
Automatic Service Deployment Using Virtualisation
Gabor Kecskemeti, Gabor Terstyanszky, Tamas Kiss, Thierry Delaitre, Peter Kacsuk,,

Centre for Parallel Computing, University of Westminster
115 New Cavendish Street, London, W1W 6UW

e-mail: gemlca-discuss@cpc.wmin.ac.uk

Abstract

Manual deployment of the application usually requires expertise both about the underlying
system and the application. Automatic service deployment can improve deployment
significantly by using on-demand deployment and self-healing services. To support these
features this paper describes an extension the Globus Workspace Service [1]. This extension
includes creating virtual appliances for Grid services, service deployment from a repository,
and influencing the service schedules by altering execution planning services, candidate set
generators or information systems.

1. Introduction

1.1 Service and application deployment issues

Researchers use complex software applications

(e.g. BLAST, CHARMm, GAMESS-UK)
deployed by site administrators. They have to run
their applications on those sites where they have
been installed. Researchers cannot use those Grid
resources, where their applications are not
deployed. These applications are so complex that
users usually cannot deploy these on new sites.
Even if they could have deployed these
applications, site policies in production Grid
environments usually do not allow users to deploy
new applications. Therefore, they should ask the
site administrators to install and configure the
applications, they need. The deployment may
raise some licensing and maintenance issues at
each site. Applications may have strict licensing
conditions, and the Grid site providers probably
do not want to bind themselves to these
conditions, especially when the licensing is not
free of charge. Even if licensing problems can be
solved, the complexity of these applications may
require knowledge from the site administrators,
which they may not have.

If users have the source codes and they are
able to compile these, they have binaries of the
applications, which can be staged to the executor
site eliminating the deployment. However, this
solution has several drawbacks:

1. User’s drawback: First, the application has

to be compiled for every site. Secondly, the
application usually cannot make network
connections with the outside world - e.g. a
database. Finally, the submission has to
prepare the executor environment for the
application every time.

2. Network’s drawback: Frequent submission
of the executable increases the network
traffic.

3. Site administrator’s drawback: Every new
application is a possible danger to the
system, because administrators have limited
control over this code. Therefore, a single
submission could affect other codes.

Nowadays the Grid moves towards service-
oriented solution. These Grids usually expose
codes deployed on the site and do not install new
codes on executor sites. At one hand they disable
the “regular” execution of applications, at the
other hand they provide service interfaces for
users. Users can access applications , which have
been deployed on sites through these interfaces.
Installing a new application in a service-oriented
Grid consists of two main steps:

1. Deploying the application, installing
dependencies, configuring it, preparing
network connections, etc.

2. Providing a service-oriented interface: to
access application and deploy it on a Grid
service container.

This service interface could be either a generic
or specific one. A generic interface is provided by
a Grid middleware (e.g. OGSA-BES – basic
execution service – implementations and JSDL –

job submission description language –
repositories) or other generic application wrappers
(e.g. Application Hosting Environment (AHE)
[10], Grid Execution Management for Legacy
Code Application (GEMLCA) [12], Generic
Application Service Factory (gFac) [11]). A
specific interface is tuned for the application and
written by either the application developers or by
the user community.

Manual deployment of the application usually
requires expertise both about the underlying
system and the application. In several cases it
cannot be done without the assistance of the
system administrators. There is a need for a
solution that can perform deployments without
any specific expertise. This solution should also
act between the limits the system administrators
gave to the user. These kinds of solutions are
called automatic service deployment systems and
they can both deploy the application and activate
the service interface for further uses.

1.2 Deployment automation

Automatic service deployment can improve

deployment significantly by using on-demand
deployment and self-healing services.

In case of on-demand deployment the
applications are retrieved from a repository and
installed and configured on the target site prior its
execution. The deployment could be initiated by a
broker or an advance reservation systém. The on-
demand deployment uses either centralised or
distributed repositories. Centralised repositories
store all the required and dependent software
packages in the same location with their
configuration. In distributed repositories,
packages are spread around the Grid. Distributed
repositories either store pre-packaged software
components and they have references to their
dependencies or software components are
distributed around the Grid using some replication
solutions. On-demand deployment increases the
risks of using grid sites maliciously. The newly
deployed software components might interfere
with the already deployed ones, the software
installed might need outgoing network
connections, therefore on every local hardware
resource (e.g. disks, network, processing power)
the service should have strict limitations
according to the service level agreements [13].

