
Automatic Service Deployment Using Virtualisation 
Gabor Kecskemeti, Gabor Terstyanszky, Tamas Kiss, Thierry Delaitre, Peter Kacsuk,, 

Centre for Parallel Computing, University of Westminster 
115 New Cavendish Street, London, W1W 6UW 

e-mail: gemlca-discuss@cpc.wmin.ac.uk 

 
 

Abstract 

Manual deployment of the application usually requires expertise both about the underlying 
system and the application. Automatic service deployment can improve deployment 
significantly by using on-demand deployment and self-healing services. To support these 
features this paper describes an extension the Globus Workspace Service [1]. This extension 
includes creating virtual appliances for Grid services, service deployment from a repository, 
and influencing the service schedules by altering execution planning services, candidate set 
generators or information systems. 

 

1. Introduction 

1.1 Service and application deployment issues 
 
Researchers use complex software applications 

(e.g. BLAST, CHARMm, GAMESS-UK) 
deployed by site administrators. They have to run 
their applications on those sites where they have 
been installed. Researchers cannot use those Grid 
resources, where their applications are not 
deployed. These applications are so complex that 
users usually cannot deploy these on new sites. 
Even if they could have deployed these 
applications, site policies in production Grid 
environments usually do not allow users to deploy 
new applications. Therefore, they should ask the 
site administrators to install and configure the 
applications, they need. The deployment may 
raise some licensing and maintenance issues at 
each site. Applications may have strict licensing 
conditions, and the Grid site providers probably 
do not want to bind themselves to these 
conditions, especially when the licensing is not 
free of charge. Even if licensing problems can be 
solved, the complexity of these applications may 
require knowledge from the site administrators, 
which they may not have. 

If users have the source codes and they are 
able to compile these, they have binaries of the 
applications, which can be staged to the executor 
site eliminating the deployment. However, this 
solution has several drawbacks: 

1. User’s drawback: First, the application has 

to be compiled for every site. Secondly, the 
application usually cannot make network 
connections with the outside world - e.g. a 
database. Finally, the submission has to 
prepare the executor environment for the 
application every time. 

2. Network’s drawback: Frequent submission 
of the executable increases the network 
traffic. 

3. Site administrator’s drawback: Every new 
application is a possible danger to the 
system, because administrators have limited 
control over this code. Therefore, a single 
submission could affect other codes. 

Nowadays the Grid moves towards service- 
oriented solution. These Grids usually expose 
codes deployed on the site and do not install new 
codes on executor sites. At one hand they disable 
the “regular” execution of applications, at the 
other hand they provide service interfaces for 
users. Users can access applications , which have 
been deployed on sites through these interfaces. 
Installing a new application in a service-oriented 
Grid consists of two main steps: 

1. Deploying the application, installing 
dependencies, configuring it, preparing 
network connections, etc. 

2. Providing a service-oriented interface: to 
access application and deploy it on a Grid 
service container.  

This service interface could be either a generic 
or specific one. A generic interface is provided by 
a Grid middleware (e.g. OGSA-BES – basic 
execution service – implementations and JSDL – 



job submission description language – 
repositories) or other generic application wrappers 
(e.g. Application Hosting Environment (AHE) 
[10], Grid Execution Management for Legacy 
Code Application (GEMLCA) [12], Generic 
Application Service Factory (gFac) [11]). A 
specific interface is tuned for the application and 
written by either the application developers or by 
the user community. 

Manual deployment of the application usually 
requires expertise both about the underlying 
system and the application. In several cases it 
cannot be done without the assistance of the 
system administrators. There is a need for a 
solution that can perform deployments without 
any specific expertise. This solution should also 
act between the limits the system administrators 
gave to the user. These kinds of solutions are 
called automatic service deployment systems and 
they can both deploy the application and activate 
the service interface for further uses. 

 
1.2 Deployment automation 

 
Automatic service deployment can improve  

deployment significantly by using on-demand 
deployment and self-healing services.  

