
Performance Optimization of the Fuzzy Rule Interpolation
Method “FIVE”

Dávid Vincze and Szilveszter Kovács
Department of Information Technology, University of Miskolc, Miskolc, Hungary

E-mail: {david.vincze, szkovacs}@iit.uni-miskolc.hu
[Received 00 00 2011; accepted 00 00 2011]

Fuzzy Rule Interpolation (FRI) methods are efficient
structures for knowledge-representation with rela-
tively few rules. In spite of their good knowledge
representation efficiency, their high computational de-
mand makes the FRI methods hardly suitable for em-
bedded real-time applications, for which short reason-
ing time has a high importance. On the other hand,
the fact that currently available devices have increased
computational power gives the FRI methods an oppor-
tunity to appear in real-time embedded applications.
Therefore, the need for a low-computation and low-
resource-demand FRI method is emerging. The goal
of this paper is to introduce some implementation de-
tails of such an FRI method, together with its brief
time and space complexity analysis. The paper also
gives some hints for further performance optimization
possibilities.

Keywords: fuzzy rule interpolation (FRI), FRI FIVE
implementation, FRI performance optimization, FRIQ-
learning

1. Introduction

In classical fuzzy reasoning methods (e.g., the Zadeh-
Mamdani Compositional Rule of Inference (CRI)), it is
obvious that having covering (complete) rule bases is a
must. A traditional fuzzy-rule-based system requires a
complete rule base with all of the possible rules set, even
though lots of these rules are unimportant from the stand-
point of the actual application. A fuzzy rule base is called
sparse or incomplete if an observation that does not hit
any of the rules in the rule base may exist. Accordingly,
there can be observations for which no conclusion can be
reached with traditional fuzzy reasoning techniques. On
the other hand, in many embedded control application ar-
eas, having no conclusion is an avoidable situation. There
are some traditional workarounds for such situations in
the literature, e.g., applying the last real conclusion in-
stead of the missing one, but these can have some unpre-
dictable side effects. One real solution for the sparse rule
base is the application of Fuzzy Rule Interpolation (FRI)
methods. In this case, the derivable rules are intentionally
missing from the rule base, as FRI methods are capable

of providing reasonable (interpolated) conclusions even
if none of the existing rules fire under the current obser-
vation. The rule base of an FRI system is not necessar-
ily complete, so it can contain the most significant fuzzy
rules alone without risking the chance of having no con-
clusion for some of the observations. In this case, since
there is an efficient knowledge representation, a consider-
able amount of unnecessary work can be avoided during
the rule base creation. On the other hand, most of the FRI
methods share the burden of high computational demand,
e.g., the task of searching for the two closest rules sur-
rounding the actual observation, or calculating the conclu-
sion at least in some characteristic α-cuts. Moreover, in
some methods, the interpretability of the fuzzy conclusion
gained is not straightforward [1]. There have been a lot
of efforts to rectify the interpretability of the interpolated
fuzzy conclusion [2]. In [3], Baranyi et al. give a compre-
hensive overview of recent FRI methods. Beyond these
problems, some of the FRI methods are originally defined
for one dimensional input space and need special exten-
sion for the multidimensional case (e.g., [4, 5]). In [6],
Wong et al. give a comparative overview of the FRI meth-
ods capable of multidimensional input space. In [4], Jenei
introduces an axiomatic treatment of the FRI methods.
In [7], Johanyák introduces an automatic way for sparse
fuzzy model identification from sample data. The high
computational demand, mainly from the search for the
two closest surrounding rules to an arbitrary observation
in the multidimensional antecedent space, makes many of
these methods hardly suitable for real-time applications.
Some FRI methods, (e.g., the method introduced by Jenei
et al. in [5], FRIPOC [8], LESFRI [9], and VEIN [10]),
eliminate the search for the two closest surrounding rules
by taking all the rules into consideration, hence speeding
up the reasoning process. On the other hand, keeping the
goal of constructing a fuzzy conclusion and not simply
speeding up the reasoning process, they still require some
additional (or repeated) computational steps for the ele-
ments of the level set (or at least some relevant α levels).
An application-oriented aspect of the FRI, the low compu-
tational and resource demand is emerging in the concept
of the FRI method “FIVE” (Fuzzy Interpolation based on
Vague Environment (FIVE)). In the following, the imple-
mentation details of this method will be studied.

