contain data, referred to as attributes or

properties, and methods

⚫ OOP allows objects to interact with each other using four

basic principles:
 encapsulation

⚫ data into a structured unit, along with the methods used to work

with that data

 inheritance
⚫ mechanism that allows a class to inherit properties and behaviors

from another class

 abstraction
⚫ used to hide unnecessary information and display only necessary

information to the users interacting

 polymorphism
⚫ allows a specific routine to use variables of different types at

different times, gives a program the ability to redefine methods for

derived classes

OOP principles

Servlets Architecture

Environment Setup

 JDK (Java Development Kit)
⚫ download an implementation of the Java Software Development Kit

(SDK)

⚫ setup PATH environment variable appropriately

 Web Server − Tomcat
⚫ download and install

⚫ setup PATH environment variable appropriately

⚫ these steps were introduced in the JSP course…

 Eclipse IDE
⚫ https://eclipseide.org/

⚫ Eclipse IDE for Java EE Developers
⚫ https://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/rel

ease/2024-09/R/eclipse-jee-2024-09-R-win32-x86_64.zip

https://eclipseide.org/
https://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/2024-09/R/eclipse-jee-2024-09-R-win32-x86_64.zip
https://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/2024-09/R/eclipse-jee-2024-09-R-win32-x86_64.zip

Life Cycle
 The life cycle of Servlets:

⚫ The servlet is initialized by calling the init() method

⚫ The servlet calls service() method to process a client's request

⚫ The servlet is terminated by calling the destroy() method

⚫ Finally, servlet is garbage collected by the garbage collector of the JVM

Life Cycle

 The life cycle of Servlets:
⚫ The servlet is initialized by calling the init() method

 called only once, when the servlet is created

 servlet is normally created when a user first invokes a URL

corresponding to the servlet

 when a user invokes a servlet, a single instance of each servlet gets

created

 each user request resulting in a new thread that is handed off to doGet

or doPost as appropriate

public void init() throws ServletException {

 // Initialization code...

}

Life Cycle

 The life cycle of Servlets:

⚫ The servlet calls service() method to process a client's request
 the main method to perform the actual task

 servlet container (i.e. web server) calls the service() method to handle

requests coming from the client(browsers) and to write the formatted

response back to the client

 each time the server receives a request for a servlet, the server spawns

a new thread and calls service

 service() method checks the HTTP request type (GET, POST, PUT,

DELETE, etc.) and calls doGet, doPost, doPut, doDelete, etc.

methods as appropriate

public void service(ServletRequest request, ServletResponse response)

throws ServletException, IOException {

}

Life Cycle

 The life cycle of Servlets:

⚫ The servlet calls service() method to process a client's request
⚫ A GET request results from a normal request for a URL or from an

HTML form that has no METHOD specified and it should be

handled by doGet() method

public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

 // Servlet code

}

Life Cycle

 The life cycle of Servlets:

⚫ The servlet calls service() method to process a client's request
⚫ A POST request results from an HTML form that specifically lists

POST as the METHOD and it should be handled by doPost()

method

public void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

 // Servlet code

}

Life Cycle

 The life cycle of Servlets:
⚫ The servlet is terminated by calling the destroy() method

 called only once at the end of the life cycle of a servlet

 it gives your servlet a chance to close database connections, halt

background threads, write cookie lists or hit counts to disk, and

perform other such cleanup activities

 the servlet object is marked for garbage collection

public void destroy() {

 // Finalization code...

}

Life Cycle

 The life cycle of Servlets:
⚫ First the HTTP requests coming to the server are delegated to the servlet

container

⚫ The servlet container loads the servlet before invoking the service()

method

⚫ Then the servlet container handles multiple requests by spawning multiple

threads, each thread executing the service() method of a single instance of

the servlet

Create new project in Eclipse
 Add the TomCat server to Eclipse:

 Go to the “Window” menu -> “Preferences”

 Expand “Server” -> “Runtime Environments”

 Click on “Add…” to add a new server runtime environment

 Select “Apache Tomcat” from the list of server types

 Click “Next”

 Browse and select the Tomcat installation directory

 Click “Finish”

