
Automatic Service Deployment Using Virtualisation

Gabor Kecskemeti, Peter Kacsuk
MTA SZTAKI

Lab. of Parallel and Distributed Systems H-1518 Budapest, P.O. Box 63, Hungary
{kecskemeti,kacsuk}@sztaki.hu

Gabor Terstyanszky, Tamas Kiss, Thierry Delaitre
University of Westminster

Centre for Parallel Computing 115 New Cavendish Street, London, W1W 6UW
gemlca-discuss@cpc.wmin.ac.uk

Abstract

Manual deployment of the application usually requires
expertise both about the underlying system and the appli-
cation. Automatic service deployment can improve deploy-
ment significantly by using on-demand deployment and self-
healing services. To support these features this paper de-
scribes an extension the Globus Workspace Service [10].
This extension includes creating virtual appliances for Grid
services, service deployment from a repository, and influ-
encing the service schedules by altering execution planning
services, candidate set generators or information systems.1
2

1. Introduction

1.1. Service and application deployment is-
sues

Researchers use complex software applications (e.g.
BLAST, CHARMm, GAMESS-UK) deployed by site ad-
ministrators. They have to run their applications on those
sites where they have been installed. Researchers cannot
use those Grid resources, where their applications are not
deployed. These applications are so complex that users usu-
ally cannot deploy these on new sites. Even if they could
have deployed these applications, site policies in produc-
tion Grid environments usually do not allow users to deploy

1This research work is carried out under the FP6 Network of Ex-
cellence CoreGRID funded by the European Commission (Contract IST-
2002-004265)

2The EDGeS project (RI - 211727) receives Community research fund-
ing.

new applications. Therefore, they should ask the site ad-
ministrators to install and configure the applications, they
need. The deployment may raise some licensing and main-
tenance issues at each site. Applications may have strict li-
censing conditions, and the Grid site providers probably do
not want to bind themselves to these conditions, especially
when the licensing is not free of charge. Even if licensing
problems can be solved, the complexity of these applica-
tions may require knowledge from the site administrators,
which they may not have.

If users have the source codes and they are able to com-
pile these, they have binaries of the applications, which can
be staged to the executor site eliminating the deployment.
However, this solution has several drawbacks:

Users drawback - First, the application has to be compiled
for every site. Secondly, the application usually cannot
make network connections with the outside world - e.g.
a database. Finally, the submission has to prepare the
executor environment for the application every time.

Networks drawback - Frequent submission of the exe-
cutable increases the network traffic.

Site administrators drawback - Every new application is
a possible danger to the system, because administrators
have limited control over this code. Therefore, a single
submission could affect other codes.

Nowadays the Grid moves towards service- oriented so-
lution. These Grids usually expose codes deployed on the
site and do not install new codes on executor sites. At
one hand they disable the regular execution of applications,
at the other hand they provide service interfaces for users.
Users can access applications , which have been deployed
on sites through these interfaces. Installing a new applica-
tion in a service-oriented Grid consists of two main steps:

1. Deploying the application, installing dependencies,
configuring it, preparing network connections, etc.

2. Providing a service-oriented interface: to access appli-
cation and deploy it on a Grid service container.

This service interface could be either a generic or spe-
cific one. A generic interface is provided by a Grid mid-
dleware (e.g. OGSA-BES basic execution service imple-
mentations and JSDL job submission description language
repositories) or other generic application wrappers (e.g. Ap-
plication Hosting Environment (AHE) [4], Grid Execution
Management for Legacy Code Application (GEMLCA) [5],
Generic Application Service Factory (gFac) [9]). A specific
interface is tuned for the application and written by either
the application developers or by the user community.

Manual deployment of the application usually requires
expertise both about the underlying system and the appli-
cation. In several cases it cannot be done without the as-
sistance of the system administrators. There is a need for a
solution that can perform deployments without any specific
expertise. This solution should also act between the limits
the system administrators gave to the user. These kinds of
solutions are called automatic service deployment systems
and they can both deploy the application and activate the
service interface for further uses.