 Author prepared draft.
 D. Vincze, Sz. Kovács: Performance Optimization of the Fuzzy Rule Interpolation Method 'FIVE'

 Journal of Advanced Computational Intelligence and Intelligent Informatics (JACIII),
 Vol.15 No.3, 2011, Fuji Technology Press, ISSN 1343-0130, Tokyo, Japan, pp. 313-320.

Fig. 1. The α-cuts of µA(x) contain the elements that are
(1− α)-indistinguishable from xa, where A is a fuzzy set
and B is a singleton fuzzy set at xb.

2. FRI Based on Vague Environment: FIVE

In the concept of FIVE, an application-oriented aspect,
the need for low computational and resource demand has
a high importance. The method was originally introduced
in [11–13], and [14] to satisfy the speed requirements of
direct embedded fuzzy control in which the conclusions
of the fuzzy controller are applied directly as control ac-
tions in a real-time system.

The main idea of FIVE is based on the fact that most
of the control applications serve crisp observations and
require crisp conclusions from the controller. Adopting
the idea of the Vague Environment (VE) [15], FIVE can
handle the antecedent and consequent fuzzy partitions of
the fuzzy rule base by scaling functions [15] and there-
fore turn the fuzzy interpolation into crisp interpolation.
The idea of a VE is based on the indistinguishability of
elements. In VE, the fuzzy membership function µA(x)
indicates the level of similarity of x to a specific element
xa which is a representative or prototypical element of
the fuzzy set µA(x), or equivalently the degree to which
x is indistinguishable from xa (see, e.g., on Fig. 1) [15].
Two values in a VE are ε-indistinguishable if their dis-
tance is less than or equal to ε . The distances in a VE
are weighted distances Eq. (1). The weighting factor or
function is called the scaling function (factor) [15]:

δs (xa,xb) =

∣∣∣∣
∫ xa

xb

s(x)dx
∣∣∣∣≤ ε (1)

where δs (xa,xb) is the scaled distance of the values xa, xb
and s(x) is the scaling function on X .

If the VE of a fuzzy partition (the scaling function or at
least the approximate scaling function [11, 14]) exists, the
member sets of the fuzzy partition can be described by
points in that VE (see, for example, exact scaling func-
tion s in Fig. 2 and an approximate scaling function in
Fig. 3).

Having the VE concept and the scaling-function-based
similarity calculation, any crisp interpolation, extrapola-
tion, or regression method can be adapted very simply
for FRI [11, 14]. Because of its simple multidimensional
applicability, in FIVE, the Shepard-operator-based inter-
polation (first introduced in [16]) is adapted (see, e.g.,
Fig. 4).

To be more precise, if there are singleton rule conse-
quents (ck), the fuzzy rules Rk have the following form:

Fig. 2. A Ruspini fuzzy partition (fuzzy sets A−D) and its
scaling function s(x) on the universe of discourse X .

Fig. 3. A fuzzy partition (A,B), its approximate scaling
function s(x) [11, 14], and the corresponding approximated
partition (A′,B′) on the universe of discourse X .

If x1 = Ak,1 And x2 = Ak,2 And. . . And xm = Ak,m

Then y = ck (2)

Adapting the VE concept and the scaling-function-
based similarity calculation to the Shepard-operator-
based interpolation, the conclusion of the interpolative
fuzzy reasoning can be obtained as [14]:

y (x) =

ck if x = ak for some k,

r
∑

k=1
ck

/
δ λ

s,k

r
∑

k=1
1
/

δ λ
s,k

otherwise.

. (3)

Fig. 4. Interpolation of two fuzzy rules (Ri : Ai → Bi), us-
ing the Shepard-operator-based FIVE (“Shepard” (3)), and
for comparison, the min-max CRI with “center of gravity”
defuzzification (“CRI” on figure).

where λ > 0 and δs,k are scaled distances:

δs,k = δs (ak,x) =

[
m

∑
i=1

(∫ xi

ak,i

sXi (xi)dxi

)2
] 1

2

. (4)

and sXi is the ith scaling function of the m-dimensional
antecedent universe, x is the m-dimensional crisp obser-
vation, and ak are the cores of the m-dimensional fuzzy
rule antecedents Ak.

The code of the FIVE FRI together with other FRI
methods is freely available as a MATLAB FRI Tool-
box [17], and it can be downloaded from [18].

3. Implementation of FIVE

In the following, the MATLAB implementation of
FIVE (according to the implementation available in [18])
will be discussed in more detail.