If malfunction occurs in a Grid service and the
source of malfunction can be identified the service
can reconfigure or reinstall the affected
components. Service faults can be recognized
through advance fault prediction or active service

calls. Advance fault prediction uses component
monitors to determine service misbehaviour.
Active service calls can generate regular output
messages or fault messages. If the service
response is a fault message the service should
identify the cause of the fault which could be
internal or external. In case of internal causes the
component causing the fault should be repaired. If
the service responds with a regular response
message the response has to be validated against
the semantics of the service and violations should
be reported back to the service initiating the self-
healing process.

There are two major approaches for automatic
deployment: service-oriented and non-service-
oriented solutions. The service-oriented solutions
operate at service container level. Therefore they
are not capable to handle the background
application’s management tasks. The non-service-
oriented solutions manage the service container as
a common software component on which the
currently deployed software depends.

1.3 Virtualisation and deployment

Automatic service deployment could be

further improved by using virtualisation. The new
hardware architectures give more and more
support for virtualisation. Therefore, the software
also has to tackle this issue. The application and
its service interfaces are preinstalled with all of
their dependencies in a virtual machine image as a
virtual appliance to be executed on one of the
destination site‘s virtual machines. Therefore the
deployment incorporates the installation and
activation of virtual appliances. Grid researchers
have already developed some solutions in this
area, for example: the XenoServer plattform [6],
or the Workspace Service (WS) [1] for Globus
Toolkit 4 [3].

Service deployment with virtualisation can
support both the on-demand deployment and the
self-healing services in a secure way even at the
site level. Using virtualisation techniques, the
software repository for on-demand deployment
should hold the virtual appliances of the services.
The requirements against the hosting environment
should also be stored together with the virtual
appliances because the virtual appliances are
virtualisation technique dependent. Virtual
machines could also provide restrictive domains
for the software deployed in them. Therefore the
limitations – e.g. outgoing network bandwidth, IP
address – declared in the service level
aggreements of the site can be enforced via the
virtualisation software [13]. In order to support

self-healing, virtual appliances should be
distributed in several packages – a base package,
and delta packages. The base package is a
minimal and roboust package on which the delta
packages are built. It should contain the necessary
components to configure and install further
components of the application before their
execution, and it should be capable to reinstall
these components when malfunction arises. The
delta packages should represent those software
components which the self healing service is able
to repair. The delta packages should be distributed
with their individual configuration details in order
to support on-demand reconfiguration.

The paper is organised on the following way.
Section 2 discusses related works, Section 3 gives
an overview on the deployment architecture,
Section 4 describes an advanced virtual appliance
creation service, and Section 5 provides solutions
to alter an an execution schedule to include
deployments, finally Section 6 concludes this
work.

2. Related Works

WS [1] (workspace service) as a globus incubator
project supports wide range of scenarios involving
virtual workspaces, virtual clusters and service
deployment from installing a large service stack
like ATLAS to deploying a single WSRF service
if the Virtual Machine (VM) image of the service
is available. The WS is designed to support
several virtual machines – XEN [2], VMWare,
VServer – to accomplish its task.
The XenoServer open platform [6] is an open
distributed architecture based on the XEN
virtualization technique. It is aiming for global
public computing. The platform provides services
for server lookup, registry, distributed storage and
a widely available virtualization server.
VMPlants [4] project proposes an automated
virtual machine configuration and creation service
heavily dependent on software dependency
graphs. This project stays within cluster
boundaries.
These solutions are focusing on the deployment
process itself and do not leverage their benefits on
higher levels. Meanwhile the solution presented in
this paper is focusing on possible extensions on
the current deployment systems by integrating the
openness of the XenoServer platform, the
widespread virtual machine support of the
Workspace Service, and the DAG based
deployment solution presented by the VMPlants.
This paper also introduces higher-level services

supporting the service lifecycle on grid
architectural level.

