
Automatic Deployment and Interoperability of Grid Services

G. Kecskemeti, Y. Zetuny, G. Terstyanszky, T. Kiss, P. Kacsuk, S. Winter

Centre of Parallel Computing, University of Westminster,
115 New Cavendish Street,

London W1W 6UW United Kingdom
e-mail:gemlca-discuss@cpc.wmin.ac.uk

Abstract

The Grid Execution Management for Legacy Code Architecture (GEMLCA) enables exposing
legacy applications as Grid services without re-engineering the code, or even requiring access to the
source files. The integration of current GT3 and GT4 based GEMLCA implementations with the P-
GRADE Grid portal allows the creation, execution and visualisation of complex Grid workflows
composed of legacy and non-legacy components. However, the deployment of legacy codes and
mapping their execution to Grid resources is currently done manually. This paper outlines how
GEMLCA can be extended with automatic service deployment, brokering, and information system
support. A conceptual architecture for an Automatic Deployment Service (ADS) and for an x-
Service Interoperability Layer (XSILA) are introduced explaining how these mechanisms support
desired features in future releases of GEMLCA.

1. Legacy Code Services for the Grid
The Grid requires special Grid enabled
applications capable of utilising the underlying
middleware and infrastructure. Most Grid
projects so far have either developed new
applications from scratch, or significantly re-
engineered existing ones in order to be run on
their platforms. This practice is appropriate in
this context, where the applications are mainly
aimed at proving the concept of the underlying
architecture. However, as the Grid becomes
stable and commonplace in both scientific and
industrial settings, a demand will be created for
porting a vast legacy of applications onto the
new platform. Companies and institutions can ill
afford to throw such applications away for the
sake of a new technology, and there is a clear
business imperative for them to be migrated
onto the Grid with the least possible effort and
cost. Grid computing is now progressing to a
point where reliable Grid middleware and
higher level tools will be offered to support the
creation of production level Grids. A high-level
Grid toolkit should definitely include
components for turning legacy applications into
Grid services.
The Grid Execution Management for Legacy
Code Architecture (GEMLCA) [1] enables
legacy code programs written in any source
language (Fortran, C, Java, etc.) to be easily
deployed as a Grid Service without significant
user effort. GEMLCA does not require any
modification of, or even access to, the original

source code. A user-level understanding,
describing the necessary input and output
parameters and environmental values such as
the number of processors or the job manager
required, is all that is needed to port the legacy
application binary onto the Grid.
In order to offer a user friendly application
environment, and support the creation of
complex Grid applications from building
blocks, GEMLCA is integrated with the
workflow oriented P-GRADE Grid portal [2].
Using the integrated GEMLCA – P-GRADE
portal solution users can create complex Grid
workflows from legacy and non-legacy
components, map them to the available Grid
resources, execute the workflows, and visualise
and monitor their execution.
A drawback of the current solution is the static
mapping of legacy components onto resources.
Before creating the workflow the legacy
application has to be deployed on the target site,
and during workflow creation, but prior to its
submission, the user has to specify the resource
where the component will be executed. It would
desirable to allocate resources dynamically at
run-time, or to automatically deploy a legacy
component on a different site in order to achieve
better performance.
Figure 1 illustrates how GEMLCA can be
extended with these functionalities. Instead of
mapping the execution of workflow components
statically to the different Grid sites, the abstract
workflow graph created by the user is passed to
a resource broker together with quality of

mailto: delaitt@cpc.wmin.ac.uk

service (QoS) requirements. The broker contacts
an information service and tries to map different
components of the workflow to different
resources and pre-deployed services. If user
QoS requirements cannot be fulfilled with the
currently deployed services, or if the required
service is not deployed on any of the resources,
the broker contacts the automatic deployment
service in order to deploy the code on a different
site. As the sites can belong to different Grids
with different middleware, policy and security
standards, the deployer service should resolve
these interoperability problems.
Unfortunately no currently existing information
system, resource broker or deployment service
can be directly used and integrated with
GEMLCA to solve these problems. Significant
research, extension and improvement of existing
solutions are necessary. In this paper we
concentrate on a subset of this complex
architecture and propose a solution for the
Automatic Deployment Service (ADS) and for
an x-Service Interoperability Layer (XSILA).