The implemented functions can be divided into three
main groups: preprocessing, conclusion generation, and
visualization groups. The preprocessing group is respon-
sible for calculating the lookup tables of the vague envi-
ronments, based on the scaling functions. The conclusion
generation group has the task of calculating the conclu-
sions of the rule bases, based on the supplied observa-
tions. The visualization group supplies methods for fuzzy
set reconstruction and application debugging, and also for
knowledge base visualization.

The preprocessing group has two main functions. The
first is the calculation of the scaling function of a fuzzy
partition:

SCF = FIVEGScFunc (U,PSC) (5)

where U is a vector of some given points from the uni-

Fig. 5. Block diagram of the FIVEVagConcl function.

verse of discourse, PSC is the set of coordinates and val-
ues describing relevant points of the scaling function, and
SCF is a vector of the generated scaling function val-
ues (lookup table) in the positions defined in U . Scal-
ing functions are defined by a set of left and right scal-
ing values of some reference points (PSC in Eq. (5)).
For example, the scaling function on Fig. 3 is defined as
[(2,0.5,0.5),(4,10,0)].

The second function calculates the lookup table values
of the scaled (vague) distances according to Eq. (1):

VE = FIVEGVagEnv (U,SCF) (6)

where VE is a vector of the pre-calculated scaled distances
(lookup table) for the values defined in U .

According to Eqs. (3) and (4), the conclusion is calcu-
lated by the two functions based on the scaled distances
of the observation and the rule antecedents. The first cal-
culates the scaled distance D, based on the lookup table
VE:

D = FIVEVagDist (U,VE,P1,P2) (7)

where P1 and P2 are arbitrary points inside the universe
of discourse of U .

The second calculates the Euclidean scaled distance
of the observation and the rule antecedents according to
Eq. (4):

RD = FIVERuleDist (U,VE,R,X) (8)

where array R contains the rules of the rule base, X is
the vector of the actual observation, and y is the calcu-
lated consequent. Rows in R are the vector of rules com-
posed from the position number of the predefined linguis-
tic terms of antecedents in their partition. The last element
of the rule vector is the constant consequent value (ck in
Eqs. (2) and (3)).

The final conclusion y is then obtained by the following
function (according to Eq. (3)):

y = FIVEVagConcl (U,VE,R,X ,L) (9)

where L is the power factor of the Shepard interpolation
(see λ in Eq. (3)).

From the viewpoint of the conclusion generation func-
tions, the block diagram of FIVEVagConcl is summarized
in Fig. 5.

Table 1. Measured run times of the main FIVE functions.

Name of function Number of
calls

Execution
time

% of time

FIVEVagConcl 1200000 79.970 s 6%
FIVERuleDist 1200000 561.985 s 43%
FIVEVagDist 9315028 658.764 s 51%

In ordinary applications, the two preprocessing func-
tions (Eqs. (5) and (6)) and the conclusion generation
function Eq. (9) are called directly. These three functions
dramatically simplify the usage of the FIVE FRI for the
potential application programmer.

4. Optimization of FIVE

An analysis of the implementation of the FIVE method
shows that the most frequently used function is the FIVE-
VagDist function. Profiling the code of a simple applica-
tion example which uses FIVE also proves that the most
frequently called and the most resource hungry function
is FIVEVagDist (see benchmark results in Table 1).

The FIVEVagDist function is responsible for calcu-
lating the scaled distance of two points based on pre-
calculated lookup table values Eq. (7).

The first step of fetching values from a lookup table is
the alignment of the two requested point coordinates to
the pre-calculated positions of the universe of discourse
(stored in U).

The original implementation of FIVE [18] is capable of
handling arbitrary positions of the universes (see Fig. 6A).

Experience shows that in most cases FIVE based ap-
plications (e.g., [19–21]\) use a fixed resolution universe
description (see Fig. 6B) with points stored in an array in
ascending order. Therefore, it seems to be possible to sim-
plify the function by restricting the universe description
from the arbitrary to the fixed resolution without having a
high impact on its practical applicability.

In the original implementation [18] for aligning (see
Fig. 7), the input points (one point for a rule in the rule
base and one point for the current observation) to the
pre-calculated positions of the lookup table, the method
first calculates all the possible distances. Then it searches
through for the nearest pre-defined universe positions i for
each input point:

ik = minindex
(∣∣Uk1...n −Pk

∣∣) (10)

where Pk is the input point, Uk1...n is the n element vector of
the pre-calculated positions in the kth dimension, minin-
dex is the function calculating the index of the minimal
element in an array, and ik is the index of the alignment
position of Pk.

