
Programming of Graphics

Introduction to OpenGL

Peter Mileff PhD

University of Miskolc
Department of Information Technology

OpenGL libraries
⦿ GL (Graphics Library): Library of 2D, 3D drawing

primitives and operations
● API for 3D hardware acceleration

⦿ GLU (GL Utilities): Miscellaneous functions
● dealing with camera setup and higher-level shape

descriptions

⦿ GLUT (GL Utility Toolkit): Window-system
independent toolkit
● with numerous utility functions, mostly dealing with

user interface

2

Software Organization

3

The OpenGL Context...

4

OpenGL Context

5

⦿ Before we do anything, an OpenGL Context
should be created

⦿ An OpenGL context represents many things:
● A context stores all of the state associated with this

instance of OpenGL
● It represents the (potentially visible) default

framebuffer that rendering commands will draw to
● Think of a context as an object that holds all of

OpenGL
● when a context is destroyed, OpenGL is destroyed

A JOGL Application

6

⦿ In order to create a Java window, we should extend the
JFrame class from Swing

⦿ We can access the OpenGL functionality from JOGL by
implementing the GLEventListener interface

 public class Game extends JFrame implements GLEventListener {
 private static final long serialVersionUID = 1L;

 public void display(GLAutoDrawable drawable) {
 }

 public void dispose(GLAutoDrawable drawable) {
 }

 public void init(GLAutoDrawable drawable) {
 }

 public void reshape(GLAutoDrawable drawable, int x, int y, int width, int height){
 }
 }

OpenGL Context in JOGL

7

 // Get GL profile
 final GLProfile profile = GLProfile.get(GLProfile.GL2);

 GLCapabilities capabilities = new GLCapabilities(profile);

 // Create a canvas for 3D Graphics
 final GLCanvas glcanvas = new GLCanvas(capabilities);

 // Create Frame for canvas
 final JFrame frame = new JFrame("3d Triangle (solid)");

 frame.getContentPane().add(glcanvas);
 frame.setSize(frame.getContentPane().getPreferredSize());
 frame.setVisible(true);

 final FPSAnimator animator = new FPSAnimator(glcanvas, 60, true);
 animator.start();

A JOGL Application

8

⦿ Try and investigate the MyJoglDemoSimple
application!

OpenGL Context in JOGL

9

⦿ GLProfile: determines the used OpenGL version
● The field of computer graphics changes rapidly.
● Graphics APIs must often break backwards compatibility with

each revision.
● It is important that programmers have control over which

version of OpenGL is used by the application

⦿ To select OpenGL 2.1, for example, a GLProfile would be
created as follows:

GLProfile glp = GLProfile.get(GLProfile.GL2);

OpenGL Context in JOGL

10

⦿ GLCapabilities:

⦿ This object describes some specific capabilities a
rendering context should support

⦿ The default settings are usually fine, but many options are
available:
● E.g: effects such as full-scene anti-aliasing, stereo rendering.

⦿ This object takes an instance of GLProfile as a parameter.

GLCapabilities caps = new GLCapabilities(glp);

OpenGL Context in JOGL

11

⦿ GLCanvas:

⦿ A heavyweight AWT component which provides OpenGL
rendering support.

⦿ Everything will be drawn to this component.

GLCanvas glcanvas = new GLCanvas(capabilities);

The rendering / game loop...

12

Rendering Loop / Game loop

13

● Loop: Graphics are repeatedly drawn on screen and
interactive (frames)

● This is real-time rendering
● This is the type of rendering used in games
● This style of rendering contrasts offline rendering

○ where single images or frames are calculated over a
long period of time

● Rendering loop should reach 50-60 Frames per
Secundum (FPS)

Rendering Loop / Game loop

14

Rendering Loop / Game loop

15

Initialization:
● Choosing a GLProfile and configuring GLCapabilities for a

rendering context
● Creating a window and GLContext through the

GLAutoDrawable
● Making an animator thread
● Loading resources needed by program

Process Input:
● Listen for mouse and keyboard events
● Update user's view (often called a camera)

Rendering Loop / Game loop

16

Update (Simulate Game World):
● Calculate geometry
● Rearrange data
● Perform computations

Render:
● Draw scene geometry from a particular view

Shut Down:
● Save persistent data
● Clean up resources on graphics card

Animating the loop in JOGL

17

● JOGL provides some utility classes for animating our
program.

● An Animator object can be created to ensure the display
method of a GLAutoDrawable is repeatedly called.