In case of on-demand deployment the 
applications are retrieved from a repository and 
installed and configured on the target site prior its 
execution. The deployment could be initiated by a 
broker or an advance reservation systém. The on-
demand deployment uses either centralised or 
distributed repositories. Centralised repositories 
store all the required and dependent software 
packages in the same location with their 
configuration. In distributed repositories, 
packages are spread around the Grid. Distributed 
repositories either store pre-packaged software 
components and they have references to their 
dependencies or software components are 
distributed around the Grid using some replication 
solutions. On-demand deployment increases the 
risks of using grid sites maliciously. The newly 
deployed software components might interfere 
with the already deployed ones, the software 
installed might need outgoing network 
connections, therefore on every local hardware 
resource (e.g. disks, network, processing power) 
the service should have strict limitations 
according to the service level agreements [13].  

If malfunction occurs in a Grid service and the 
source of malfunction can be identified the service 
can reconfigure or reinstall the affected 
components. Service faults can be recognized 
through advance fault prediction or active service 

calls. Advance fault prediction uses component 
monitors to determine service misbehaviour. 
Active service calls can generate regular output 
messages or fault messages. If the service 
response is a fault message the service should 
identify the cause of the fault which could be 
internal or external. In case of internal causes the 
component causing the fault should be repaired. If 
the service responds with a regular response 
message the response has to be validated against 
the semantics of the service and violations should 
be reported back to the service initiating the self-
healing process.  

There are two major approaches for automatic 
deployment: service-oriented and non-service-
oriented solutions. The service-oriented solutions 
operate at service container level. Therefore they 
are not capable to handle the background 
application’s management tasks. The non-service-
oriented solutions manage the service container as 
a common software component on which the 
currently deployed software depends. 

 
1.3 Virtualisation and deployment 

 
Automatic service deployment could be 

further improved by using virtualisation. The new 
hardware architectures give more and more 
support for virtualisation. Therefore, the software 
also has to tackle this issue. The application and 
its service interfaces are preinstalled with all of 
their dependencies in a virtual machine image as a 
virtual appliance to be executed on one of the 
destination site‘s virtual machines. Therefore the 
deployment incorporates the installation and 
activation of virtual appliances. Grid researchers 
have already developed some solutions in this 
area, for example: the XenoServer plattform [6], 
or the Workspace Service (WS) [1] for Globus 
Toolkit 4 [3]. 

Service deployment with virtualisation can 
support both the on-demand deployment and the 
self-healing services in a secure way even at the 
site level. Using virtualisation techniques, the 
software repository for on-demand deployment 
should hold the virtual appliances of the services. 
The requirements against the hosting environment 
should also be stored together with the virtual 
appliances because the virtual appliances are 
virtualisation technique dependent. Virtual 
machines could also provide restrictive domains 
for the software deployed in them. Therefore the 
limitations – e.g. outgoing network bandwidth, IP 
address – declared in the service level 
aggreements of the site can be enforced via the 
virtualisation software [13]. In order to support 



self-healing, virtual appliances should be 
distributed in several packages – a base package, 
and delta packages. The base package is a 
minimal and roboust package on which the delta 
packages are built. It should contain the necessary 
components to configure and install further 
components of the application before their 
execution, and it should be capable to reinstall 
these components when malfunction arises. The 
delta packages should represent those software 
components which the self healing service is able 
to repair. The delta packages should be distributed 
with their individual configuration details in order 
to support on-demand reconfiguration. 

The paper is organised on the following way. 
Section 2 discusses related works, Section 3 gives 
an overview on the deployment architecture,  
Section 4 describes an advanced virtual appliance 
creation service, and Section 5 provides solutions 
to alter an an execution schedule to include 
deployments, finally Section 6 concludes this 
work. 