In Eq. (10), the subtraction must be executed for all
the pre-calculated positions; then, the smallest element
should be found to gather the index of the nearest pre-
calculated position in the array U .

Fig. 6. Lookup table positions representing the universe of
discourse in an antecedent dimension.
A: arbitrary universe, B: universe with a fixed resolution.

Fig. 7. Lookup table positions representing the universe of
discourse in an antecedent dimension.
A: input points, B: universe with a fixed resolution,
C: input points aligned to the positions of the universe.

The number of calculations could be reduced by fixed
resolution universe description (see Fig. 6B), where the
pre-defined universe points are stored in an array in as-
cending order. In this case, it is possible to directly calcu-
late the alignment position in one step:

ik = round
(

nk · Pk −Uk

Ukn −Uk1

)
. (11)

where nk is the number of the pre-calculated positions,
Uk1 is the first pre-calculated position, Ukn is the last pre-
calculated position in the kth dimension, and round() is a
function which round towards the nearest integer.

The suggested modification makes the actual input
point alignment process time complexity independent of
the size of the lookup table that represents the universe of
discourse. Therefore, the performance gain depends on
the size of the applied universe; the larger the universe
description table, the larger the performance gain.

The uniform time complexity of the original FIVE-
VagDist function can be approximated as:

m · (9 ·n+16) (12)

where n is the average size of the lookup tables represent-
ing the m-dimensional antecedent universes.

The uniform time complexity of the optimized FIVE-
VagDist function is independent of the number of an-
tecedent dimensions, and in usual cases (n >> 1) are
much better than in the original version:

m ·57. (13)

The space complexity is the same for both versions of
the function, as it is dominated by the size of the pre-

calculated lookup table:

m ·n. (14)

In Landau notation, the time complexity of the origi-
nal function is O(mn), while in the modified function it is
only O(m). The space complexity is O(mn) in both cases.

In typical cases in which the universes consist of about
one thousand reference points ([19, 22]), the performance
gain in time complexity is significant. (See the application
example section for measurement results in a benchmark
problem.)

4.1. Other Possible Optimizations
Analysis of the implemented FIVERuleDist function

produces further enhancement of the overall performance.
By default, FIVE stores antecedents and consequents in
the same array (the rule base itself), which is convenient
from the viewpoint of the programmer. Although it is
convenient for the programmer, it means that extra re-
sources are consumed when the array is splitting if only
the antecedents are required. This is the case with the
FIVERuleDist function. In the original implementation,
FIVERuleDist truncates the corresponding arrays of the
universes, the vague environments, and the rule bases so
that they contain only the data of the antecedents. These
truncations are performed for every rule in the rule base.
The rule bases, universes, and vague environments do not
change while the application is running, so it is possible
to perform these truncations in advance and cache the re-
sult (antecedent caching). Then, the truncated antecedent
arrays have to be passed as parameters to the correspond-
ing FIVE functions. This means a change in the applica-
tion programming interface, so existing applications have
to be modified slightly to follow this new syntax. Creat-
ing the aforementioned truncated array (antecedent cache)
will consume more memory of course, but this extra usage
of memory is insignificant compared to the gain in speed.

The original FIVERuleDist function has the time com-
plexity of

m · (4 ·n+8) (15)

and space complexity of

m+4 ·n−3 (16)

while the optimized version has time complexity

m · (4 ·n+2) (17)

and space complexity of

m+2 ·n+2 (18)

In Landau notation, both versions have the time com-
plexity of O(mn). The high difference in the benchmark
execution time (FIVE with antecedent truncation in Ta-
ble 2 and Fig. 8) is mainly inherited from the high expense
of the matrix truncation function. In the applied uniform
time complexity calculation, it is hidden as a single calcu-
lation step.

Another efficient method of achieving performance im-

Table 2. Measured run times [sec] of the main FIVE functions.