2. Related Work
There are several research efforts aiming at
automating the transformation of legacy code
into a Grid Service. These approaches are either
invasive or non-invasive. Both approaches are
valid in different circumstances, depending on
factors such as the granularity of the code, the
assumed users and application area.
In the invasive approach, it is typically assumed
that an application programmer, such as a
biologist or chemist with some programming
background but no Grid-specific knowledge,
would like to build Grid enabled applications
using specific software libraries. These libraries

need to be wrapped using tightly-coupled code-
wrapping technology that exposes low level
functionality. Most of these solutions are based
on the principles outlined in [3] and use Java
wrapping in order to generate stubs
automatically. One prominent example is
represented by the work of researchers at
University of Cardiff [4]. This solution is based
on the semi-automatic conversion of program
code into Java using Java Native Interface
(JNI). After wrapping the native application
with the Java-C Automatic Wrapper (JACAW),
or the Simplified Wrapper and Interface
Generator (SWIG), the MEdiation of Data and
Legacy Code Interface tool (MEDLI) is used for
data mapping to make the code available as part
of a Grid workflow using Triana.

P-GRADE
Portal Server

Desktop 1

Web browser

Legacy applications

Grid Site 1

Desktop N

Web browser
Abstract workflow

Legacy applications

Grid Site 2

Broker

Information
Service

Automatic
deployer

P-GRADE
Portal Server

Desktop 1

Web browser

Legacy applications

Grid Site 1

Desktop N

Web browser
Abstract workflow

Legacy applications

Grid Site 2

Broker

Information
Service

Automatic
deployer

Figure 1 GEMLCA with Brokering, Information System and Automatic Deployment Support

A different approach is represented by the non-
invasive solutions, like GEMLCA. This method
is relatively coarse-grained, in that the
application does not allow visibility of low-level
functionalities. The legacy code is provided as a
black-box with specified input and output
parameters and environmental requirements.
Only the executable is available, and required,
in this case, together with a user-level
understanding of the application. This scenario
is very common in both scientific and business
applications when:
- the source code is not available,
- the program is poorly documented and/or

the necessary expertise to do any
modifications has long left the organisation,

- the application has to be ported onto the
Grid within the shortest possible time and
smallest effort and cost ,

- the functionalities are offered to partner
organisations but the source is not.

Other non-invasive approaches are described in
[5] and [6]. Although both solutions are similar
in aims with GEMLCA, they have limited
prototype implementations supporting only
OGSI (Open Grid Services Infrastructure) type
GRID middleware at the moment. GEMLCA,
implemented both on top of GT3 and GT4,
offers a more comprehensive solution, since it
includes portal and workflow access, security
solutions incorporating authentication,
authorisation and security delegation
mechanisms.
The aim of GEMLCA, similarly to the Triana-
based solution of Cardiff University, is to
provide a comprehensive and user-friendly
environment for legacy code deployment and
execution. This includes not only the core
legacy transformation functionality, but also
supporting the end-users with several tools like
Grid portal, workflow engine, brokering or the
automatic deployment facility presented in this
paper.

3. Grid Execution Management for
Legacy Code Architecture
The Grid Execution Management for Legacy
Code Architecture (GEMLCA) enables legacy
code programs written in any source language
(Fortran, C, Java, etc.) to be easily deployed as a
Grid Service without significant user effort.
GEMLCA represents a general architecture for
deploying legacy applications as Grid services
without re-engineering the code or even
requiring access to the source files. The high-
level GEMLCA conceptual architecture is
represented on Figure 2.
As shown in the figure, there are four basic
components in the architecture:
The Compute Server is a single or multiple
processor computing system on which several
legacy codes are already implemented and
available. The goal of GEMLCA is to turn these
legacy codes into Grid services that can be
accessed by Grid users.
The Grid Host Environment implements a
service-oriented OGSA-based Grid layer, such

