Peter Mileff PhD
Programming of Graphics

Introduction

University of Miskolc
Department of Information Technology

Task of the semester

® Implement a graphics based demo application
® Any application which focuses mainly to 2D or 3D graphics

® Preferred: simple game or technological demo
o e.g. collision test, screensaver, animation, etc
o Use the OpenGL API if possible
e Any platform:
o Android, i0S, PC, Java, C++, etc

© Deadline: end of the semester

The main topics

Fundamentals and evolution of computer graphics
Overview of GPU technologies
Game and graphics engines

Practical 2D visualisation
Basis and difficulty of rendering - software rendering
Moving objects, animation
Collision detection
Tilemap, bitmap fonts
Practical 3D graphics
Object representation, structure of a model, rasterization algorithms
Programmable Pipeline, applying shaders
Lights and shadows

Effects: bump mapping, normal mapping, ambient occlusion, etc
Billboarding, terrain rendering, particle effect etc

Raytracing, Voxel based visualisation

FPRESS START

Fundamentals of computer
graphics...

Introduction

Computer graphics forms an integral part of our lives
Often unnoticed, but almost everywhere in the world today
o E.g: Games, Films, Advertisement, Posters, etc

The area has evolved over many years in the past few

decades

Multiple platforms appeared: C64, ZX Spectrum, Plus 4,
Atari, Amiga, Nintendo, SNES, etc

The appearance of the PCs was a big step

The video game industry started to grow
dramatically because of PCs
Possibility to play game at home

Possibility to programming (at high level) graphical
applications

Introduction

Today we can say: the media and video game industry
controls the development of computer visualization.
Consoles, PC and smartphones today

The characteristics of the area:
Continuous, intensive development
o New algorithms, models, approaches
Increasingly higher demands against the visual quality
More realistic, physically based rendering

An important milestone was the appearance of graphic
Processors

opened numerous new opportunities to developers

o not only accelerate the rendering, but applying general purpose
calculations (Like a CPU)

The task of computer graphics

@ Mapping and transforming objects, primitives located in
main/GPU memory to the two-dimensional plane of the

screen
Variety of algorithms have emerged for this

Global name: Rasterisation

The smallest unit of display: pixel

An independent displayable point of raster graphics devices
(Monitor screen, printer, etc.)

Its color is specified by the color space
o E.g.: RGB, RGBA, HSL, HSV, CMYK

The complete screen is a set of pixels
2D array
its quantity is resolution dependent

Raster graphics

Csatlakozas a hoszt szgéphez

megjelenités adatok
parancsok

, +«———— billentytizet
Display controller iy
(DC)

 —— 1

DOOOOO0000

DODODO0000

DOODODODOOIN00 | | 100000000000

lllllllﬁll"ll. s DODOO0000

OO0 000

IOOOOOOOONOODNOOOODOIN00000N

Directions of rasterization

The rasterization solutions can be grouped into two
directions:
1. Modeling the reality more precisely:

Objective: achieve high and realistic image quality

Mainly design and modeling programs

The visualisation is not real time (although there are some new
approaches doing it quasi real time)

o Due to the high computational time of realistic rendering
Models: Ray Tracing, Photon Mapping, Radiosity, etc
2. Fast, real time visualisation:
Objective: perform rendering in real time at ~60 FPS
Main directions: computer games, demos and other compositions

THE EVOLUTION OF EARLY
COMPUTER GRAPHICS...

The former visualisation

The old computers did not have GPU

The graphical calculations was carried out by the
central processing unit (CPU)

The CPUs are developed for general-purpose
programs/calculations
did not contain any specific hardware components

but can contain specific instruction sets (e.g. 3DNow - AMD,
SSE family, Altivec, NEON, etc)

It has been recognized early, that graphics can be accelerated

For example:

C64 — hardware based sprites and scroll
Amiga AGA chipset (A1200 and A4000)

Software rendering

The early programming model for computer graphics
The first stage of Computer Visualisation

The model was used about until 2002
o in parallel with the GPU for a while

® The model of the approach:
Every computing task was performed by the CPU
o There was no other unit at time
The raster image is calculated by a software program
running at the CPU

Software rendering

® The geometric primitive of the shapes:

they are located in the main memory in form of arrays,
structures and other representations

Generally:
@ In case of 2D: rectangle (2D array) or two triangle

@ In case of 3D: triangle or voxel
The CPU performs the actual operations on these
primitives
coloring, texture mapping, adjusting color channels, rotate,
scale, translate, etc,
The final image is stored in a special 2D array: Frame Buffer

At the end of rasterization, this array is sent to the video
controller

Benefits of software rendering...