Name of function execution
time

Speed-up

Unmodified FIVE 1120.74 s 1 x
FIVE with fixed resolution universes 717.19 s ≈ 1.6x
FIVE with antecedent caching 645.07 s ≈ 1.7x
FIVE with conclusion lookup tables 931.97 s ≈ 1.2x
FIVE with all modifications 149.44 s ≈ 7.5x

Fig. 8. Execution times of the vehicle navigation application
benchmark, from left to right: unmodified FIVE, FIVE with
fixed resolution universes, FIVE with antecedent caching,
FIVE with conclusion lookup tables, and FIVE with all the
modifications.

provement in small embedded applications is the pre-
calculation of the consequents for all the possible lookup
table positions of the antecedent universe of discourse.
If the lookup table resolutions of the universes are low,
the rule bases with more than one antecedent can also
use this approach. The space complexity should be in-
vestigated carefully because the number of required pre-
calculated elements grows exponentially with the num-
ber of antecedent dimensions: O(nm). For example, with
a typical resolution of a 1000-element lookup table and
roughly 100,000 repeated evaluations, this simple method
can yield a considerable speed gain (the costly FIVE cal-
culations only have to be performed 1000 times instead of
roughly 100,000 times during the evaluations).

For swift application startup, caching the generated
universes with their calculated vague environments and
rule bases on storage is also a plausible solution.

In the age of multi-core CPU systems, it is straightfor-
ward to study parallelization possibilities in FIVE. There
are two locations in the implementation where the advan-
tages of parallel execution can be exploited. One is in
the FIVERuleDist function (see Fig. 5). The iterations of
the main for loop of the function are data independent,
because in each iteration the weight of a different rule (in-
dependent data sets) is calculated even if the same code is

executed.
The next candidate for the parallelization is the FIVE-

VagDist function (see Fig. 5). In this case, the observation
and the rule antecedent vague distances can be calculated
independently for each antecedent dimension.

For embedded real-time applications, the additional
computational cost of parallelization, data distribution,
and data collection also have to be taken into consider-
ation, as the level of available parallelization (the number
of the fuzzy rules in case of the FIVERuleDist and the
number of antecedent dimensions in case of the FIVE-
VagDist) are not so high.

4.2. Application Example
For the first benchmark of the performance, the opti-

mization of a simple vehicle navigation demo application
is selected (see details in [22]). The goal of the application
is to control an unmanned robot capable of room surveil-
lance, making it cycle through given waypoints within a
room with walls and moving obstacles to avoid. When
the path of the robot seems to be blocked by an obsta-
cle, the robot is capable of turning around and heading in
the opposite direction. This application uses the original
FIVE method with four simple rule bases. The universes
have fixed resolutions of 1001 elements. One of the rule
bases has only one antecedent; another one has only two.
Hence, for them, lookup tables of the conclusions can be
generated. The other two rule bases have 3 and 10 an-
tecedent dimensions. As a benchmark, the main loop of
the vehicle navigation application example is analyzed.
The resulting execution times of 108 main vehicle naviga-
tion cycles are summarized in Table 2 and Fig. 8.

4.3. Optimizing FIVE for FRIQ-Learning
A special application example of the optimized FIVE

FRI is the FRI-based Q-learning (FRIQ-learning) intro-
duced in [20] and [23]. The FRIQ-learning is an ex-
tension of the traditional Fuzzy Q-learning (FQ-learning)
method with the capability of handling sparse fuzzy rule
bases. The introduction of FIVE FRI in FQ-learning al-
lows the omission of deducible fuzzy rules from the rule
base representing the action-state value function. This
reduction also adds the potential for applying FRIQ-
learning in higher state dimensions than the original FQ-
learning, thanks to the sparse fuzzy rule-base model of the
action-state space.

The efficiency of the FRI method has a high impact
on FRIQ-learning, as the methodology (similarly to the
Q-learning) requires an extremely high number of repeat-
edly executed action-state value function-model updates
(FRI reasoning) in runtime. Because of the similar re-
peatedly executed FRI operations, the optimization of the
applied FIVE FRI, suggested in this paper, could improve
FRIQ-learning to a great extent.

From the previously introduced FIVE optimization
methods, first of all, the fixed resolution universe descrip-
tion can be applied to speed up FRIQ-learning.

Because of the high dimensionality of the action-
state space, a conclusion lookup table is practically un-
implementable in this case.

Beyond the FIVE optimization methods introduced
previously, because of the specialties of the FRIQ-
learning calculations, another optimization method is also
approaching. In FRIQ-learning for action-state value
model updates and action selection, the values of each
possible action of a given state have to be calculated.