as GT3 or GT4. This layer is a pre-requisite for
connecting the Compute Server into an OGSA-
built Grid.
The GEMLCA Resource layer provides a set
of Grid services which expose legacy codes as
Grid services.
The fourth component is the GEMLCA Client
that can be installed on any client machine
through which a user would like to access the
GEMLCA resources.
The novelty of the GEMLCA concept is that it
requires minimal effort from both Compute
Server administrators and end-users of the Grid.
The Compute Server administrator should
install the GEMLCA Resource layer on top of
an available OGSA layer (GT3/GT4). It is also
their task to deploy existing legacy applications
on the Compute Servers as Grid services, and to
make them accessible for the whole Grid
community. End-users do not have to do any
installation or deployment work if a GEMLCA
portal is available for the Grid and they only
need those legacy code services that were
previously deployed by the Compute Server
administrators. In such a case end-users can
immediately use all these legacy code services -
provided they have access to the GEMLCA
Grid resources. If they would like to deploy
legacy code services on GEMLCA Grid
resources they can do so, but these services
cannot be accessed by other Grid users. As a
last resort, if no GEMLCA portal is available
for the Grid, a user must install the GEMLCA
Client on their client machine. However, since it
requires some IT skills to do this, it is
recommended that a GEMLCA portal is
installed on every Grid where GEMLCA Grid
resources are deployed.
The deployment of a new legacy code service in
current GEMLCA implementations assumes
that the legacy application is already deployed
and runs in its native environment on a
Compute Server. The deployment with
GEMLCA means to expose this legacy
application as a Grid service. It is the task of the
GEMLCA Resource layer to present the legacy
application as a Grid service to the user, to

Figure 2 GEMLA Conceptual Architecture

communicate with the Grid client and to hide
the legacy nature of the application. To expose a
legacy code as a Grid service with GEMLCA
requires only a user-level understanding of the
legacy application, i.e., to know what the
parameters of the legacy code are and what kind
of environment is needed to run the code (e.g.
multiprocessor environment with ‘n’
processors). The execution environment and the
parameter set for the legacy application is
described in an XML-based Legacy Code
Interface Description (LCID) file that should be
stored in a pre-defined location. This file is used
by the GEMLCA Resource layer to handle the
legacy application as a Grid service.
GEMLCA provides the capability to convert
legacy codes into Grid services just by
describing the legacy parameters and
environment values in the XML-based LCID
file. However, an end-user without specialist
computing skills still requires a user-friendly
Web interface (portal) to access the GEMLCA
functionalities: to deploy, execute and retrieve
results from legacy applications. Instead of
developing a new custom Grid portal,
GEMLCA was integrated with the workflow-
oriented P-GRADE Grid portal extending its
functionalities with new portlets.
Following this integration, end-users can easily
construct workflow applications built from
legacy code services running on different
GEMLCA Grid resources. The workflow
manager of the portal contacts the selected
GEMLCA resources, passes them the actual
parameter values of the legacy code, and then it
is the task of the GEMLCA Resource to execute
the legacy code with these actual parameter
values. The other important task of the
GEMLCA Resource is to deliver the results of
the legacy code service back to the portal.

4. Automatic Deployment Service in
GEMLCA
In the current GEMLCA architecture legacy
code services are deployed and mapped
manually to Grid resources at workflow
construction time. As a pre-requisite to
extending GEMLCA with QoS based brokering
and load-balancing capabilities, services have to
be automatically deployed or migrated from one
site to another. This section describes the
challenges faced when deploying services, and
proposes a general architecture for an
Automatic Deployment Service.

4.1 Deployment Scenarios

There are several research efforts identifying
and implementing solutions for scenarios when
automatic deployment of services is important
[7]. Each scenario can be derived from the
following two basic cases:
1. Deploying new Grid services. This scenario

means the deployment of a new Grid
service onto a target site by the service
developer. Dependencies have to be
detected and resolved by the automatic
service deployment tool, and the service
container has to be prepared accordingly in
order to prevent misbehaviour.

2. Migrating existing Grid services. This
scenario occurs when migrating an already
deployed Grid service to a different site
where a dependency description is
available. However, even within the same
Grid, this description could be in a different
format than is required, depending on the
selected service container. An automated
deployment tool should provide a
transformation between different
dependency descriptions. Where the
description is not appropriate, dependencies
have to be investigated like in the previous
scenario.

Based on these two basic scenarios the
following examples illustrate where automatic
service deployment is important in a Grid
environment:
- Automatic selection services. An already

deployed service can’t process any more
request as its hosting container is
overloaded. The service has to be migrated
to a site with lower load, and some of its
requests have to be redirected to the newly
deployed service.

- Grid systems integration. Joining different
Grids can be more efficient when some
services are installed on both of them.
Migration of a service in this situation may
result in lower communication overhead.
In this case a translation is needed between
the different site description languages, and
deployment specific information has to be
provided. Following this, the system has to
install the proper environment on the Grid
receiving the service in order to carry out
the migration.

- Refining existing services. Some services
(usually data retrieval solutions) provide
very generic information to their users,
irrelevant to their real, usually restricted,
needs. In this case users have to filter this
information in order to retrieve what is

relevant for them. To avoid high network
traffic this filtering can be implemented and
deployed as a new service on the site where
the general service resides.