3. Automatic Service Deployment

In order to support automatic service deployment,
the WS interface has to be extended by two new
services:

1. Automated Virtual Appliance Creation

Service (AVS). It should support service
deployment by creating virtual appliances for
Grid services. The virtual appliances should
be stored in an appliance repository, for
example in the Application Contents Service
[9] (ACS). The ACS provides a simple
interface for managing Application Archives
(AA) [9], which hold both the application
packages and their configuration. The WS
should access the contents of the service by
using the endpoint references provided by
the ACS for each AA. The virtual appliances
(or service images) should be minimized
because the repository may hold large
number of virtual appliances. As a result, a
virtual appliance shrinker should optimize
the appliance’s archive even if it is using
different formats of the different
virtualization techniques such as XEN,
VMVare or VirtualPC.

2. Scheduler Assistant Service (SAS). To
define the sites where the service can be
installed and select among these sites, the
AVS should be used together with the OGSA
[7] Execution Planning Service (EPS), more
precisely, it’s Candidate Set Generators
(CSG). CSG can define scheduling
candidates for sites, which are capable of
deploying a service in a reasonable time.
CSG, may define sites where the service
have not yet deployed. EPS should resolve
these schedules in two ways:
a. Schedule-driven deployment. The EPS

has to insert extra deployment jobs in the
schedule, which install and configure the
service on the specified site.

b. Container-managed deployment. The
EPS does not need to deal with the
deployment tasks because at the first
service call the service container should
deploy the service from the repository.

3.1 The deployment process with the proposed
architecture

The process of the service deployment with

WS based on XEN VMs, presented on Figure 1.,
contains two phases: virtual appliance creation
and service deployment phase.
Phase 1 – Virtual appliance creation:

Step 1 – The client (an entity wishing to
publish a Grid service as a virtual
appliance – e.g. Grid service developer, or
Grid scheduler who has made schedules for
a Grid service already deployed on a site
but not available in any repositories) asks
the AVS to store the Domain M’s VM
image of Grid site A with a Grid service in
it in an AA instance.

Step 2 – AVS generates a basic virtual
appliance from the XEN [2] Domain M. If
its size can be decreased, the service
shrinks (or optimizes) the virtual appliance.
The optimized appliance has a base
appliance and several delta packages. The
base appliance should be capable to install
and configure the delta packages.

Step 3 – AVS stores the base appliance and the
delta packages in an Application Archive
(AA) instance, and adds the configuration
and dependency to support deployment
requests.

Step 4 – AVS acknowledges the virtual
appliance (or image) creation by sending
its ACS End Point Reference (EPR) to the
client.

Phase 2 – Service Deployment from a
repository

Step 5 – The client (an entity having an ACS
EPR, e.g. a regular user initiating a
deployment, a Grid broker trying to load
balance between sites) asks the WS to
deploy the VM image using the ACS EPR.

Step 6 – WSFactory requests the ACS to
provide the AA instance and WS
configuration details.

Step 7 – The VM image is transferred to the
Grid Site B

Step 8 – WS creates a virtual workspace
according to the configuration using the
VM image provided by the AA instance.

Step 9 – WSFactory returns the client the
WS’s EPR.

Step 10 – The client forwards any further
service requests to the re-deployed Grid
service in Site B. If necessary it manages
the VM instance through the previously
received EPR (VM termination and
configuration changes).

The Automated Virtual Appliance Creation
Service and the Scheduler Assistant Service are
described in Section 4 and Section 5, respectively.

Grid Site B,
XEN Domain 0

VM Image Store

Grid Site A,
XEN Domain 0

Client

AVS

ACS

WS

In
 Service

XEN
Domain M

 Service

XEN
Domain M

 Ii

Service
’

I3 I2 I1

1

2

3

4 5

6 7

8

9

10

where
ACS, AVS, WS
are interfaces

Fig. 1 Automatic Service Deployment

4. Automatic Virtual Appliance
Creation Service (AVS)

The Automatic Virtual Appliance Creation
Service creates and stores virtual appliances in an
ACS repository [9] to make the appliances
available for WS. The service is built on the ACS-
WS interface, which enables deployment in Grids.
The interface should enable WS to deploy virtual
appliances retrieved as AA instances from an ACS
repository. The AA instances store the virtual
appliances and their states. The state of the virtual
appliance is composed of WS resource properties
and VM configuration parameters. This service
has the following functionality:

1. Creating virtual appliances. The AVS
service implements AVS-WS interface. The
first implementation of this service uses the
XEN Virtual Machine [2]. The service
provides four operations. First, it generates
an AA instance. Secondly, the service
instructs the XEN VM to make a disk and
memory image of the domain and store these
images in the AA instance. Thirdly, it
collects a VM setup, such as XEN domain
specific setup and if exists, the network
shaping setup for the Domain 0 VM and
convert these parameters into WS resource
properties. Finally, it uploads the state of the
VM image to the AA instance. This service
is similar to the technologies provided by
virtual appliance builders like (rBuilder),
however it provides higher level of
automation for preparing appliances on
already deployed systems.