1.2. Deployment automation

Automatic service deployment can improve deployment
significantly by using on-demand deployment and self-
healing services.

In case of on-demand deployment the applications are
retrieved from a repository and installed and configured on
the target site prior its execution. The deployment could
be initiated by a broker or an advance reservation system.
The on-demand deployment uses either centralised or dis-
tributed repositories. Centralised repositories store all the
required and dependent software packages in the same lo-
cation with their configuration. In distributed repositories,
packages are spread around the Grid. Distributed repos-
itories either store pre-packaged software components and
they have references to their dependencies or software com-
ponents are distributed around the Grid using some replica-
tion solutions. On-demand deployment increases the risks
of using grid sites maliciously. The newly deployed soft-
ware components might interfere with the already deployed
ones, the software installed might need outgoing network
connections, therefore on every local hardware resource
(e.g. disks, network, processing power) the service should
have strict limitations according to the service level agree-
ments [13].

If malfunction occurs in a Grid service and the source
of malfunction can be identified the service can reconfigure

or reinstall the affected components. Service faults can be
recognized through advance fault prediction or active ser-
vice calls. Advance fault prediction uses component moni-
tors to determine service misbehavior. Active service calls
can generate regular output messages or fault messages. If
the service response is a fault message the service should
identify the cause of the fault which could be internal or
external. In case of internal causes the component causing
the fault should be repaired. If the service responds with a
regular response message the response has to be validated
against the semantics of the service and violations should be
reported back to the service initiating the self-healing pro-
cess.

There are two major approaches for automatic deploy-
ment: service-oriented and non-service-oriented solutions.
The service-oriented solutions operate at service container
level. Therefore they are not capable to handle the back-
ground applications management tasks. The non-service-
oriented solutions manage the service container as a com-
mon software component on which the currently deployed
software depends.

1.3. Virtualisation and deployment

Automatic service deployment could be further im-
proved by using virtualisation. The new hardware architec-
tures give more and more support for virtualisation. There-
fore, the software also has to tackle this issue. The ap-
plication and its service interfaces are preinstalled with all
of their dependencies in a virtual machine image as a vir-
tual appliance to be executed on one of the destination sites
virtual machines. Therefore the deployment incorporates
the installation and activation of virtual appliances. Grid
researchers have already developed some solutions in this
area, for example: the XenoServer platform [12], or the
Workspace Service (WS) [10] for Globus Toolkit 4 [6].

Service deployment with virtualisation can support both
the on-demand deployment and the self-healing services in
a secure way even at the site level. Using virtualisation tech-
niques, the software repository for on-demand deployment
should hold the virtual appliances of the services. The re-
quirements against the hosting environment should also be
stored together with the virtual appliances because the vir-
tual appliances are virtualisation technique dependent. Vir-
tual machines could also provide restrictive domains for the
software deployed in them. Therefore the limitations e.g.
outgoing network bandwidth, IP address declared in the
service level agreements of the site can be enforced via
the virtualisation software [13]. In order to support self-
healing, virtual appliances should be distributed in several
packages a base package, and delta packages. The base
package is a minimal and roboust package on which the
delta packages are built. It should contain the necessary

components to configure and install further components of
the application before their execution, and it should be capa-
ble to reinstall these components when malfunction arises.
The delta packages should represent those software compo-
nents which the self healing service is able to repair. The
delta packages should be distributed with their individual
configuration details in order to support on-demand recon-
figuration.

The paper is organised on the following way. Section 2
discusses related works, Section 3 gives an overview on the
deployment architecture, Section 4 describes an advanced
virtual appliance creation service, Section 5 provides solu-
tions to alter an an execution schedule to include deploy-
ments, and Section 6 reviews the current implementation,
finally Section 7 concludes this work.