 4.2 Deployment Service Architecture

In order to support the previously described
scenarios a layered deployment service
architecture has been identified. Figure 3 shows
this architecture, and illustrates how it is utilised
when migrating an already deployed service to a
target site. The migration process and the tasks
of the different layers of the architecture are the
following:
1. The Grid sites register themselves in an

information system. The registration
contains basic site descriptions.

2. In order to be migrated from site A to an
appropriate target site, the service contacts
the Automatic Deployment Service.

3. The deployment service queries the
information system in order to access site
descriptions, and also generates the
description of the service to be migrated.
The classifier module [8] tests the
description of the service against the site
descriptions, and generates a set of sites
that are the most capable of hosting the
service. All the descriptions, with the help
of ontologies, are transformed into a meta-
description suitable for classification [9].
Following this, the dependency checker
investigates the capabilities of the selected
sites. The capabilities should be identified
with a black box method as the source code
is not available in GEMLCA. In a black-
box method, dependencies are detected
using an observer execution environment.
The service uses generic test data that
affects all of its features in order to gather
runtime dependencies, such as the files
accessed, network connections used, or

environment variables needed to be set up.
The generated descriptions are stored in the
information system for further use.

4. Based on the information received from the
dependency checker the comparator
prepares some metrics (cost and time
requirements of the deployment based on
the descriptions), and selects the site with
the lowest deployment cost (Site B in our
example) [10].

5. In order to make Site B compatible with
Site A from the service’s point of view, the
dependency installer prepares several
installation scripts and environment
configuration files/setup scripts. These
scripts have to take care of all third party
software necessary for the service. The
established network connections have to be
simulated with a proxy. This proxy has to
be prepared on both sites.

6. The deployer prepares a sandbox [11] on
SiteB in order to separate the execution of
the service from others. The sandboxing
technique used can be various; e.g. a basic
chrooted environment, some Java security
model based solution, or a virtualisation
technique (Xen, VirtualPC, VMware). The
deployer interfaces with the actual
sandboxing technique to create a new
sandbox, and then the installation scripts,
created in the previous step, are executed in
it.

7. The deployer notifies SiteA, and negotiates
the transfer of the service between the sites.
The negotiator can detect the available and
accessible transfer services on each site. It
also has the capability to act as an
intermediate layer between the source and
the destination, if it is necessary. The
service has to be registered with the new
host environment in an execution
environment specific way without restarting
it (the state information of services should

Figure 3 Automatic Deployment Service Architecture

Site B

Dependency checker
Classifier

Description comparator

Deployer
Dependency installer

Automatic
deployment service

Site C

Site D

Site A
Service

Information
service

2 3
1

1

1

4

5

6

7

7 Service

1

not be modified) [12]).
After the transfer is completed between the two
sites the service becomes available on the new
site.

5. x-Service Interoperability
The construction and operation of interoperable
services running on large-scale Grids lead to
great challenges. The highly distributed nature
of services within a Virtual Organisation (VO),
spanning many different management and
security domains, raises both policy and security
issues. Current GEMLCA implementations
utilise GSI [13] as a standard Grid security
solution. Despite the fact that GSI provides
important security features it has several
problems, which lead to scalability and
flexibility limitations, particularly in the
authorisation and policy management aspects.
These limitations have direct impact on the
interoperability of Grid services in multi-
domain Grid environments [14]. The aim of our
Grid services interoperability research is to
build on existing policy and security solutions
and standards that are managed independently
by different Grid sites, and to develop an
architecture that is capable of bridging isolated
Grids in a flexible, scalable and dynamic
manner. As a result of this work, GEMLCA is
significantly extended to enable the deployment,
creation, invocation and management of Grid
services between multi-domain Grid
environments, thus enabling a dynamic
integration of different Grid sites.

5.1 Policy & Security Interoperability
Scenarios

The policy and security interoperability
challenges analysis and investigation are
focusing on three major topics: how to support
multiple security implementations; how to allow
dynamic creation of services; and how to
establish trust domains dynamically. Two major
scenarios can be derived from these topics:
1. Deployment and migration of Grid services.

This is an extension of the deployment
scenario described in 4.1 by adding extra
capabilities to the Automatic Deployment
Service taking local policy and security
solutions into consideration.

2. Invocation of Grid services. The invocation
of a Grid service follows its deployment on
the target site as a result of either a new
Grid service deployment, or a migration of
an existing service.