Create new project in Eclipse
 Create the Dynamic Web project:

Create new project in Eclipse
 Create the Dynamic Web project:

Create new project in Eclipse
 Create the Dynamic Web project:

Create new project in Eclipse
 Create the Dynamic Web project:

Create new project in Eclipse
 Create the Dynamic Web project:

change to jakarta

Servlet URL:

http://localhost:808

0/HelloWeb/HelloWorl

d

Create new project in Eclipse
 Run the Dynamic Web project:

Create new project in Eclipse
 Run the Dynamic Web project:

Create new project in Eclipse
 Run the Dynamic Web project:

Create new project in Eclipse

 Add server libary to the project (if it is necessary):

Server runtime library is missing

Create new project in Eclipse

 Add server libary to the project (if it is necessary):

Create new project in Eclipse

 Add server libary to the project (if it is necessary):

Create new project in Eclipse

 Add server libary to the project (if it is necessary):

Server runtime library added successfully

Servlet deployment

 By default, a servlet application is located at the path <Tomcat-

installationdirectory>/webapps/ROOT and the class file would reside

in <Tomcat-installationdirectory>/webapps/ROOT/WEB-

INF/classes

 If you have a fully qualified class name of com.myorg.MyServlet, then this

servlet class must be located in WEB-

INF/classes/com/myorg/MyServlet.class

Servlet deployment

 For now, let us copy HelloWorld.class into <Tomcat-

installationdirectory>/webapps/ROOT/WEB-INF/classes and create

following entries in web.xml file located in <Tomcat-installation-

directory>/webapps/ROOT/WEB-INF/

 http://localhost:8080/HelloWorld

<servlet>

 <servlet-name>HelloWorld</servlet-name>

 <servlet-class>HelloWorld</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>HelloWorld</servlet-name>

 <url-pattern>/HelloWorld</url-pattern>

</servlet-mapping>

Task2: Form data - GET

 Source code: https://www.tutorialspoint.com/servlets/servlets-form-

data.htm

 http://localhost:8080/HelloForm?first_name=ZARA&last_name=ALI

https://www.tutorialspoint.com/servlets/servlets-form-data.htm
https://www.tutorialspoint.com/servlets/servlets-form-data.htm

Task2: Form data - GET

 Add an HTLM Form:

 URL: http://localhost:8080/02_Form_GET/form.html

<html>
<body>

<form action = "HelloForm" method = "GET">
 First Name: <input type = "text" name = "first_name">

 Last Name: <input type = "text" name = "last_name" />
 <input type = "submit" value = "Submit" />

 </form>
</body>
</html

Task2: Form data - POST

 Source code: https://www.tutorialspoint.com/servlets/servlets-form-

data.htm

 Form code:

<html>
<body>
 <form action = "HelloForm" method = "POST">
 First Name: <input type = "text" name = "first_name">

 Last Name: <input type = "text" name = "last_name" />
 <input type = "submit" value = "Submit" />
 </form>
</body>
</html>

https://www.tutorialspoint.com/servlets/servlets-form-data.htm
https://www.tutorialspoint.com/servlets/servlets-form-data.htm

Task2: Form data - POST

 Source code: https://www.tutorialspoint.com/servlets/servlets-form-

data.htm

 URL: http://localhost:8080/02_Form_POST/form.html

https://www.tutorialspoint.com/servlets/servlets-form-data.htm
https://www.tutorialspoint.com/servlets/servlets-form-data.htm

Task3: Checkbox

 Source code: https://www.tutorialspoint.com/servlets/servlets-form-

data.htm

 URL: http://localhost:8080/02_Form_checkbox/checkbox.html

 Form code:

<html>
<body>
 <form action = "Checkbox" method = "POST" target = "_blank">
 <input type = "checkbox" name = "maths" checked = "checked" /> Maths
 <input type = "checkbox" name = "physics" /> Physics
 <input type = "checkbox" name = "chemistry" checked = "checked" /> Chemistry
 <input type = "submit" value = "Select Subject" />
 </form>
</body>
</html>

https://www.tutorialspoint.com/servlets/servlets-form-data.htm
https://www.tutorialspoint.com/servlets/servlets-form-data.htm