● An FPSAnimator allows us make the framerate relatively
consistent and can reduce the resource consumption of the
program

FPSAnimator animator = new FPSAnimator(canvas, 60);
animator.start();

Animating the loop in JOGL

18

● The animator is attached to the GLCanvas and asked to
render at roughly 60 frames per second

● The display method will be called approximately every 17 ms
(1000 / 60)

The Basics of OpenGL...

19

Geometry Basics

20

⦿ Geometric objects are represented using vertices
⦿ A vertex is a collection of generic attributes

● positional coordinates
● colors
● texture coordinates
● any other data associated with that point in space

Basics

21

⦿ OpenGL is not object oriented
● so that there are multiple functions for a given logical function
● E.g.:

○ glVertex3f
○ glVertex2i
○ glVertex3dv

⦿ OpenGL is a state machine:
● We put it into various states (or modes) that then remain in

effect until you change them
● E.g: colors, current viewing and projection transformations, line

and polygon stipple patterns, etc
● Every state has a default value

Geometry Basics

22

Rendering Loop

23

● Every rendering loop has three phases:
○ Start part: usually reinitialises the view and states

■ reset events, clears screen, etc. E.g.
glClear(GL_COLOR_BUFFER_BIT);

○ Drawing part: draw geometry

glBegin(XXXX);
…..

glEnd();

● End part: closes the rendering process
■ OpenGL should be informed about the end of rendering

Command: glFlush();

Basic Example

24

void Display() {

glClear(GL_COLOR_BUFFER_BIT);
 glColor4f(1,1,0,1);
 glBegin(GL_POLYGON);
 glVertex2f(-0.5, -0.5);
 glVertex2f(-0.5, 0.5);
 glVertex2f(0.5, 0.5);
 glVertex2f(0.5, -0.5);
 glEnd();
 glFlush();
}

Vertices and Primitives...

25

Vertices and Primitives

26

⦿ Geometry object are built from primitives
⦿ OpenGL support many primitive types
⦿ Game models are usually based on

Triangles

Vertices and Primitives

27

⦿ Points, GL_POINTS
● Individual points
● Point size can be altered

○ glPointSize(float size)
Example:

glBegin(GL_POINTS);
glColor3fv(color);
glVertex2f(P0.x, P0.y);
glVertex2f(P1.x, P1.y);
glVertex2f(P2.x, P2.y);
glVertex2f(P3.x, P3.y);
glVertex2f(P4.x, P4.y);
glVertex2f(P5.x, P5.y);
glVertex2f(P6.x, P6.y);
glVertex2f(P7.x, P7.y);
glEnd();

Vertices and Primitives

28

⦿ Lines, GL_LINES
● Pairs of vertices interpreted as individual line segments
● Can specify line width using:

○ glLineWidth (float width)

Example:
glBegin(GL_LINES);
glColor3fv(color);
glVertex2f(P0.x, P0.y);
glVertex2f(P1.x, P1.y);
glVertex2f(P2.x, P2.y);
glVertex2f(P3.x, P3.y);
glVertex2f(P4.x, P4.y);
glVertex2f(P5.x, P5.y);
glVertex2f(P6.x, P6.y);
glVertex2f(P7.x, P7.y);
glEnd();

Vertices and Primitives

29

⦿ Line Strip, GL_LINE_STRIP
● series of connected line segments

Vertices and Primitives

30

⦿ Line Loop, GL_LINE_LOOP
● Line strip with a segment added between last and first

vertices

Vertices and Primitives

31

⦿ Polygon , GL_POLYGON
● boundary of a simple, convex polygon

Vertices and Primitives

32

⦿ Triangles , GL_TRIANGLES
● triples of vertices interpreted as triangles

Vertices and Primitives

33

⦿ Triangle Strip , GL_TRIANGLE_STRIP
● linked strip of triangles

Vertices and Primitives

34

⦿ Triangle Fan , GL_TRIANGLE_FAN
● linked fan of triangles

Vertices and Primitives

35

⦿ Quads , GL_QUADS
● quadruples of vertices interpreted as four-sided

polygons

Vertices and Primitives

36

⦿ Between glBegin / glEnd, those opengl
commands are allowed:

● glVertex*() : set vertex coordinates
● glColor*() : set current color
● glIndex*() : set current color index
● glNormal*() : set normal vector coordinates (Light.)
● glTexCoord*() : set texture coordinates (Texture)

Transformations...

37

Transformations is OpenGL

38

⦿ Modeling transformation
● Refer to the transformation of models (i.e., the scenes,

or objects)

⦿ Viewing transformation
● Refer to the transformation on the camera

⦿ Projection transformation
● Refer to the transformation from scene to image

39