2. Related Works 

WS [1] (workspace service) as a globus incubator 
project supports wide range of scenarios involving 
virtual workspaces, virtual clusters and service 
deployment from installing a large service stack 
like ATLAS to deploying a single WSRF service 
if the Virtual Machine (VM) image of the service 
is available. The WS is designed to support 
several virtual machines – XEN [2], VMWare, 
VServer – to accomplish its task.  
The XenoServer open platform [6] is an open 
distributed architecture based on the XEN 
virtualization technique. It is aiming for global 
public computing. The platform provides services 
for server lookup, registry, distributed storage and 
a widely available virtualization server. 
VMPlants [4] project proposes an automated 
virtual machine configuration and creation service 
heavily dependent on software dependency 
graphs. This project stays within cluster 
boundaries. 
These solutions are focusing on the deployment 
process itself and do not leverage their benefits on 
higher levels. Meanwhile the solution presented in 
this paper is focusing on possible extensions on 
the current deployment systems by integrating the 
openness of the XenoServer platform, the 
widespread virtual machine support of the 
Workspace Service, and the DAG based 
deployment solution presented by the VMPlants. 
This paper also introduces higher-level services 

supporting the service lifecycle on grid 
architectural level. 

3. Automatic Service Deployment 

In order to support automatic service deployment, 
the WS interface has to be extended by two new 
services: 

 
1. Automated Virtual Appliance Creation 

Service (AVS). It should support service 
deployment by creating virtual appliances for 
Grid services. The virtual appliances should 
be stored in an appliance repository, for 
example in the Application Contents Service 
[9] (ACS). The ACS provides a simple 
interface for managing Application Archives 
(AA) [9], which hold both the application 
packages and their configuration. The WS 
should access the contents of the service by 
using the endpoint references provided by 
the ACS for each AA. The virtual appliances 
(or service images) should be minimized 
because the repository may hold large 
number of virtual appliances. As a result, a 
virtual appliance shrinker should optimize 
the appliance’s archive even if it is using 
different formats of the different 
virtualization techniques such as XEN, 
VMVare or VirtualPC. 

2. Scheduler Assistant Service (SAS). To 
define the sites where the service can be 
installed and select among these sites, the 
AVS should be used together with the OGSA 
[7] Execution Planning Service (EPS), more 
precisely, it’s Candidate Set Generators 
(CSG). CSG can define scheduling 
candidates for sites, which are capable of 
deploying a service in a reasonable time. 
CSG, may define sites where the service 
have not yet deployed. EPS should resolve 
these schedules in two ways: 
a. Schedule-driven deployment. The EPS 

has to insert extra deployment jobs in the 
schedule, which install and configure the 
service on the specified site. 

b. Container-managed deployment. The 
EPS does not need to deal with the 
deployment tasks because at the first 
service call the service container should 
deploy the service from the repository. 

 



3.1 The deployment process with the proposed 
architecture 

 
The process of the service deployment with 

WS based on XEN VMs, presented on Figure 1., 
contains two phases: virtual appliance creation 
and service deployment phase. 
Phase 1 – Virtual appliance creation: 

Step 1 – The client (an entity wishing to 
publish a Grid service as a virtual 
appliance – e.g. Grid service developer, or 
Grid scheduler who has made schedules for 
a Grid service already deployed on a site 
but not available in any repositories) asks 
the AVS to store the Domain M’s VM 
image of Grid site A with a Grid service in 
it in an AA instance. 

Step 2 – AVS generates a basic virtual 
appliance from the XEN [2] Domain M. If 
its size can be decreased, the service 
shrinks (or optimizes) the virtual appliance. 
The optimized appliance has a base 
appliance and several delta packages. The 
base appliance should be capable to install 
and configure the delta packages. 

Step 3 – AVS stores the base appliance and the 
delta packages in an Application Archive 
(AA) instance, and adds the configuration 
and dependency to support deployment 
requests. 

Step 4 – AVS acknowledges the virtual 
appliance ( or image) creation by sending 
its ACS End Point Reference (EPR) to the 
client. 

