
Programming of Graphics

Introduction

Peter Mileff PhD

University of Miskolc
Department of Information Technology

Task of the semester

⦿ Implement a graphics based demo application
● Any application which focuses mainly to 2D or 3D graphics

● Preferred: simple game or technological demo
○ e.g. collision test, screensaver, animation, etc

● Use the OpenGL API if possible
● Any platform:

○ Android, iOS, PC, Java, C++, etc
⦿ Deadline: end of the semester

The main topics
⦿ Fundamentals and evolution of computer graphics
⦿ Overview of GPU technologies
⦿ Game and graphics engines
⦿ Practical 2D visualisation

● Basis and difficulty of rendering - software rendering
● Moving objects, animation
● Collision detection
● Tilemap, bitmap fonts

⦿ Practical 3D graphics
● Object representation, structure of a model, rasterization algorithms
● Programmable Pipeline, applying shaders
● Lights and shadows
● Effects: bump mapping, normal mapping, ambient occlusion, etc
● Billboarding, terrain rendering, particle effect etc

⦿ Raytracing, Voxel based visualisation

Fundamentals of computer
graphics…

Introduction
⦿ Computer graphics forms an integral part of our lives

● Often unnoticed, but almost everywhere in the world today
○ E.g: Games, Films, Advertisement, Posters, etc

⦿ The area has evolved over many years in the past few
decades
● Multiple platforms appeared: C64, ZX Spectrum, Plus 4,

Atari, Amiga, Nintendo, SNES, etc
● The appearance of the PCs was a big step

⦿ The video game industry started to grow
dramatically because of PCs
● Possibility to play game at home
● Possibility to programming (at high level) graphical

applications

Introduction
⦿ Today we can say: the media and video game industry

controls the development of computer visualization.
● Consoles, PC and smartphones today

⦿ The characteristics of the area:
● Continuous, intensive development

○ New algorithms, models, approaches
● Increasingly higher demands against the visual quality
● More realistic, physically based rendering

⦿ An important milestone was the appearance of graphic
processors
● opened numerous new opportunities to developers

○ not only accelerate the rendering, but applying general purpose
calculations (Like a CPU)

The task of computer graphics
⦿ Mapping and transforming objects, primitives located in

main/GPU memory to the two-dimensional plane of the
screen
● Variety of algorithms have emerged for this

⦿ Global name: Rasterisation
⦿ The smallest unit of display: pixel

● An independent displayable point of raster graphics devices
(Monitor screen, printer, etc.)

● Its color is specified by the color space
○ E.g.: RGB, RGBA, HSL, HSV, CMYK

⦿ The complete screen is a set of pixels
● 2D array
● its quantity is resolution dependent

Raster graphics

Directions of rasterization

⦿ The rasterization solutions can be grouped into two
directions:
1. Modeling the reality more precisely:
● Objective: achieve high and realistic image quality
● Mainly design and modeling programs
● The visualisation is not real time (although there are some new

approaches doing it quasi real time)
○ Due to the high computational time of realistic rendering

● Models: Ray Tracing, Photon Mapping, Radiosity, etc
2. Fast, real time visualisation:
● Objective: perform rendering in real time at ~60 FPS
● Main directions: computer games, demos and other compositions

THE EVOLUTION OF EARLY
COMPUTER GRAPHICS…

The former visualisation

⦿ The old computers did not have GPU
⦿ The graphical calculations was carried out by the

central processing unit (CPU)
⦿ The CPUs are developed for general-purpose

programs/calculations
● did not contain any specific hardware components
● but can contain specific instruction sets (e.g. 3DNow - AMD,

SSE family, Altivec, NEON, etc)
⦿ It has been recognized early, that graphics can be accelerated
⦿ For example:

● C64 – hardware based sprites and scroll
● Amiga AGA chipset (A1200 and A4000)

Software rendering

⦿ The early programming model for computer graphics
● The first stage of Computer Visualisation
● The model was used about until 2002

○ in parallel with the GPU for a while

⦿ The model of the approach:
● Every computing task was performed by the CPU

○ There was no other unit at time
● The raster image is calculated by a software program

○ running at the CPU

Software rendering

⦿ The geometric primitive of the shapes:
● they are located in the main memory in form of arrays,

structures and other representations
● Generally:

⦿ In case of 2D: rectangle (2D array) or two triangle
⦿ In case of 3D: triangle or voxel

⦿ The CPU performs the actual operations on these
primitives
● coloring, texture mapping, adjusting color channels, rotate,

scale, translate, etc,
● The final image is stored in a special 2D array: Frame Buffer
● At the end of rasterization, this array is sent to the video

controller

Benefits of software rendering…

Characteristics of early software
rendering

⦿ The prosperous period of this model was during the DOS
⦿ The main characteristics of the developments:

● Low resolution (320x200, 320x240, 640x480, 800x600) – VESA
mode

● 256 colors, Watcom C compiler, DOS/4GW – 32 bit DOS extender
○ DOS was a 16 bit OS, extender was needed to use more memory

⦿ Effective and hardware close visualization:
● DOS was a single user, single task operating system

○ Can run only one program or application at a time
● Video memory addressing can be performed directly from the user

program (e.g.: video memory starting address 0xA0000)
○ With addressing pixels immediately appeared on the screen

Benefits of software rendering

⦿ The developer has full control over everything:
● Programming every screen pixel singly
● Control the whole rendering process

⦿ Offered an extraordinary flexibility:
● Compared to today's GPU support systems
● There was no need to learn the language of programming graphics

processors
● The source code was clean, logical and “simple”
● All the parts of the graphics pipeline was programmable by the

developer
● The solution was almost platform independent, because of VESA

Benefits of software rendering

⦿ Today's video card is limited:
● in functionality and programmability

⦿ Although they are continuously evolving
⦿ Every card supports only a specific version of:

● a shader model
● a graphics API (OpenGL, DirectX)

⦿ Without the proper GPU, generally the software cannot
be run

DRAWBACKS OF SOFTWARE
RENDERING…

Drawbacks of software
rendering

⦿ The major goal of the graphics is to reach high quality,
fast real-time visualization
● To achieve this large data sets need to handle and move

⦿ This is the main difficulty of the software model

⦿ All data is stored in main memory:
● In case of any change in data, the cpu always needs to

communicate to this memory
● These requests are limited by the BUS speed

⦿ and the access time of the actual memory type

Drawbacks of software
rendering

⦿ The programmer should care of data structures:
● It is not good when memory is segmented!
● Frequent changes on a segmented memory area kills the

performance
● The reason is the huge number of cache misses!

○ If data area are not ordered and continuous, the cache cannot help
○ The content of the cache is always refreshed to gain the required

data

⦿ The code should be highly optimized and usually
low-level
● The critical parts are typically in C and ASM

Drawbacks of software
rendering

⦿ Moving large amounts of data between main
memory and video memory:
● Limited by the BUS speed
● Continuous visualization requires 50-60 refresh rate per min.

○ This is a significant performance requirement

⦿ In the beginning the problem was manageable:
● Video cards, monitors supported only low resolutions
● Typical game at that time: 640x480, 800x600 or maybe

1024x768
● The moved data set is not so large:

○ E.g.: 640x480 screen resolution, 8 bit color depth results:
640*480*1byte=30720byte=300Kb / 1 frame

○ In case of 1024x768 one frame is 768 Kb

Milestones of software
rendering

⦿ Due to proper optimizations and efficient algorithms,
many software (with great visual) were developed

● The rapid development of the CPU given a good basis

● The universal spread of the C language and its combination
with ASM was a perfect pairing

Outstanding results
Doom - 1993

● 2.5 D graphics
● BSP space partitioning for fast collision

determination and rendering
● Ray Casting based rendering, lights

Outstanding results
Quake I - 1996

● First (!) real 3D graphics
● Polygon based models
● BSP space partitioning
● Lightmaps and real time lights
● Optimized for MMX instruction set - Michael Abrash

Outstanding results
Unreal Engine 1 – 1996 - 1998

● Real 3D graphics
● Polygon based models
● BSP space partitioning
● Lightmaps and real time lights
● Fog and well optimized

FUTURE OF SOFTWARE
RENDERING...

Future of software
rendering

⦿ It was dominant until the first appearance of GPUs
(1996)

⦿ For a while, the two models ran parallel
● Now, software rendering has almost completely disappeared from real

time rasterization

⦿ The reason is the limit of the BUS speed:
● The CPU performance is increased heavily
● Although it could not hold the race with the newly introduced

GPU architecture
⦿ Today:

● almost every device take a GPU
● GPS, smartphones, tablets, consoles, etc,
● Their programming is relatively uniform: OpenGL ES

Future of software
rendering

⦿ The rendering technology has not disappeared:
● Its role will again grow in the next few years
● because of the increased number of cores in CPUs

⦿ Three DirectX 9 compatible software renderer:

1. Pixomatic renderer – RadGameTools
 Non free licence

2. Swiftshader – TransGaming
 Free version is available

⦿ Both product are well-optimized: take advantage of modern processors
instruction sets (pl. SSE, AVX,MMX,3DNow)

⦿ 3. DirectX WARP – Microsoft software library

The last great achievement
Unreal Tournament 2004 – Pixomatic renderer

UT2004 can be configured to run in software
mode