Task3: Checkbox

 Source code: https://www.tutorialspoint.com/servlets/servlets-form-

data.htm

 URL: http://localhost:8080/02_Form_checkbox/checkbox.html

https://www.tutorialspoint.com/servlets/servlets-form-data.htm
https://www.tutorialspoint.com/servlets/servlets-form-data.htm

Task4: Read all of form params

 Source code: https://www.tutorialspoint.com/servlets/servlets-form-

data.htm

 URL: http://localhost:8080/02_From_read_all_params/form.html

https://www.tutorialspoint.com/servlets/servlets-form-data.htm
https://www.tutorialspoint.com/servlets/servlets-form-data.htm

Task5: HTTP Header Request

 Source code: https://www.tutorialspoint.com/servlets/servlets-client-

request.htm
 getHeaderNames()

 HttpServletRequest to read the HTTP header information

 returns an Enumeration that contains the header information

associated with the current HTTP request

 HTTP header is used to pass additional information between the

client (such as a browser) and the server during an HTTP request

or response

 It contains metadata about the communication:
 Content-Type: Specifies the media type of the resource (e.g.,

text/html, application/json)

 Content-Length: Indicates the size of the resource in bytes

 User-Agent: Identifies the client making the request

 Authorization: Contains credentials for authenticating the client

 Cache-Control: Defines caching policies for the response

https://www.tutorialspoint.com/servlets/servlets-client-request.htm
https://www.tutorialspoint.com/servlets/servlets-client-request.htm

Task5: HTTP Header Request

 Source code: https://www.tutorialspoint.com/servlets/servlets-client-

request.htm
 getHeaderNames()

https://www.tutorialspoint.com/servlets/servlets-client-request.htm
https://www.tutorialspoint.com/servlets/servlets-client-request.htm

Task6: Server HTTP Response

 Source code: https://www.tutorialspoint.com/servlets/servlets-server-

response.htm

 server responds to an HTTP request, the response typically consists of a

status line, some response headers, a blank line, and the document

 setContentType()

 This method is used to set the MIME (Multipurpose Internet Mail

Extensions) type of the HTTP response

 It informs the client (like a browser) about the type of data it will

receive, such as text/html, application/json, or text/plain
 response.setContentType("text/html");

 setIntHeader()

 This method sets an HTTP response header with an integer value

 It’s used to set or overwrite specific headers, such as setting a status

code or defining a header like Content-Length
 response.setIntHeader("Content-Length", 1024);

https://www.tutorialspoint.com/servlets/servlets-server-response.htm
https://www.tutorialspoint.com/servlets/servlets-server-response.htm

Task6: Server HTTP Response

 Source code: https://www.tutorialspoint.com/servlets/servlets-server-

response.htm

 server responds to an HTTP request, the response typically consists of a

status line, some response headers, a blank line, and the document

// Set refresh, autoload time as 5 seconds
response.setIntHeader("Refresh", 5);

https://www.tutorialspoint.com/servlets/servlets-server-response.htm
https://www.tutorialspoint.com/servlets/servlets-server-response.htm

Task7: Http Status Codes

 Source code: https://www.tutorialspoint.com/servlets/servlets-http-status-

codes.htm

 Methods to Set HTTP Status Code
 public void setStatus (int statusCode)

 sets an arbitrary status code. The setStatus method takes an int (the

status code) as an argument. If your response includes a special

status code and a document, be sure to call setStatus before

actually returning any of the content with the PrintWriter

 public void sendRedirect(String url)

 generates a 302 response along with a Location header giving the

URL of the new document

 public void sendError(int code, String message)

 sends a status code (usually 404) along with a short message that is

automatically formatted inside an HTML document and sent to

the client.

https://www.tutorialspoint.com/servlets/servlets-http-status-codes.htm
https://www.tutorialspoint.com/servlets/servlets-http-status-codes.htm

Task7: Http Status Codes

 Source code: https://www.tutorialspoint.com/servlets/servlets-http-status-

codes.htm

// Set error code and reason.
response.sendError(407, "Need authentication!!!");

https://www.tutorialspoint.com/servlets/servlets-http-status-codes.htm
https://www.tutorialspoint.com/servlets/servlets-http-status-codes.htm

Task8: Writing filters

 Servlet Filters are Java classes

 To intercept requests from a client before they access a resource at

back end

 To manipulate responses from server before they are sent back to

the client

 Types: Authentication Filters, Data compression Filters, Encryption

Filters, Filters that trigger resource access events, Image Conversion

Filters, etc.