Phase 2 – Service Deployment from a 
repository 

Step 5 – The client (an entity having an ACS 
EPR, e.g. a regular user initiating a 
deployment, a Grid broker trying to load 
balance between sites) asks the WS to 
deploy the VM image using the ACS EPR. 

Step 6 – WSFactory requests the ACS to 
provide the AA instance and WS 
configuration details. 

Step 7 – The VM image is transferred to the 
Grid Site B 

Step 8 – WS creates a virtual workspace 
according to the configuration using the 
VM image provided by the AA instance. 

Step 9 – WSFactory returns the client the 
WS’s EPR. 

Step 10 – The client forwards any further 
service requests to the re-deployed Grid 
service in Site B. If necessary it manages 
the VM instance through the previously 
received EPR (VM termination and 
configuration changes). 

The Automated Virtual Appliance Creation 
Service and the Scheduler Assistant Service are 
described in Section 4 and Section 5, respectively. 
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Fig. 1 Automatic Service Deployment 



4. Automatic Virtual Appliance 
Creation Service (AVS) 

The Automatic Virtual Appliance Creation 
Service creates and stores virtual appliances in an 
ACS repository [9] to make the appliances 
available for WS. The service is built on the ACS-
WS interface, which enables deployment in Grids. 
The interface should enable WS to deploy virtual 
appliances retrieved as AA instances from an ACS 
repository. The AA instances store the virtual 
appliances and their states. The state of the virtual 
appliance is composed of WS resource properties 
and VM configuration parameters. This service 
has the following functionality: 

1. Creating virtual appliances. The AVS 
service implements AVS-WS interface. The 
first implementation of this service uses the 
XEN Virtual Machine [2]. The service 
provides four operations. First, it generates 
an AA instance. Secondly, the service 
instructs the XEN VM to make a disk and 
memory image of the domain and store these 
images in the AA instance. Thirdly, it 
collects a VM setup, such as XEN domain 
specific setup and if exists, the network 
shaping setup for the Domain 0 VM and 
convert these parameters into WS resource 
properties. Finally, it uploads the state of the 
VM image to the AA instance. This service 
is similar to the technologies provided by 
virtual appliance builders like (rBuilder), 
however it provides higher level of 
automation for preparing appliances on 
already deployed systems. 

2. Optimizing virtual appliances. To 
minimize the size of virtual appliances, they 
should be shrinked. Efficient image 
shrinking can be achieved by active fault 
injection, which is a flexible dependency 
detection algorithm. Each WSRF (Web 
Services Resource Framework) service 
should be checked by a junit test to optimize 
and validate the image shrinking process. 
The subsystem dependencies detected during 
the shrinking process should be stored for 
future use, for example in a CDL [8] 
(Configuration Description Language) 
document or in a model driven deployment 
descriptor. 

3. Repackaging the appliance. The service 
builds deployment DAGs [4] to define 
deployments. These DAGs are built on top 
of configuration and installation nodes. Each 
DAG starts from a base virtual appliance – 

which is replicated over the Grid sites. 
Therefore, the optimal selection of the base 
appliance is crucial. The system has to make 
compromises between transfer time and on 
site deployment time. If there no suitable 
base appliance is available, the service will 
not modify the shrinked appliance. 

4. Identifying base appliances. The AVS 
regularly analyzes the AAs and checks the 
similarities of their deployment DAGs [4]. 
The similarities mean common roots in the 
DAGs. Figure 2 presents multi package (Px) 
deployment strategies for 2 services (Sx). 
The dashed packages are the similar 
deployment tasks in the two deployments. If 
the similar items exceed a system-level 
threshold, then the common nodes can be 
stored in a base virtual appliance (BVa). This 
base appliance is going to be spread over the 
Grid by replication. Finally, the Application 
Archives used for building the base virtual 
appliance has to be revised. The archives 
should build on this newly created base 
appliance. The deployment of an archive 
built on a base appliance is composed of two 
phases: first the base appliance is deployed, 

and then this base appliance is started in a 
self-healing state. During the self-healing 
process the base appliance will install then 
configure all the necessary packages for 
proper service operation. 