Prior to the deployment and the invocation of
the Grid service, policy and security analysis

and mapping should be performed in order to
decide whether it is feasible to deploy the Grid
service onto a target node in a Grid within a
different security domain. Based on the scenario
analysis, three categories have to be taken into
consideration when performing the mapping
procedure:
1. The integration category is concerned with

integrating existing security architectures
and models across multiple platforms and
hosting environments. Since every Grid is
likely to manage security policies,
authentication credentials and identities
within its own security domain, there is a
need in the previously mentioned
interoperability scenarios to define a global
mechanism that translates access rules and
policies from one domain to another.
Therefore, local security implementations
are independent from each other, while
mapping is still possible between these
implementations in a global manner.

2. The interoperability category is defined in
terms of policy. This means that each party
is able to specify any policy in order to
engage in a secure conversation. Policies
expressed by different parties can be made
mutually comprehensible. Once policy
requirements of each domain are managed,
authorisation problems can be solved:
- managing different kinds of

authorisation mechanisms,
- controlling access between Grid

domains (such as enabling the ADS to
deploy a Grid service into a different
domain, or submitting jobs between
domains),

- allowing the Grid environment to grow
and shrink dynamically by
adding/removing access rights to
services and resources.

Furthermore, there is a need to manage and
translate privacy rules and preferences
between different domains.

3. The trust category is concerned with
establishing trust between different parties.
This is a complex problem in a Grid
environment due to the need to support
dynamic, user-controlled deployment and
management of Grid services. In the
interoperability scenarios, the trust category
is divided into two forms of relationships:
direct/mutual trust relationship
(invocation), and indirect trust relationship
(deployment) that is achieved through an
intermediary service, such as the ADS.

5.2 Interoperability Service Architecture

The analysis of the above scenarios
demonstrates the need for an interoperability
bridge that converts one interface into another
one in a dynamic manner. This interface can
imply multiple meanings, depending on the
context, like security interface (WS-Security)
[15], policy interface (WS-Policy, WS-
PolicyAttachment) [16] etc. A general
interoperability architecture, the x-Service
Interoperability Layer (XSILA), has been
specified in order to handle interoperability
issues between Grid clients and Grid services
when they are in different domains. “x” refers to
any kind of Grid or Web service in this context.
The ADS, as described is section 4, is limited to
the deployment of a Grid service within one
Grid, and cannot span multiple domains.
Extending the ADS with XSILA enables the
automatic deployment of a Grid service into
different domains. XSILA serves as a bridge
between the different Grids, and makes the
deployment to a different domain transparent
for the ADS by redirecting the communication
between the ADS and the services though
XSILA, as illustrated on Figure 4. The
architecture is composed of five layers:
1. Negotiator Layer - collects interoperability

properties, such as access mechanisms,
policies, and security mechanisms of the
involved domains.

2. Analyzer Layer - analyses the properties
collected by the negotiator layer, defines
the differences between domains, and
prepares a list of interoperability
requirements based on these differences.

3. Classifier Layer - classifies the
interoperability requirements into
interoperability classes. It utilizes a
mapping engine to create correlation

between the demands of each domain.
4. Dispatcher Layer - uses the mapping

produced by the classifier layer to spawn a
Bridge Service that contains the generated
mappings. Each dispatched bridge includes
a unique identifier which is then can be
used by a client to access the service.

5. Bridge Layer - encompasses one or more
Bridge Services that are spawned by the
Dispatcher Layer. Each Bridge Service is
intended to resolve a particular
interoperability problem. The Bridge
service is discarded once a communication
is no longer required.

6. Conclusion and Further Work
Deploying legacy applications on the Grid
without reengineering the code is crucial for the
wider scientific and industrial take-up of Grid
technology. GEMLCA provides a general
solution in order to convert legacy applications
as black-boxes into OGSA compatible Grid
services, without any significant user effort.
Current GEMLCA implementations fulfil this
objective, and the integrated GEMLCA - P-
GRADE Portal solution offers a user friendly
Web interface and workflow support on top of
this. However, GEMLCA should be further
developed and extended with additional
features, like information system support,
brokering, load balancing or automatic
deployment and migration of services, in order
to offer a more comprehensive solution for Grid
users.
This paper presented an Automatic Deployment
Service Architecture that enables the automatic
deployment and migration of GEMLCA Grid
services to different sites within the same Grid
domain. The combination of this architecture
with the x-Service Interoperability Layer

Figure 4 ADS and the x-Service Interoperability Layer

extends deployment and migration capabilities
to different domains. Adding these features to
GEMLCA enables service developers to deploy
their services automatically on the target site, or
to migrate the service to a different site,
spanning multiple Grid domains when required,
if execution is more efficient there.
The implementation of these architectures and
their integration with GEMLCA is currently
work in progress. Also, the investigation has
already started how it could be integrated and
extended with existing information system and
brokering solutions in order to realise the full
GEMLCA-based Grid presented in Figure 1 of
this paper.