According to [23], the action-state values function FRI
model has the following rule form (kth rule):

If s1 = Sk,1 And . . . And sm = Sk,m And a = Au

Then Q̃(s1, . . . ,sm,a) = Qk (19)

where Sk,i is the label of the ith membership function of
the m-dimensional state space, Au is the label of the uth

membership function of the one dimensional action space,
Qk is the singleton conclusion, and Q̃(s1, . . . ,sm,a) is the
approximated, continuous action-state value function.

In accordance with Eq. (19), the FRI action-state val-
ues function model has a multidimensional state and a
single action dimension ([20] and [23]). Caching the cal-
culated vague distances of the observed state and the rule
antecedents related to the state dimensions of the action-
state value FRI rule base can dramatically speed up the
calculations. In each action-state value model update and
action selection cycle, the vague distances of the actual
state and the rule antecedents related to the state dimen-
sions have to be calculated only once.

The performance gain that could be achieved by this
modification depends on the number of the antecedent
fuzzy term sets in the action universe. The higher the
number of the action term sets, the better the performance
gain becomes.

For execution time benchmarks, a small application ex-
ample has been presented for FRIQ-learning in [23].

This application has been extended with the proof-of-
concept implementation of the suggested FIVE FRI opti-
mized FRIQ-learning. This benchmark is the well-known
cart-pole (reversed pendulum) simulation. The program
runs through episodes, where an episode is a single cart-
pole simulation run. The goal of the application is to move
the cart to the center position while balancing the pole.
The action-state value function FRI model Eq. (19) has
a four-dimensional state and a single-dimensional action
universe with a resolution of 21 distinguishable actions.

The execution times of the benchmark show a signifi-
cant performance gain over the original version. Table 3
summarizes the runtimes of the first best-action-selection
iteration step at the start of the application.

Table 4 summarizes the running time for the first five
episodes of a simulation run from the whole application
with the various optimizations disabled or enabled.

In conclusion of the benchmarks, it can be stated
that the optimized FIVE FRI-based FRIQ-learning can
achieve a tenfold increase in speed over the original FIVE
FRIQ-learning implementation.

Table 3. Run times [msec] of a best-action-selection itera-
tion with the various optimizations.

Time Speed-up
Original version ≈ 115 ms 1x
States calculated only once ≈ 25ms ≈ 9.5x

States calculated only once and us-
ing fixed resolution alignment opti-
mization

≈ 9ms ≈ 12.5x

Table 4. Run times [sec] for the first five episodes of a
simulation run with the various optimizations.

Time Speed-up
Original version ≈ 76.1s 1x
Fixed resolution universes ≈ 24.6s ≈ 3.1x
States calculated only once ≈ 23.5s ≈ 3.2x

States calculated only once and using
fixed resolution alignment optimiza-
tion

≈ 7.9s ≈ 9.6x

5. Conclusion

The main conclusion of the paper is that data structural
simplification and run-time caching methods can achieve
a relevant speed-up in computational time of FRI applica-
tions.

The data structural simplification speeds up lookup ta-
ble data fetching while caching techniques can speed up
repetitive calculations, such as rule evaluations in a sin-
gle reasoning cycle (see speed-up results in Table 2). The
gain of caching can be more relevant if the FRI reasoning
core is embedded into repetitive calculations, as in FRIQ-
learning (see speed-up results in Table 4).

This performance gain could be a relevant improve-
ment for embedded FRI real-time applications, for which
rapid reasoning is the essential question of the FRI appli-
cability.

Another important conclusion of the paper is the rel-
atively small impact of conclusion lookup tables on the
FRI reasoning speed performance (Table 2 and Fig. 8).
The speed performance gain that can be achieved is negli-
gible against the exponential space complexity loss of the
conclusion lookup tables. (Antecedent universes lookup
tables has a space complexity of O(mn), while that of con-
clusion lookup tables have O(nm).)

The main reason for the low reasoning speed gain of
the conclusion lookup tables is inherited from the effec-
tive FRI sparse-fuzzy-rule-based knowledge representa-
tion format. This is a special feature of the FRI knowl-
edge representation, i.e., the size of the rule base is rela-
tively small, containing the relevant rules only. For classi-
cal fuzzy reasoning methods in which the exponentially-
large, complete rule base is required, conclusion lookup
tables can achieve a better speed-up factor.

Acknowledgements
This research was partly supported by the Hungarian National Sci-
entific Research Fund grant number OTKA K77809.