2. Related Works

WS [10] (workspace service) as a globus incubator
project supports wide range of scenarios involving virtual
workspaces, virtual clusters and service deployment from
installing a large service stack like ATLAS to deploying a
single WSRF service if the Virtual Machine (VM) image
of the service is available. The WS is designed to support
several virtual machines XEN [2], VMWare, VServer to
accomplish its task.

The XenoServer open platform [12] is an open dis-
tributed architecture based on the XEN virtualization tech-
nique. It is aiming for global public computing. The
platform provides services for server lookup, registry, dis-
tributed storage and a widely available virtualization server.

VMPlants [11] project proposes an automated virtual
machine configuration and creation service heavily depen-
dent on software dependency graphs. This project stays
within cluster boundaries.

These solutions are focusing on the deployment process
itself and do not leverage their benefits on higher levels.
Meanwhile the solution presented in this paper is focusing
on possible extensions on the current deployment systems
by integrating the openness of the XenoServer platform, the
widespread virtual machine support of the Workspace Ser-
vice, and the DAG based deployment solution presented by
the VMPlants. This paper also introduces higher-level ser-
vices supporting the service lifecycle on grid architectural
level.

3. Automatic Service Deployment

In order to support automatic service deployment, the
WS interface has to be extended by two new services:

Automated Virtual Appliance Creation Service (AVS).
It should support service deployment by creating

virtual appliances for Grid services. The virtual
appliances should be stored in an appliance repository,
for example in the Application Contents Service [8]
(ACS). The ACS provides a simple interface for
managing Application Archives (AA) [8], which hold
both the application packages and their configuration.
The WS should access the contents of the service
by using the endpoint references provided by the
ACS for each AA. The virtual appliances (or service
images) should be minimized because the repository
may hold large number of virtual appliances. As a
result, a virtual appliance shrinker should optimize the
appliances archive even if it is using different formats
of the different virtualization techniques such as XEN,
VMVare or VirtualPC.

Scheduler Assistant Service (SAS). To define the sites
where the service can be installed and select among
these sites, the AVS should be used together with the
OGSA [7] Execution Planning Service (EPS), more
precisely, its Candidate Set Generators (CSG). CSG
can define scheduling candidates for sites, which are
capable of deploying a service in a reasonable time.
CSG, may define sites where the service have not yet
deployed. EPS should resolve these schedules in two
ways:

Schedule-driven deployment. The EPS has to insert
extra deployment jobs in the schedule, which in-
stall and configure the service on the specified
site.

Container-managed deployment. The EPS does not
need to deal with the deployment tasks because at
the first service call the service container should
deploy the service from the repository.

3.1. The deployment process with the pro-
posed architecture

The process of the service deployment with WS based
on XEN VMs, presented on Figure 1., contains two phases:
virtual appliance creation and service deployment phase.

Phase 1 Virtual appliance creation :

1. The client (an entity wishing to publish a Grid
service as a virtual appliance e.g. Grid ser-
vice developer, or Grid scheduler who has made
schedules for a Grid service already deployed on
a site but not available in any repositories) asks
the AVS to store the Domain Ms VM image of
Grid site A with a Grid service in it in an AA
instance.

3.1 The deployment process with the proposed
architecture

The process of the service deployment with

WS based on XEN VMs, presented on Figure 1.,

contains two phases: virtual appliance creation
and service deployment phase.
Phase 1 – Virtual appliance creation:

Step 1 – The client (an entity wishing to
publish a Grid service as a virtual
appliance – e.g. Grid service developer, or
Grid scheduler who has made schedules for

a Grid service already deployed on a site
but not available in any repositories) asks
the AVS to store the Domain M’s VM
image of Grid site A with a Grid service in
it in an AA instance.

Step 2 – AVS generates a basic virtual
appliance from the XEN [2] Domain M. If

its size can be decreased, the service
shrinks (or optimizes) the virtual appliance.
The optimized appliance has a base
appliance and several delta packages. The
base appliance should be capable to install
and configure the delta packages.