Characteristics of early software
rendering

The prosperous period of this model was during the DOS

® The main characteristics of the developments:

Low resolution (320x200, 320x240, 640x480, 800x600) — VESA
mode

256 colors, Watcom C compiler, DOS/4GW — 32 bit DOS extender
o DOS was a 16 bit OS, extender was needed to use more memory

 Effective and hardware close visualization:
DOS was a single user, single task operating system
o Can run only one program or application at a time
Video memory addressing can be performed directly from the user
program (e.g.: video memory starting address 0xA0000)
o With addressing pixels immediately appeared on the screen

Benefits of software rendering

The developer has full control over everything:

o Programming every screen pixel singly
o Control the whole rendering process

Offered an extraordinary flexibility:

Compared to today's GPU support systems

There was no need to learn the language of programming graphics
processors

The source code was clean, logical and “simple”

All the parts of the graphics pipeline was programmable by the
developer

The solution was almost platform independent, because of VESA

Benefits of software rendering

@® Today's video card is limited:

in functionality and programmability
Although they are continuously evolving

Every card supports only a specific version of:
a shader model
a graphics APl (OpenGL, DirectX)

(@ Without the proper GPU, generally the software cannot
be run

DRAWBACKS OF SOFTWARE
RENDERING...

Drawbacks of software
rendering

The major goal of the graphics is to reach high quality,
fast real-time visualization
To achieve this large data sets need to handle and move

This is the main difficulty of the software model

All data is stored in main memory:

In case of any change in data, the cpu always needs to
communicate to this memory

These requests are limited by the BUS speed
and the access time of the actual memory type

Drawbacks of software
rendering

» The programmer should care of data structures:
e ltis not good when memory is segmented!

e Frequent changes on a segmented memory area kills the
performance

e The reason is the huge number of cache misses!
o |f data area are not ordered and continuous, the cache cannot help

o The content of the cache is always refreshed to gain the required
data

=) The code should be highly optimized and usually
low-level
e The critical parts are typically in C and ASM

Drawbacks of software
rendering

@ Moving large amounts of data between main
memory and video memory:
o Limited by the BUS speed
e Continuous visualization requires 50-60 refresh rate per min.

o This is a significant performance requirement

@ In the beginning the problem was manageable:

Video cards, monitors supported only low resolutions

Typical game at that time: 640x480, 800x600 or maybe
1024x768

The moved data set is not so large:

o E.g.: 640x480 screen resolution, 8 bit color depth results:
640*480*1byte=30720byte=300Kb / 1 frame

o In case of 1024x768 one frame is 768 Kb

Milestones of software
rendering

Due to proper optimizations and efficient algorithms,
many software (with great visual) were developed

The rapid development of the CPU given a good basis

The universal spread of the C language and its combination
with ASM was a perfect pairing

Outstanding results

Doom - 1993
-
1
-
-
-
e ™
| — —
(20319 " | EUlL 42 / Z00
- SHEL 1Y . 50
v . ROk 0/ &0
AMMUO HEALTH AnME (L;) HoMmun el 0./ 300

2.5 D graphics

BSP space partitioning for fast collision
determination and rendering

Ray Casting based rendering, lights

Outstanding results
Quake | - 1996

First (!) real 3D graphics

Polygon based models

BSP space partitioning

Lightmaps and real time lights

Optimized for MMX instruction set - Michael Abrash

Outstanding results

Unreal Engine 1 — 1996 - 1998

N

Real 3D graphics

Polygon based models

BSP space partitioning
Lightmaps and real time lights
Fog and well optimized

FUTURE OF SOFTWARE
RENDERING...

Future of software
rendering

It was dominant until the first appearance of GPUs
(1996)

For a while, the two models ran parallel

Now, software rendering has almost completely disappeared from real
time rasterization

The reason is the limit of the BUS speed:

The CPU performance is increased heavily

Although it could not hold the race with the newly introduced
GPU architecture

Today:
almost every device take a GPU

GPS, smartphones, tablets, consoles, etc,
Their programming is relatively uniform: OpenGL ES

Future of software
rendering

® The rendering technoloqy has not disappeared:

Its role will again grow in the next few years
because of the increased number of cores in CPUs

Three DirectX 9 compatible software renderer:

1. Pixomatic renderer — RadGameTools
Non free licence

2. Swiftshader — TransGaming
Free version is available

Both product are well-optimized: take advantage of modern processors
instruction sets (pl. SSE, AVX,MMX,3DNow)

3. DirectX WARP — Microsoft software library

The last great achievement

Unreal Tournament 2004 — Pixomatic renderer

' v
Le
[
m.*
: 'ls.. l’ b |
e
<y ?‘ 2 ey by
NN L ‘
“":‘?ﬁ'\, . \ . wr{ e
AT RS X 5
\ i . it N o ~
y ‘ k.
¢ i
- :
L) N 2 éﬂ
L
Fo s AN
o N - ""“
N ¥ N
."«" N _,. ~-

UT2004 can be configured to run in software
mode

GAME OVER