References:
[1] L. T. Kóczy and Sz. Kovács, “On the preservation of the convexity

and piecewise linearity in linear fuzzy rule interpolation,” Tokyo
Inst. Technol., Yokohama, Japan, Tech. Rep. TR 93-94/402, LIFE
Chair Fuzzy Theory, 1993.

[2] D. Tikk and P. Baranyi, “Comprehensive analysis of a new fuzzy
rule interpolation method,” In IEEE Trans. Fuzzy Syst., Vol.8, No.3,
pp. 281-296, June, 2000.

[3] P. Baranyi, L. T. Kóczy, and T. D. Gedeon, “A Generalized Con-
cept for Fuzzy Rule Interpolation,” IEEE Trans. on Fuzzy Systems,
Vol.12, No.6, pp. 820-837, 2004.

[4] S. Jenei, “Interpolating and extrapolating fuzzy quantities revisited
– an axiomatic approach,” Soft Comput., Vol.5, pp. 179-193, 2001.

[5] S. Jenei, E. P. Klement, and R. Konzel, “Interpolation and extrap-
olation of fuzzy quantities – The multiple-dimensional case,” Soft
Comput., Vol.6, pp. 258-270, 2002.

[6] K. W. Wong, D. Tikk, T. D. Gedeon, and L. T. Kóczy, “Fuzzy
Rule Interpolation for Multidimensional Input Spaces With Appli-
cations,” IEEE Trans. on Fuzzy Systems, Vol.13, No.6, pp. 809-819,
December, 2005.

[7] Zs. Cs. Johanyák, “Sparse fuzzy model identification Matlab tool-
box – RuleMaker toolbox,” Proc. of IEEE 6th Int. Conf. on Compu-
tational Cybernetics ICCC 2008, Stara Lesná, Slovakia, pp. 69-74,
2008.

[8] Zs. Cs. Johanyák and Sz. Kovács, “Fuzzy Rule Interpolation Based
on Polar Cuts, Computational Intelligence,” Theory and Applica-
tions, Springer Berlin Heidelberg, pp. 499-511, 2006.

[9] Zs. Cs. Johanyák and Sz. Kovács, “Fuzzy Rule Interpolation by
the Least Squares Method,” 7th Int. Symposium of Hungarian Re-
searchers on Computational Intelligence (HUCI 2006), Budapest,
pp. 495-506, November 24-25, 2006.

[10] Zs. Cs. Johanyák and Sz. Kovács, “Vague Environment-based Two-
step Fuzzy Rule Interpolation Method,” 5th Slovakian-Hungarian
Joint Symposium on Applied Machine Intelligence and Informatics
(SAMI 2007), Poprad, Slovakia, pp. 189-200, January 25-26, 2007.

[11] Sz. Kovács, “New Aspects of Interpolative Reasoning,” Proc. of the
6th. Int. Conf. on Information Processing and Management of Un-
certainty in Knowledge-Based Systems, Granada, Spain, pp. 477-
482, 1996.

[12] Sz. Kovács, and L.T. Kóczy, “Approximate Fuzzy Reasoning Based
on Interpolation in the Vague Environment of the Fuzzy Rule base
as a Practical Alternative of the Classical CRI,” Proc. of the 7th Int.
Fuzzy Systems Association World Congress, Prague, Czech Repub-
lic, pp. 144-149, 1997.

[13] Sz. Kovács and L.T. Kóczy, “The use of the concept of vague en-
vironment in approximate fuzzy reasoning,” Fuzzy Set Theory and
Applications, Tatra Mountains Mathematical Publications, Mathe-
matical Institute Slovak Academy of Sciences, Bratislava, Slovak
Republic, Vol.12, pp. 169-181, 1997.

[14] Sz. Kovács, “Extending the Fuzzy Rule Interpolation “FIVE”
by Fuzzy Observation,” Advances in Soft Computing, Computa-
tional Intelligence, Theory and Applications, Bernd Reusch (Ed.),
Springer Germany, pp. 485-497, 2006.

[15] F. Klawonn, “Fuzzy Sets and Vague Environments,” Fuzzy Sets and
Systems, Vol.66, pp. 207-221, 1994.

[16] D. Shepard, “A two dimensional interpolation function for irregu-
larly spaced data,” Proc. 23rd ACM Int. Conf., pp. 517-524, 1968.