2. Optimizing virtual appliances. To
minimize the size of virtual appliances, they
should be shrinked. Efficient image
shrinking can be achieved by active fault
injection, which is a flexible dependency
detection algorithm. Each WSRF (Web
Services Resource Framework) service
should be checked by a junit test to optimize
and validate the image shrinking process.
The subsystem dependencies detected during
the shrinking process should be stored for
future use, for example in a CDL [8]
(Configuration Description Language)
document or in a model driven deployment
descriptor.

3. Repackaging the appliance. The service
builds deployment DAGs [4] to define
deployments. These DAGs are built on top
of configuration and installation nodes. Each
DAG starts from a base virtual appliance –

which is replicated over the Grid sites.
Therefore, the optimal selection of the base
appliance is crucial. The system has to make
compromises between transfer time and on
site deployment time. If there no suitable
base appliance is available, the service will
not modify the shrinked appliance.

4. Identifying base appliances. The AVS
regularly analyzes the AAs and checks the
similarities of their deployment DAGs [4].
The similarities mean common roots in the
DAGs. Figure 2 presents multi package (Px)
deployment strategies for 2 services (Sx).
The dashed packages are the similar
deployment tasks in the two deployments. If
the similar items exceed a system-level
threshold, then the common nodes can be
stored in a base virtual appliance (BVa). This
base appliance is going to be spread over the
Grid by replication. Finally, the Application
Archives used for building the base virtual
appliance has to be revised. The archives
should build on this newly created base
appliance. The deployment of an archive
built on a base appliance is composed of two
phases: first the base appliance is deployed,

and then this base appliance is started in a
self-healing state. During the self-healing
process the base appliance will install then
configure all the necessary packages for
proper service operation.

5. Scheduler Assistant Service (SAS)

This service, built on an ACS repository [9]
and usually prepared by the AVS, helps to define
a schedule to execute a service request taking into
consideration both those sites where the service

Fig. 2 Service Deployment DAGs

has been deployed and where it could be executed
but has not yet been installed. If the deployed
services are not available, it checks whether any
of the latter Grid sites can deliver the service
taking into account the deployment cost..

5.1 OGSA-EPS Bindings

OGSA-EPS [7] has two main connections with

the outside world: the Candidate Set Generators,
and the Information Services. In order to influence
the schedules the EPS makes, the assistant service
could be installed on any of the following
components or on their combination:
• Candidate Set Generators. The scheduler

assistant generates extra candidate sites for
execution. These sites are the ones where the
requested services have not been deployed.
In case new candidates were added container
managed deployment has to be supported,
otherwise the SAS has to give hints to the
EPS about the newly added sites to take into
consideration the deployment tasks.

• Execution Planning Services. The
scheduler assistant queries the CSG to
retrieve the list of sites, which can handle the
service request. If no site can deliver the
requested service the EPS makes a decision
upon the results of the second query and
adds two separate entries to the schedule –
an optional one for the deployment task, and
one for the real job, the service call.

• Information Services. The scheduler
assistant generates virtual entries in the
information services. Since both the CSG
and the EPS heavily rely on the IS the
assistant can include information which
might alter their decision. This information
states service presence on sites where the
service is not even deployed. The QoS
information stored in the virtual entries are
degraded from the level the service would
perform after deployment. However even
this degraded level can look promising on
among highly overloaded sites. This solution
has serious problems compared with the
previous two ones. The IS has to be filled
with the full service site matrix, which could
increase query times and load on the IS
nodes. Non-realistic information is
introduced in the information systems this
might affect some systems.

Installation of the assistant service or services
next to an OGSA-EPS enabled site depends on the
grid policies. The assistant will be able to
cooperate with an existing EPS as a CSG or an IS

source, or it can offer a new, enhanced EPS on
deployment enabled Grids.