Step 3 – AVS stores the base appliance and the

delta packages in an Application Archive
(AA) instance, and adds the configuration
and dependency to support deployment
requests.

Step 4 – AVS acknowledges the virtual
appliance (or image) creation by sending
its ACS End Point Reference (EPR) to the
client.

Phase 2 – Service Deployment from a

repository

Step 5 – The client (an entity having an ACS
EPR, e.g. a regular user initiating a
deployment, a Grid broker trying to load
balance between sites) asks the WS to
deploy the VM image using the ACS EPR.

Step 6 – WSFactory requests the ACS to

provide the AA instance and WS
configuration details.

Step 7 – The VM image is transferred to the
Grid Site B

Step 8 – WS creates a virtual workspace
according to the configuration using the
VM image provided by the AA instance.

Step 9 – WSFactory returns the client the
WS’s EPR.

Step 10 – The client forwards any further
service requests to the re-deployed Grid
service in Site B. If necessary it manages
the VM instance through the previously
received EPR (VM termination and

configuration changes).
The Automated Virtual Appliance Creation

Service and the Scheduler Assistant Service are
described in Section 4 and Section 5, respectively.

Grid Site B,
XEN Domain 0

VM Image Store

Grid Site A,
XEN Domain 0

Client

AVS

ACS

WS

In

Service

XEN
Domain M

 Service

XEN
Domain M

 Ii

Service

’

I3 I2 I1

1

2

3

4 5

6 7

8

9

10

where
ACS, AVS, WS
are interfaces

Fig. 1 Automatic Service Deployment
Figure 1. Automatic Service Deployment

2. AVS generates a basic virtual appliance from the
XEN [2] Domain M. If its size can be decreased,
the service shrinks (or optimizes) the virtual ap-
pliance. The optimized appliance has a base ap-
pliance and several delta packages. The base ap-
pliance should be capable to install and configure
the delta packages.

3. AVS stores the base appliance and the delta pack-
ages in an Application Archive (AA) instance,
and adds the configuration and dependency to
support deployment requests.

4. AVS acknowledges the virtual appliance (or im-
age) creation by sending its ACS End Point Ref-
erence (EPR) to the client.

Phase 2 Service Deployment from a repository :

5. The client (an entity having an ACS EPR, e.g. a
regular user initiating a deployment, a Grid bro-
ker trying to load balance between sites) asks the
WS to deploy the VM image using the ACS EPR.

6. WSFactory requests the ACS to provide the AA
instance and WS configuration details.

7. The VM image is transferred to the Grid Site B
8. WS creates a virtual workspace according to the

configuration using the VM image provided by
the AA instance.

9. WSFactory returns the client the WSs EPR.

10. The client forwards any further service requests
to the re-deployed Grid service in Site B. If nec-
essary it manages the VM instance through the
previously received EPR (VM termination and
configuration changes).

The Automated Virtual Appliance Creation Service and
the Scheduler Assistant Service are described in Section 4
and Section 5, respectively.

4. Automatic Virtual Appliance Creation Ser-
vice (AVS)

The Automatic Virtual Appliance Creation Service cre-
ates and stores virtual appliances in an ACS repository [8]
to make the appliances available for WS. The service is
built on the ACS-WS interface, which enables deployment
in Grids. The interface should enable WS to deploy virtual
appliances retrieved as AA instances from an ACS reposi-
tory. The AA instances store the virtual appliances and their
states. The state of the virtual appliance is composed of WS
resource properties and VM configuration parameters. This
service has the following functionality:

Creating virtual appliances. The AVS service imple-
ments AVS-WS interface. The first implementation of

this service uses the XEN Virtual Machine [2]. The
service provides four operations. First, it generates
an AA instance. Secondly, the service instructs the
XEN VM to make a disk and memory image of the
domain and store these images in the AA instance.
Thirdly, it collects a VM setup, such as XEN domain
specific setup and if exists, the network shaping setup
for the Domain 0 VM and convert these parameters
into WS resource properties. Finally, it uploads the
state of the VM image to the AA instance. This ser-
vice is similar to the technologies provided by virtual
appliance builders like (rBuilder), however it provides
higher level of automation for preparing appliances on
already deployed systems.