[17] Zs. Cs. Johanyák, D. Tikk, Sz. Kovács, and K. W. Wong, “Fuzzy
Rule Interpolation Matlab Toolbox – FRI Toolbox,” Proc. of the
IEEE World Congress on Computational Intelligence (WCCI’06\),
15th Int. Conf. on Fuzzy Systems (FUZZ-IEEE’06), July 16-21,
Vancouver, BC, Canada, Omnipress., pp. 1427-1433, 2006.

[18] The FRI Toolbox. http://fri.gamf.hu/
[19] Sz. Kovács and L.T. Kóczy, “Application of the Approximate Fuzzy

Reasoning Based on Interpolation in the Vague Environment of
the Fuzzy Rulebase in the Fuzzy Logic Controlled Path Tracking
Strategy of Differential Steered AGVs”, Computational Intelligence
– Theory and Applications, Lecture Notes in Computer Science,
Vol.1226, Springer, pp. 456-467, Germany, 1997.

[20] D. Vincze and Sz. Kovács, “Fuzzy Rule Interpolation-based Q-
learning,” SACI 2009, 5th Int. Symposium on Applied Computa-
tional Intelligence and Informatics, Timisoara, Romania, pp. 55-59,
May 28-29, 2009.

[21] Sz. Kovács, “Interpolative Fuzzy Reasoning in Behaviour-based
Control,” Advances in Soft Computing, Vol.2, Computational In-
telligence, Theory and Applications, Bernd Reusch (Ed.), Springer,
Germany, pp. 159-170, 2005.

[22] D. Vincze and Sz. Kovács, “Behaviour Based Control with Fuzzy
Automaton in Vehicle Navigation,” Production Systems and In-
formation Engineering, Vol.5, University of Miskolc, Hungary,
pp. 151-166, 2009.

[23] D. Vincze and Sz. Kovács, “Incremental Rule Base Creation with
Fuzzy Rule Interpolation-Based Q-Learning,” I. J. Rudas et al.
(Eds.), Computational Intelligence in Engneering, Studies in Com-
putational Intelligence, Vol.313, Springer-Verlag, Berlin Heilder-
berg, pp. 191-203, 2010.

Name:
Dávid Vincze

Affiliation:
Ph.D. Student, Department of Information Tech-
nology, University of Miskolc

Address:
Miskolc-Egyetemváros, H-3515, Miskolc, Hungary
Brief Biographical History:
2008- Department of Information Technology, University of Miskolc
2003- Computer Centre, University of Miskolc
Main Works:
• D. Vincze and Sz. Kovács, “Incremental Rule Base Creation with Fuzzy
Rule Interpolation-Based Q-Learning,” Computational Intelligence in
Engneering, Studies in Computational Intelligence, Vol.313,
Springer-Verlag, Berlin Heilderberg, pp. 191-203, 2010.
Membership in Academic Societies:
• Hungarian Fuzzy Association

Name:
Szilveszter Kovács

Affiliation:
Associate Professor, Department of Information
Technology, University of Miskolc

Address:
Miskolc-Egyetemváros, H-3515, Miskolc, Hungary
Brief Biographical History:
1989 Received M.Sc. in Electrical Engineering from Technical University
of Budapest, Hungary
1993 Received M.Sc. in Computer Engineering from Technical
University of Budapest, Hungary
1998 Received Ph.D. in Engineering from University of Miskolc, Hungary
1989-1998 Network Manager, Computer Centre, University of Miskolc,
Hungary
1998-2005 Senior Lecturer, Department of Information Technology,
University of Miskolc, Hungary
1999-2001 Research Fellow, Gifu Prefectural Research Institute of
Manufacturing Information Technology, Japan
2005-2010 Senior Research Fellow, Institute of Information Technologies,
Kecskemét College, Hungary
2009-2010 Research Fellow, Department of Cybernetics and Artificial
Intelligence, Faculty of Electrical Engineering and Informatics, Technical
University of Kosice, Slovakia
2009-2010 Head of the Department, Department of Automation,
University of Miskolc, Hungary
2005-Associate Professor, Department of Information Technology,
University of Miskolc, Hungary
Main Works:
• fuzzy systems, fuzzy rule interpolation and its embedded applications,
behaviour-based control and reinforcement learning
Membership in Academic Societies:
• EURO (The Association of European Operational Research Societies)
Working Group on Fuzzy Sets (EUROFUSE)
• Integrated Intelligent Systems, Japanese-Hungarian Joint Laboratory
(IISL)
• John von Neumann Computer Society
• Hungarian Fuzzy Association