5. Scheduler Assistant Service (SAS) 

This service, built on an ACS repository [9] 
and usually prepared by the AVS, helps to define 
a schedule to execute a service request taking into 
consideration both those sites where the service 

Fig. 2 Service Deployment DAGs 



has been deployed and where it could be executed 
but has not yet been installed. If the deployed 
services are not available, it checks whether any 
of the latter Grid sites can deliver the service 
taking into account the deployment cost.. 

 
5.1 OGSA-EPS Bindings 

 
OGSA-EPS [7] has two main connections with 

the outside world: the Candidate Set Generators, 
and the Information Services. In order to influence 
the schedules the EPS makes, the assistant service 
could be installed on any of the following 
components or on their combination: 
• Candidate Set Generators. The scheduler 

assistant generates extra candidate sites for 
execution. These sites are the ones where the 
requested services have not been deployed. 
In case new candidates were added container 
managed deployment has to be supported, 
otherwise the SAS has to give hints to the 
EPS about the newly added sites to take into 
consideration the deployment tasks. 

• Execution Planning Services. The 
scheduler assistant queries the CSG to 
retrieve the list of sites, which can handle the 
service request. If no site can deliver the 
requested service the EPS makes a decision 
upon the results of the second query and 
adds two separate entries to the schedule – 
an optional one for the deployment task, and 
one for the real job, the service call.  

• Information Services. The scheduler 
assistant generates virtual entries in the 
information services. Since both the CSG 
and the EPS heavily rely on the IS the 
assistant can include information which 
might alter their decision. This information 
states service presence on sites where the 
service is not even deployed. The QoS 
information stored in the virtual entries are 
degraded from the level the service would 
perform after deployment. However even 
this degraded level can look promising on 
among highly overloaded sites. This solution 
has serious problems compared with the 
previous two ones. The IS has to be filled 
with the full service site matrix, which could 
increase query times and load on the IS 
nodes. Non-realistic information is 
introduced in the information systems this 
might affect some systems. 

Installation of the assistant service or services 
next to an OGSA-EPS enabled site depends on the 
grid policies. The assistant will be able to 
cooperate with an existing EPS as a CSG or an IS 

source, or it can offer a new, enhanced EPS on 
deployment enabled Grids. 

 
5.2 CSG improvements  

 
The CSG assistant is a distributed, ontology-

based adaptive classifier [14], to define a set of 
resources on which a job can be executed. The 
CSG can build its classification rules using the 
specific attributes of the local IS. Each CSG may 
have a feedback about the performance of the 
schedule made upon its candidates in order to 
further improve its classification rules using a 
semi-supervised learning. The CSGs build a P2P 
network and the EPS’s candidate nomination 
request might spread over the neighboring CSGs 
for refinement – the request is sent when the 
quality of the current candidates is below a certain 
limit. Ontology helps to bridge between the 
distinct attribute sets of the ISs because the 
different CSGs might work on different attribute 
sets. When a new Grid with a CSG is deployed it 
inherits the rules of the neighboring classifiers at 
the startup. The P2P network can support more 
than just the decision-making process, e.g. it can 
also improve the ontology by analyzing the 
analogies between the different rule sets. A SAS 
extended CSG has three interfaces to interoperate 
with other CSGs and the EPS. CSGs form a P2P 
network. This network has two interfaces; the first 
interface manages the ontology of different ISs by 
sharing the classifier rules and the common 
ontology patterns distributed as an OWL schema, 
while the second interface supports decision-
making – this interface is similar to the one 
between the EPS and CSG, however the new 
interface provides details about the decision 
making progress and WS-Addressing details of 
the EPS who made the original query – this way 
the P2P the final candidate set can be sent directly 
to the EPS without traversing back through the 
network. The third interface lays between the EPS 
and the CSGs to support the supervised learning 
technique applied by the CSGs – the EPS sends 
back a metric packet including the success rate to 
the CSG the candidates were originated. 