Optimizing virtual appliances. To minimize the size of
virtual appliances, they should be shrinked. Efficient
image shrinking can be achieved by active fault injec-
tion, which is a flexible dependency detection algo-
rithm. Each WSRF (Web Services Resource Frame-
work) service should be checked by a junit test to op-
timize and validate the image shrinking process. The
subsystem dependencies detected during the shrinking
process should be stored for future use, for example in
a CDL [3] (Configuration Description Language) doc-
ument or in a model driven deployment descriptor.

Repackaging the appliance. The service builds deploy-
ment DAGs [11] to define deployments. These DAGs
are built on top of configuration and installation nodes.
Each DAG starts from a base virtual appliance which
is replicated over the Grid sites. Therefore, the opti-
mal selection of the base appliance is crucial. The sys-
tem has to make compromises between transfer time
and on site deployment time. If there no suitable base
appliance is available, the service will not modify the
shrinked appliance.

Identifying base appliances. The AVS regularly analyzes
the AAs and checks the similarities of their deploy-
ment DAGs [11]. The similarities mean common roots
in the DAGs. Figure 2 presents multi package (Px) de-
ployment strategies for 2 services (Sx). The dashed
packages are the similar deployment tasks in the two
deployments. If the similar items exceed a system-
level threshold, then the common nodes can be stored
in a base virtual appliance (BVa). This base appliance
is going to be spread over the Grid by replication. Fi-
nally, the Application Archives used for building the
base virtual appliance has to be revised. The archives
should build on this newly created base appliance. The
deployment of an archive built on a base appliance is
composed of two phases: first the base appliance is de-
ployed, and then this base appliance is started in a self-
healing state. During the self-healing process the base

Figure 2. Service Deployment DAGs

appliance will install then configure all the necessary
packages for proper service operation.

5. Scheduler Assistant Service (SAS)

This service, built on an ACS repository [8] and usually
prepared by the AVS, helps to define a schedule to execute
a service request taking into consideration both those sites
where the service has been deployed and where it could be
executed but has not yet been installed. If the deployed ser-
vices are not available, it checks whether any of the latter
Grid sites can deliver the service taking into account the de-
ployment cost.

5.1. OGSA-EPS Bindings

OGSA-EPS [7] has two main connections with the out-
side world: the Candidate Set Generators, and the Informa-
tion Services. In order to influence the schedules the EPS
makes, the assistant service could be installed on any of the
following components or on their combination:

Candidate Set Generators. The scheduler assistant gen-
erates extra candidate sites for execution. These sites
are the ones where the requested services have not
been deployed. In case new candidates were added
container managed deployment has to be supported,
otherwise the SAS has to give hints to the EPS about
the newly added sites to take into consideration the de-
ployment tasks.

Execution Planning Services. The scheduler assistant
queries the CSG to retrieve the list of sites, which
can handle the service request. If no site can deliver
the requested service the EPS makes a decision
upon the results of the second query and adds two

separate entries to the schedule an optional one for the
deployment task, and one for the real job, the service
call.

Information Services. The scheduler assistant generates
virtual entries in the information services. Since both
the CSG and the EPS heavily rely on the IS the as-
sistant can include information which might alter their
decision. This information states service presence on
sites where the service is not even deployed. The QoS
information stored in the virtual entries are degraded
from the level the service would perform after de-
ployment. However even this degraded level can look
promising on among highly overloaded sites. This so-
lution has serious problems compared with the previ-
ous two ones. The IS has to be filled with the full ser-
vice site matrix, which could increase query times and
load on the IS nodes. Non-realistic information is in-
troduced in the information systems this might affect
some systems.