5.2 CSG improvements

The CSG assistant is a distributed, ontology-

based adaptive classifier [14], to define a set of
resources on which a job can be executed. The
CSG can build its classification rules using the
specific attributes of the local IS. Each CSG may
have a feedback about the performance of the
schedule made upon its candidates in order to
further improve its classification rules using a
semi-supervised learning. The CSGs build a P2P
network and the EPS’s candidate nomination
request might spread over the neighboring CSGs
for refinement – the request is sent when the
quality of the current candidates is below a certain
limit. Ontology helps to bridge between the
distinct attribute sets of the ISs because the
different CSGs might work on different attribute
sets. When a new Grid with a CSG is deployed it
inherits the rules of the neighboring classifiers at
the startup. The P2P network can support more
than just the decision-making process, e.g. it can
also improve the ontology by analyzing the
analogies between the different rule sets. A SAS
extended CSG has three interfaces to interoperate
with other CSGs and the EPS. CSGs form a P2P
network. This network has two interfaces; the first
interface manages the ontology of different ISs by
sharing the classifier rules and the common
ontology patterns distributed as an OWL schema,
while the second interface supports decision-
making – this interface is similar to the one
between the EPS and CSG, however the new
interface provides details about the decision
making progress and WS-Addressing details of
the EPS who made the original query – this way
the P2P the final candidate set can be sent directly
to the EPS without traversing back through the
network. The third interface lays between the EPS
and the CSGs to support the supervised learning
technique applied by the CSGs – the EPS sends
back a metric packet including the success rate to
the CSG the candidates were originated.

5.3 EPS improvements

The EPS assistant has different

implementations depending on how the other parts
of the SAS are deployed. If both the CSG assistant
and the EPS assistant is deployed then the EPS
can make smarter decisions. After receiving the
candidate resource-set the EPS estimates the
deployment and usage costs of the given service

per candidate. To estimate the deployment costs
the EPS queries the WS with an ACS endpoint
reference, which identifies a particular virtual
appliance. As a result, the WS should be extended
with this capability. The usage costs also include,
for example the cost of the inter-service
communications – e.g. if a service is deployed
closer to its dependencies then the communication
costs decrease. Therefore, the EPS sends software
agents to estimate the change in the
communication cost between the affected
endpoints (e.g. it checks for latencies and
available bandwidth). The SAS has a plug-in
based architecture in order to support different
agents discovering different aspects of the
deployment. If the EPS assistant is deployed alone
then the EPS generates deployment jobs on
overloaded situations (e.g. when a given job can
not be completed by the user specified wall time),
these deployment jobs are the service calls to the
WS with the proper ACS EPR. The EPS estimates
execution wall times through the WS interface
discussed in the previous paragraph.

5.4 IS improvements

The IS assistant provides information sources

on sites which can accept service calls after
deployment. The SAS calculates the necessary
metrics specified by the GLUE schema [5] – like
EstimatedResponseTime, WorstResponseTime.
Etc.) – for each site in the Grid according to the
local service availability, and publishes them as
ServiceData.

The SAS-enabled Grid services build on the
fact that the ACS EPR is available for the services
under submission. Further deployments use this
EPR to initiate the installation process on the
selected site. Therefore, the most crucial point in
the system is about the place of the repository
references. The SAS can collect these references
from three locations:

• UDDI is the original service repository,
which can hold metadata for each service,
if this metadata is a valid ACS EPR the
SAS uses it for deployments.

• GLUE-Schema has Service entries per
site, every service entity has a ServiceData
map which holds key value pairs for
extended use of the schema’s information.
One of the ServiceData objects in the per
service description should be the ACS
EPR.

• WSDL can be customized and further
extended as described in the W3C
standards. The WSDL can describe which

virtual appliance was used for instantiating
the service by including an ACS EPR
element after the service element the
WSDL. As a consequence both the GLUE
schema and the UDDI is supported without
the extensions on them, because they both
hold references to the WSDL the service
conforms with. SAS assumes this behavior
throughout its operation.

6. Conclusion and future work

This paper defined an infrastructure on which
an automated service deployment solution can
build on. It has covered the lifecycle of service
and application deployment from the packaging to
the execution. The self-healing base virtual
appliances provide higher availability of the
services deployed with the AVS. Meanwhile the
SAS gives us grid services on demand. Therefore
grid users no longer bound to the sites where the
applications they used are deployed and made
publicly available.