References
[1] T. Delaitre, A.Goyeneche, T.Kiss, G.Z.

Terstyanszky, S.C. Winter, P. Kacsuk, D.
Igbe, P. Maselino, K. Sajadah, N.
Weingarten: Experiences with Publishing
and Executing Parallel Legacy Code using
an OGSI Grid Service, Conf. Proc. of the
UK E-Science All Hands Meeting, pp. 999-
1002, ISBN 1-904425-21, 31st August - 3rd
September 2004, Nottingham, UK

[2] Cs. Nemeth, G. Dozsa, R. Lovas, P.
Kacsuk, “The P-GRADE Grid portal”, In:
Computational Science and Its Applications
- ICCSA 2004: International Conference,
Assisi, Italy, 2004, LNCS 3044, pp. 10-19.

[3] D. Kuebler, W. Eibach, “Adapting legacy
applications as Web services, IBM
Developer Works, http://www-
106.ibm.com/developerworks/webservices/

[4] Y. Huang, I. Taylor, D. W. Walker,
”Wrapping Legacy Codes for Grid-Based
Applications”, Proceedings of the 17th
International Parallel and Distributed
Processing Symposium, workshop on Java
for HPC), 22-26 April 2003, Nice, France.
ISBN 0-7695-1926-1

[5] B. Balis, M. Bubak, and M. Wegiel, ”A
Solution for Adapting Legacy Code as Web
Services, in “Component Models and
Systems for Grid Applications” edited by
V. Getov and T. Kiellmann, Springer, 2005,
pp 57-75,
ISBN 0-387-23351-2.

[6] D. Gannon, S. Krishnan, A. Slominski, G.
Kandaswamy, L. Fang, “Building
Applications from a Web Service based
Component Architecture, in “Component
Models and Systems for Grid Applications”
edited by V. Getov and T. Kiellmann,
Springer, 2005, pp 3-17, ISBN 0-387-
23351-2.

[7] J. B. Weissman, S Kim, D. England.
Supporting the Dynamic Grid Service
Lifecycle, Technical Report, University of
Minnesota, 2004,

[8] Mike James : Classification Algorithms,
Wiley, 1985, ISBN: 0-471-84799-2

[9] M. Cannataro, C. Comito: A Data Mining
Ontology for Grid Programming, Conf.
Proc of the 1st Workshop on Semantics in
Peer-to-Peer and Grid Computing at the
Twelfth International World Wide Web
Conference, 20 May 2003, Budapest,
Hungary

[10] P. Watson, C. Fowler. An Architecture for
the Dynamic Deployment of Web Services
on a Grid or the Internet, Technical Report,
University of Newcastle, February, 2005.

[11] M. Smith, T. Friese, B. Freisleben. Towards
a service-oriented ad hoc grid, Conf. Proc
of the ISPDC/HeteroPar Conference, 2004

[12] A. Ting, W. Caixia, X. Yong. Dynamic
Grid Service Deployment, Technical
Report, March, 2004

[13] V. Welch et al.: Security for Grid Services”
Twelfth International Symposium on High
Performance Distributed Computing
(HPDC-12), IEEE Press, June 2003.

[14] L. Cornwall, J. Jensen, D. P. Kesley:
Security in multi-domain Grid
environments, ZDNet White Papers,
Springer, April 2004.

[15] B. Atkinson et al.: Specification: Web
Services Security (WS-Security),
http://www-
106.ibm.com/developerworks/webservices/l
ibrary/ws-secure

[16] D. Box et al.: WS-Policy - Web Services
Policy Framework, Joint specification by
BEA Systems, IBM, and Microsoft, May,
2003

	Abstract

	Legacy Code Services for the Grid

	Related Work

	Grid Execution Management for Legacy Code Architecture

	Automatic Deployment Service in GEMLCA

	x-Service Interoperability

	Conclusion and Further Work

	References