Installation of the assistant service or services next to an
OGSA-EPS enabled site depends on the grid policies. The
assistant will be able to cooperate with an existing EPS as
a CSG or an IS source, or it can offer a new, enhanced EPS
on deployment enabled Grids.

5.2. CSG improvements

The CSG assistant is a distributed, ontology-based adap-
tive classifier [14], to define a set of resources on which a
job can be executed. The CSG can build its classification
rules using the specific attributes of the local IS. Each CSG
may have a feedback about the performance of the sched-
ule made upon its candidates in order to further improve its
classification rules using a semi-supervised learning. The
CSGs build a P2P network and the EPSs candidate nomina-
tion request might spread over the neighboring CSGs for re-
finement the request is sent when the quality of the current
candidates is below a certain limit. Ontology helps to bridge
between the distinct attribute sets of the ISs because the dif-
ferent CSGs might work on different attribute sets. When a
new Grid with a CSG is deployed it inherits the rules of the
neighboring classifiers at the startup. The P2P network can
support more than just the decision-making process, e.g.
it can also improve the ontology by analyzing the analo-
gies between the different rule sets. A SAS extended CSG
has three interfaces to interoperate with other CSGs and the
EPS. CSGs form a P2P network. This network has two in-
terfaces; the first interface manages the ontology of different
ISs by sharing the classifier rules and the common ontology
patterns distributed as an OWL schema, while the second
interface supports decision-making this interface is similar
to the one between the EPS and CSG, however the new in-

terface provides details about the decision making progress
and WS-Addressing details of the EPS who made the orig-
inal query this way the P2P the final candidate set can be
sent directly to the EPS without traversing back through the
network. The third interface lays between the EPS and the
CSGs to support the supervised learning technique applied
by the CSGs the EPS sends back a metric packet including
the success rate to the CSG the candidates were originated.

5.3. EPS improvements

The EPS assistant has different implementations de-
pending on how the other parts of the SAS are deployed.
If both the CSG assistant and the EPS assistant is deployed
then the EPS can make smarter decisions. After receiving
the candidate resource-set the EPS estimates the deploy-
ment and usage costs of the given service per candidate. To
estimate the deployment costs the EPS queries the WS with
an ACS endpoint reference, which identifies a particular vir-
tual appliance. As a result, the WS should be extended with
this capability. The usage costs also include, for example
the cost of the inter-service communications e.g. if a ser-
vice is deployed closer to its dependencies then the commu-
nication costs decrease. Therefore, the EPS sends software
agents to estimate the change in the communication cost
between the affected endpoints (e.g. it checks for latencies
and available bandwidth). The SAS has a plug-in based ar-
chitecture in order to support different agents discovering
different aspects of the deployment. If the EPS assistant
is deployed alone then the EPS generates deployment jobs
on overloaded situations (e.g. when a given job can not be
completed by the user specified wall time), these deploy-
ment jobs are the service calls to the WS with the proper
ACS EPR. The EPS estimates execution wall times through
the WS interface discussed in the previous paragraph.

5.4. IS improvements

The IS assistant provides information sources on sites
which can accept service calls after deployment. The SAS
calculates the necessary metrics specified by the GLUE
schema [1] like EstimatedResponseTime, WorstResponse-
Time. Etc.) for each site in the Grid according to the local
service availability, and publishes them as ServiceData.

The SAS-enabled Grid services build on the fact that the
ACS EPR is available for the services under submission.
Further deployments use this EPR to initiate the installation
process on the selected site. Therefore, the most crucial
point in the system is about the place of the repository ref-
erences. The SAS can collect these references from three
locations:

• UDDI is the original service repository, which can
hold metadata for each service, if this metadata is a

valid ACS EPR the SAS uses it for deployments.

• GLUE-Schema has Service entries per site, every ser-
vice entity has a ServiceData map which holds key
value pairs for extended use of the schemas informa-
tion. One of the ServiceData objects in the per service
description should be the ACS EPR.