 
5.3 EPS improvements 

 
The EPS assistant has different 

implementations depending on how the other parts 
of the SAS are deployed. If both the CSG assistant 
and the EPS assistant is deployed then the EPS 
can make smarter decisions. After receiving the 
candidate resource-set the EPS estimates the 
deployment and usage costs of the given service 



per candidate. To estimate the deployment costs 
the EPS queries the WS with an ACS endpoint 
reference, which identifies a particular virtual 
appliance. As a result, the WS should be extended 
with this capability. The usage costs also include, 
for example the cost of the inter-service 
communications – e.g. if a service is deployed 
closer to its dependencies then the communication 
costs decrease. Therefore, the EPS sends software 
agents to estimate the change in the 
communication cost between the affected 
endpoints (e.g. it checks for latencies and 
available bandwidth). The SAS has a plug-in 
based architecture in order to support different 
agents discovering different aspects of the 
deployment. If the EPS assistant is deployed alone 
then the EPS generates deployment jobs on 
overloaded situations (e.g. when a given job can 
not be completed by the user specified wall time), 
these deployment jobs are the service calls to the 
WS with the proper ACS EPR. The EPS estimates 
execution wall times through the WS interface 
discussed in the previous paragraph. 

 
5.4 IS improvements 

 
The IS assistant provides information sources 

on sites which can accept service calls after 
deployment. The SAS calculates the necessary 
metrics specified by the GLUE schema [5] – like 
EstimatedResponseTime, WorstResponseTime. 
Etc.) – for each site in the Grid according to the 
local service availability, and publishes them as 
ServiceData. 

The SAS-enabled Grid services build on the 
fact that the ACS EPR is available for the services 
under submission. Further deployments use this 
EPR to initiate the installation process on the 
selected site. Therefore, the most crucial point in 
the system is about the place of the repository 
references. The SAS can collect these references 
from three locations: 

• UDDI is the original service repository, 
which can hold metadata for each service, 
if this metadata is a valid ACS EPR the 
SAS uses it for deployments. 

• GLUE-Schema has Service entries per 
site, every service entity has a ServiceData 
map which holds key value pairs for 
extended use of the schema’s information. 
One of the ServiceData objects in the per 
service description should be the ACS 
EPR. 

• WSDL can be customized and further 
extended as described in the W3C 
standards. The WSDL can describe which 

virtual appliance was used for instantiating 
the service by including an ACS EPR 
element after the service element the 
WSDL. As a consequence both the GLUE 
schema and the UDDI is supported without 
the extensions on them, because they both 
hold references to the WSDL the service 
conforms with. SAS assumes this behavior 
throughout its operation. 

6. Conclusion and future work 

This paper defined an infrastructure on which 
an automated service deployment solution can 
build on. It has covered the lifecycle of service 
and application deployment from the packaging to 
the execution. The self-healing base virtual 
appliances provide higher availability of the 
services deployed with the AVS. Meanwhile the 
SAS gives us grid services on demand. Therefore 
grid users no longer bound to the sites where the 
applications they used are deployed and made 
publicly available. 

The current implementation of the system has 
the main building blocks of the AVS service, 
including the extended workspace service, the 
ACS service for storing virtual machines. The 
implemented ACS relies on the workspace service 
to support differential archives. A base virtual 
appliance is defined with which the ACS 
implementation can interact in order to build the 
fully operable service, this virtual appliance is 
included locally on every installation of the ACS. 
This base virtual appliance currently depends on 
the debian package manager, in the future other 
system specific base appliances should be defined 
or a generic one has to replace the current 
solution. 

In the future the interface of the self healing 
virtual appliance has to be further developed to 
support local and system wide malfunction alerts, 
and self monitoring systems. The published on 
demand deployment solution should be further 
generalized to support future deployment 
scenarios. Also the SAS should be extended 
towards seamless integration with other execution 
management subsystems in OGSA like CDDLM 
[8]. 
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