 Servlet Filter Methods
 public void doFilter (ServletRequest, ServletResponse,

FilterChain)

 public void init(FilterConfig filterConfig)

 public void destroy()

Task8: Writing filters

 Servlet Filter Methods
 public void doFilter (ServletRequest, ServletResponse,

FilterChain)

 called by the container each time a request/response pair is passed

through the chain due to a client request for a resource at the end

of the chain

 public void init(FilterConfig filterConfig)

 called by the web container to indicate to a filter that it is being

placed into service

 public void destroy()

 called by the web container to indicate to a filter that it is being

taken out of service

 Filter mapping have to define in the web.xml file of the project

 automatically runs on every HTTP request when the specified URL

pattern (/*) is called

Task8: Writing filters
 Source code: https://www.tutorialspoint.com/servlets/servlets-writing-

filters.htm

 Copy the HelloWorld class from the 01_Hello

Servlet Filter Mapping in the web.xml:

<filter>
<filter-name>LogFilter</filter-name>
<filter-class>filters.LogFilter</filter-class>
<init-param>
<param-name>test-param</param-name>
<param-value>Initialization Parameter</param-value>
</init-param>
</filter>

<filter-mapping>
<filter-name>LogFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

https://www.tutorialspoint.com/servlets/servlets-writing-filters.htm
https://www.tutorialspoint.com/servlets/servlets-writing-filters.htm

Task9: Exception Handling
 Source code: https://www.tutorialspoint.com/servlets/servlets-exception-

handling.htm

 When a servlet throws an exception, the web container searches the

configurations in web.xml

 You would have to use the error-page element in web.xml to specify the

invocation of servlets in response to certain exceptions or HTTP status

codes

 The servlet ErrorHandler is defined in usual way as any other servlet and

configured in web.xml

 If there is any error with status code either 404 (Not Found) or 403

(Forbidden), then ErrorHandler servlet would be called

 If the web application throws either ServletException or IOException,

then the web container invokes the /ErrorHandler servlet

 You can define different Error Handlers to handle different type of errors

or exceptions. Above example is very much generic and hope it serve the

purpose to explain you the basic concept

https://www.tutorialspoint.com/servlets/servlets-exception-handling.htm
https://www.tutorialspoint.com/servlets/servlets-exception-handling.htm

Task10: Cookies Handling
 Source code: https://www.tutorialspoint.com/servlets/servlets-cookies-

handling.htm

 Cookies are text files stored on the client computer and they are kept

for various information tracking purpose

 Small piece of data that a server sends to a user's web browser and is

stored on the user's device

 There are three steps involved in identifying returning users:

 server script sends a set of cookies to the browser. For example name,

age, or identification number etc.

 browser stores this information on local machine for future use

 when next time browser sends any request to web server then it sends

those cookies information to the server and server uses that information

to identify the user

 Cookies are used to store information such as user preferences, session data,

or tracking information, enabling a website to remember the user across

visits or track behavior for personalized experiences

https://www.tutorialspoint.com/servlets/servlets-cookies-handling.htm
https://www.tutorialspoint.com/servlets/servlets-cookies-handling.htm

Task10: Cookies Handling -setting
 Cookies are usually set in an HTTP header

 Set-Cookie header contains a name value pair, a GMT date, a path and a

domain. The name and value will be URL encoded. The expires field is an

instruction to the browser to "forget" the cookie after the given time and

date

 If the browser is configured to store cookies, it will then keep this

information until the expiry date

HTTP/1.1 200 OK
Date: Fri, 04 Feb 2000 21:03:38 GMT
Server: Apache/1.3.9 (UNIX) PHP/4.0b3
Set-Cookie: name = xyz; expires = Friday, 04-Feb-07 22:03:38
GMT;
path = /; domain = tutorialspoint.com
Connection: close
Content-Type: text/html