• WSDL can be customized and further extended as de-
scribed in the W3C standards. The WSDL can de-
scribe which virtual appliance was used for instantiat-
ing the service by including an ACS EPR element after
the service element the WSDL. As a consequence both
the GLUE schema and the UDDI is supported without
the extensions on them, because they both hold refer-
ences to the WSDL the service conforms with. SAS
assumes this behavior throughout its operation.

6. Implementation

6.1. Extension of the Workspace Service

The Workspace Service has a plugin based architecture
to support different sources of virtual appliances. To suppot
automated deployments a virtual appliance repository has to
be connected with the WS. This leads to an extension of the
WS with a new kind of StagingAdapter called AAStagin-
gAdapter. This adapter accepts Application Archive EPRs
as inputs and uses the ACS service to transfer the requested
virtual appliance to the target node. It also can intelligently
detect whether the remote ACS service, which holds the
AA, supports the extensions introduced later in Section 6.2.
Its behavior changes on the following way (see figure 3 for
details):

Direct VA download. A generic ACS holds the whole im-
age of the VA therefore it can be downloaded directly
to the target node (see steps 1-2 on figure 3).

Two phase VA download. An extended ACS can build the
VA locally. This way the plugin requires the Base
VA to be stored in the ACS repository next to the
workspace service. This makes the AAStagingAdapter
capable to deploy the BaseVA on the target node (step
3-4), then query and apply the differences stored on
the remote Application Archive (step 5). With this so-
lution the external network is much less used on the
price of the local VA creation.

The policy about which download scenario the AAStagin-
gAdapter is going to use can be influenced by the configura-
tion of the extended WS. The adapter estimates the required
time building a new VA. The estimate is based on the size(s)
of the remote differential AA(s) and the previous construc-
tion times of appliances built on top of the same BaseVA.

N4

N2N1

N3

HeadNode

WSACS

ACS
ACS
ext

Site boundary

BaseVA

VA
dVA

1

2

3

4

5

Figure 3. VA Staging with AAStagingAdapter

Using this estimate the adapter decides whether the avail-
able AAs from regular ACSs are worth the bandwidth and
time to spend.

6.2. ACS as a Virtual Appliance Store

There are three major features included in our ACS ser-
vice:

Transport methods for large files. The ACS specification
requires only the embedded and WS-Attachment based
AA transmission to be supported by all the implemen-
tors. This requirement is not suitable for Virtual Appli-
ance transfer, because the sizes of the VAs can be quite
large. A large file transfer may torment the web ser-
vices container of the ACS, and therefore disrupt other
WSRF services deployed right next to the ACS ser-
vice. An ACS supporting VA transfer should provide
other transfer methods like GridFTP, RFT or HTTP(s).
Our implemented ACS uses GridFTP or HTTP alter-
natively for AA transfer.

Remote differential Archive support. Other important
requirement against the ACS to provide differential
AAs based on a remote AA EPR. The ACS speci-
fication defines the differential Application Archive
Descriptor (AAD) on the way that an AA cannot build
on an AA which is not present in the repository. The
AAD is extended to include a remote AA EPR if it is
needed. This way the ACS can download the referred
AA and then update it like it would with the local
one. Finally it can serve the complete AA bundle as a
regular one. Based on the request frequency of an AA
the ACS decides to store the served AA for later use
or drop it to conserve disk space.