The current implementation of the system has
the main building blocks of the AVS service,
including the extended workspace service, the
ACS service for storing virtual machines. The
implemented ACS relies on the workspace service
to support differential archives. A base virtual
appliance is defined with which the ACS
implementation can interact in order to build the
fully operable service, this virtual appliance is
included locally on every installation of the ACS.
This base virtual appliance currently depends on
the debian package manager, in the future other
system specific base appliances should be defined
or a generic one has to replace the current
solution.

In the future the interface of the self healing
virtual appliance has to be further developed to
support local and system wide malfunction alerts,
and self monitoring systems. The published on
demand deployment solution should be further
generalized to support future deployment
scenarios. Also the SAS should be extended
towards seamless integration with other execution
management subsystems in OGSA like CDDLM
[8].

References

[1] Keahey, K., I. Foster, T. Freeman, X. Zhang,
and D. Galron, Virtual Workspaces in the
Grid. ANL/MCS-P1231-0205, 2005.

[2] Barham, P., B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebar, I. Pratt, and
A. Warfield. Xen and the Art of
Virtualization. in ACM Symposium on
Operating Systems Principles (SOSP).

[3] Foster, I., Globus Toolkit version 4: Software
for Service-Oriented Systems. IFIP
International Conference on Network and
Parallel Computing, 2005.

[4] Krsul, I., A. Ganguly, J. Zhang, J. Fortes, and
R. Figueiredo. VMPlants: Providing and
Managing Virtual Machine Execution
Environments for Grid Computing. in SC04.
2004. Pittsburgh, PA.

[5] Sergio Andreozzi, Stephen Burke, Laurence
Field, Steve Fisher, Balazs Konya , Marco
Mambelli, Jennifer M. Schopf, Matt Viljoen
and Antony Wilson, GLUE Schema
Specification version 1.2, 2005

[6] Reed, D., I. Pratt, P. Menage, S. Early, and N.
Stratford. Xenoservers: Accountable
Execution of Untrusted Programs. in 7th
Workshop on Hot Topics in Operating
Systems. 1999. Rio Rico, AZ: IEEE
Computer Society Press.

[7] I. Foster, Argonne, H. Kishimoto, A. Savva,
D. Berry, A. Djaoui, A. Grimshaw, B. Horn,
F. Maciel, F. Siebenlist, R. Subramaniam, J.
Treadwell, and J. Von Reich, The Open Grid
Services Architecture, Version 1.5, 2006

[8] D. Bell, T. Kojo, P. Goldsack, S. Loughran,
D. Milojicic, S. Schaefer, J. Tatemura, and P.
Toft, Configuration Description, Deployment,
and Lifecycle Management (CDDLM)
Foundation Document, 2005

[9] Keisuke Fukui, Application Contents Service
Specification 1.0, 2006

[10] P. V. Coveney, M. J. Harvey, and L.
Pedesseau, Development and deployment of
an application hosting environment for grid
based computational science, at UK All
Hands Meeting 2005

[11] Gopi Kandaswamy, Dennis Gannon, Liang
Fang, Yi Huang, Satoshi Shirasuna, Suresh
Marru, ”Building Web Services for Scientific
Applications”, IBM Journal of Research and
Development, Vol 50, No. 2/3 March/May
2006

[12] T. Delaittre, T. Kiss, A. Goyeneche, G.
Terstyanszky, S.Winter, P. Kacsuk:
GEMLCA: Running Legacy Code
Applications as Grid Services, Journal of
Grid Computing Vol. 3. No. 1-2. June 2005,
Springer Science + Business Media B.V.,
Formerly Kluwer Academic Publishers B.V.
ISSN: 1570-7873, pp 75-90

[13] Vanish Talwar, Sujoy Basu, Raj Kumar: An
Environment for Enabling Interactive Grids,
IEEE International Symposium on High
Performance Distributed Computing (HPDC-
12), 22-24 June 2003, Seattle, Washington

[14] Matthew E. Taylor, Cynthia Matuszek, Bryan
Klimt, and Michael Witbrock: Autonomous
Classification of Knowledge into an
Ontology, In The 20th International FLAIRS
Conference (FLAIRS), Key West, Florida,
May 2007