Cookie cookie = new Cookie("key","value");

Task10: Cookies Handling -setting

Task10: Cookies Handling -reading
 Source code: https://www.tutorialspoint.com/servlets/servlets-cookies-

handling.htm

https://www.tutorialspoint.com/servlets/servlets-cookies-handling.htm
https://www.tutorialspoint.com/servlets/servlets-cookies-handling.htm

Task10: Cookies Handling -reading
 Source code: https://www.tutorialspoint.com/servlets/servlets-cookies-

handling.htm

// Create cookies
Cookie firstName = new Cookie("first_name", "John");
Cookie lastName = new Cookie("last_name", "Player");

// Set cookies to expire in 24 hours
firstName.setMaxAge(60 * 60 * 24);
lastName.setMaxAge(60 * 60 * 24);

// Add cookies to response
response.addCookie(firstName);
response.addCookie(lastName);

https://www.tutorialspoint.com/servlets/servlets-cookies-handling.htm
https://www.tutorialspoint.com/servlets/servlets-cookies-handling.htm

Task10: Cookies Handling -delete
 Source code: https://www.tutorialspoint.com/servlets/servlets-cookies-

handling.htm

 Read an already existing cookie and store it in Cookie object
 cookies = request.getCookies();

 Set cookie age as zero using setMaxAge() method to delete an existing

cookie
 cookie.setMaxAge(0);

 Add this cookie back into response header
 response.addCookie(cookie);

https://www.tutorialspoint.com/servlets/servlets-cookies-handling.htm
https://www.tutorialspoint.com/servlets/servlets-cookies-handling.htm

Task11: Create a simple webapp

 Create a simple web application that contains
 a form where the user can enter their name and email address

 the servlet processes the form and displays the entered data on a new

page

Thank you for your attention!

	1. dia
	2. dia: What are Servlets?
	3. dia: What are Java Servlets?
	4. dia: OOP principles
	5. dia: OOP principles
	6. dia: Servlets Architecture
	7. dia: Environment Setup
	8. dia: Life Cycle
	9. dia: Life Cycle
	10. dia: Life Cycle
	11. dia: Life Cycle
	12. dia: Life Cycle
	13. dia: Life Cycle
	14. dia: Life Cycle
	15. dia: Create new project in Eclipse
	16. dia: Create new project in Eclipse
	17. dia: Create new project in Eclipse
	18. dia: Create new project in Eclipse
	19. dia: Create new project in Eclipse
	20. dia: Create new project in Eclipse
	21. dia: Create new project in Eclipse
	22. dia: Create new project in Eclipse
	23. dia: Create new project in Eclipse
	24. dia: Create new project in Eclipse
	25. dia: Create new project in Eclipse
	26. dia: Create new project in Eclipse
	27. dia: Create new project in Eclipse
	28. dia: Servlet deployment
	29. dia: Servlet deployment
	30. dia: Task2: Form data - GET
	31. dia: Task2: Form data - GET
	32. dia: Task2: Form data - POST
	33. dia: Task2: Form data - POST
	34. dia: Task3: Checkbox
	35. dia: Task3: Checkbox
	36. dia: Task4: Read all of form params
	37. dia: Task5: HTTP Header Request
	38. dia: Task5: HTTP Header Request
	39. dia: Task6: Server HTTP Response
	40. dia: Task6: Server HTTP Response
	41. dia: Task7: Http Status Codes
	42. dia: Task7: Http Status Codes
	43. dia: Task8: Writing filters
	44. dia: Task8: Writing filters
	45. dia: Task8: Writing filters
	46. dia: Task9: Exception Handling
	47. dia: Task10: Cookies Handling
	48. dia: Task10: Cookies Handling -setting
	49. dia: Task10: Cookies Handling -setting
	50. dia: Task10: Cookies Handling -reading
	51. dia: Task10: Cookies Handling -reading
	52. dia: Task10: Cookies Handling -delete
	53. dia: Task11: Create a simple webapp
	54. dia: Thank you for your attention!