Plugin for understanding archive contents. In order to
build on top of the base Virtual Appliances the ACS
has to be able to inject the differential AA’s contents
to the base appliance. This is achieved by content acti-
vated plugins for our ACS system. Currently two plug-
ins are available. One for adding extra zip entries to an
archive containing a single zip file (this is for demon-
stration purposes only). And one is for AAs containing
VAs. If an AA contains a VA then the ACS detects it
and the VAHandler plugin is activated. This plugin ini-
tiates the base VA using the extended Workspace Ser-
vice. After the base VA is running the VAHandler or-
ders it to download and activate the differential update
required. These two operations are available as Web
Services in the base VAs developed for the ACS ser-
vice. The current implementation of the base VA is a
web service wrapper around the debian package man-
ager. For security reasons the services offered by the
BaseVA are accessible only from the local network.
Each ACS plugin is bound to a BaseVA type. If more
than one BaseVA is defined then new plugins has to be
written.

7. Conclusion and future work

This paper defined an infrastructure on which an auto-
mated service deployment solution can build on. It has
covered the lifecycle of service and application deployment
from the packaging to the execution. The self-healing base
virtual appliances provide higher availability of the services
deployed with the AVS. Meanwhile the SAS gives us grid
services on demand. Therefore grid users no longer bound
to the sites where the applications they used are deployed
and made publicly available.

In the future the interface of the self healing virtual appli-
ance has to be further developed to support local and system
wide malfunction alerts, and self monitoring systems. The
published on demand deployment solution should be further
generalized to support future deployment scenarios. Also
the SAS should be extended towards seamless integration
with other execution management subsystems in OGSA like
CDDLM [3].

References

[1] S. Andreozzi, S. Burke, L. Field, S. Fisher, B. Konya,
M. Mambelli, J. M. Schopf, M. Viljoen, and A. Wilson. Glue
schema specification version 1.2, 2005.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebar, I. Pratt, and A. Warfield. Xen and the
art of virtualization. In ACM Symposium on Operating Sys-
tems Principles (SOSP), 2003.

[3] D. Bell, T. Kojo, P. Goldsack, S. Loughran, D. Milojicic,
S. Schaefer, J. Tatemura, and P. Toft. , configuration de-
scription, deployment, and lifecycle management (cddlm)
foundation document, 2005.

[4] P. V. Coveney, M. J. Harvey, and L. Pedesseau. Development
and deployment of an application hosting environment for
grid based computational science. In UK All Hands Meeting,
2005.

[5] T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky,
S.Winter, and P. Kacsuk. Gemlca: Running legacy code
applications as grid services. Journal of Grid Computing,
3(1-2):75–90, June 2005.

[6] I. Foster. Globus toolkit version 4: Software for service-
oriented systems. In IFIP International Conference on Net-
work and Parallel Computing, 2005.

[7] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui,
A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist, R. Subrama-
niam, J. Treadwell, and J. V. Reich. The open grid services
architecture, version 1.5, 2006.

[8] K. Fukui. Application contents service specification 1.0,
2006.

[9] G. Kandaswamy, D. Gannon, L. Fang, Y. Huang, S. Shi-
rasuna, and S. Marru. Building web services for scientific
applications. IBM Journal of Research and Development,
50(2/3), March/May 2006.

[10] K. Keahey, I. Foster, T. Freeman, X. Zhang, and D. Gal-
ron. Virtual workspaces in the grid. ANL/MCS-P1231-
0205, 2005.

[11] I. Krsul, A. Ganguly, J. Zhang, J. Fortes, and R. Figueiredo.
Vmplants: Providing and managing virtual machine execu-
tion environments for grid computing. In SC04, Pittsburgh,
PA., 2004.

[12] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford.
Xenoservers: Accountable execution of untrusted programs.
In 7th Workshop on Hot Topics in Operating Systems, Rio
Rico, AZ, 1999. IEEE Computer Society Press.

[13] V. Talwar, S. Basu, and R. Kumar. An environment for en-
abling interactive grids. In IEEE International Symposium
on High Performance Distributed Computing (HPDC-12),
Seattle, Washington, June 2003.

[14] M. E. Taylor, C. Matuszek, B. Klimt, and M. Witbrock. Au-
tonomous classification of knowledge into an ontology. In
The 20th International FLAIRS Conference (FLAIRS), Key
West, Florida, May 2007.

