Peter Mileff PhD

Programming of Graphics

The graphics pipeline

University of Miskolc
Department of Information Technology

What is the Graphics Pipeline?

A conceptual model that describes what steps a
graphics system needs to perform to render a 3D
scene to a 2D screen

The steps highly depend on the used software and

hardware and the desired display characteristics
e Therefore there is no universal graphics pipeline suitable for
all cases

The model of the graphics pipeline is usually used in

real-time rendering.
e Often, most of the pipeline steps are implemented in
hardware

What is the Graphics Pipeline?

The implementation of the pipeline can be:

1. Pure software based: only using the CPU
o Early era

2. Hardware based using the GPU

o Today era

3. As a combination of the two
o Transitional period (today's era)

What is the Graphics Pipeline?

A graphics pipeline can be divided into three
main parts:

e Application
e Geometry
e Rasterization

Application — Geometry — Rasterization

Application

The application step is executed by the software on
the main processor (CPU),

It cannot be divided into individual steps, which are
executed in a pipelined manner

However, it is possible to parallelize it on multi-core
processors or multi-processor systems.

Geometry

The geometry step is responsible for the majority of
the operations with polygons and their vertices

It can be divided into the five tasks

e |t depends on the particular implementation of how these
tasks are organized as actual parallel pipeline steps.

Modd - & Camera Wi ndow -

J ligting — Proection dipping — \ewport-
T transformation T T trarsformationT

Ol ekt coord nates Camera coord rates di po ng Coord nates D evi ce coordi rates

Model and Camera
transformation

This stage transforms models and the view into the
target place

The World Coordinate System:
e the coordinate system in which the virtual world is created

e Usually a rectangular Cartesian coordinate system in
which all axes are equally scaled

Lighting

A scene often contains light sources placed at
different positions
e Lighting makes virtual world more realistic

Calculating realistic lighting is very performance
iIntensive

Two main types of lighting:

e Localillumination: light bounces once on the way from
light source to camera
o for real time rendering. Fast, bust less realistic

e Global illumination: simulates real world lighting

o lItis a system that models how light is bounced off of surfaces
onto other surfaces (indirect light)

o Mainly used in case of non real time rendering

Global vs Local illumination

Direct Illumination

Projection

Graphical projection is a protocol by which an
Image of a three-dimensional object is projected

onto a planar surface

Two types of projection:

e Parallel: the lines of sight from the object to the
projection plane are parallel to each other.
o Lines that are parallel in three-dimensional space remain

parallel in the two-dimensional projected image.

e Perspective: object positions are transformed to the
view plane along lines that converge to a point called
projection reference point

Projection

Perspective projection (P) Camerz1 Orthographic projection (O)

O,

O,

Clipping

Only the primitives which are within the visual
volume need to actually be rastered

This visual volume is defined as the inside of a
frustum, a shape in the form of a pyramid with a cut

off top

Primitives which are completely outside the visual
volume are discarded;

e This is called frustum culling

12

Clipping

clipped +—o thrown away
triangle

near clipping
plane =
far clipping image plane
plane

© www.scratchapixel.com

Window-Viewport
transformation

In order to output the image to any target area
(viewport) of the screen, Window-Viewport
transformation must be applied

This Is a shift, followed by scaling

The resulting coordinates are the device coordinates of
the output device

e The viewport contains 6 values:

o height and width of the window in pixels,

o the upper left corner of the window in window
coordinates (usually 0, 0)

o and the minimum and maximum values for Z (usually O
and 1)

14

Window-Viewport
transformation

15

Rasterization

This is the task of taking an image described in a
vector graphics format (shapes) and converting it
into a raster image (pixels or dots)

e the grid points are also called fragments

e discrete fragments are created from continuous surfaces

e Each fragment corresponds to one pixel in the frame buffer
and this corresponds to one pixel of the screen

Fragments can be colored and illuminated.

Furthermore, it is necessary to determine the visible, closer to
the observer fragment, in the case of overlapping polygons

e Visibility algorithms

16

Rasterization

Rasterization is usually performed by polygon
(usually triangle) filling:

17

Modern GPU pipeline

Modern GPUs use programmable pipeline

Why programming is nheeded?
e \We can customize the pipeline stages via vertex and

fragment shaders

CPU GPU
| v '
4 N Y
§ Vertex E = Fragment | % § g
Appscation Processor [~ B E | Processor _)g e g T
s = ®
\ S S T

t

Textures <«

18

Modern GPU pipeline...

Modern GPU pipeline

Programmable pipeline allows developers to create
customized programs
e Using Shading languages

With shaders we can extend the graphics card’s
pipeline functionalities
o We are able to achieve several “non API supported”

features
® E.g.: Own lighting and shadowing algorithms

The shading language code that is intended for execution
Is called shader

Because two programmable processor is defined we have:
e \ertex shader (vertex program)
e Fragment shader (fragment program)

20

The vertex processor

The vertex processor is a configurable hw unit
(» It operates on incoming vertex values and their
associated data

The vertex processor usually performs traditional
graphics operations such as:

Vertex transformation

Normal transformation and normalization
Texture coordinate generation

Texture coordinate transformation
Lighting

Color material

ONORORORONO)

The vertex processor

Because of its general-purpose programmabillity, this
processor can also be used to perform a variety of
other computations

The vertex processor is responsible for running the
vertex shaders

The input for a vertex shader is the vertex data:

@ its position, color, normals, etc, depending on what the
application sends
® There are called: vertex attributes

Vertex programs are applied to each vertex of a model
(® But vertex program cannot create new vertices!

22

The fragment processor

The fragment processor is a programmable unit
It is responsible for running the fragment shaders

How it works?

(& Fragment programs operate on each generated fragment
(pixel)

(& The task of a shader is to take the fragment attributes and
uniform parameters as input

(¢ and compute a final color for that fragment which will be
written to the render target (e.g. screen)

23

The fragment processor

The fragment attributes are the interpolated attributes
of the associated vertices

It usually performs traditional graphics operations such
as the following:

Calculation of accurate lighting models
Post-processing effects like glow and depth-of-field
Texture access and application

Fog

Color sum

Alpha blending

OXOJOXORORO.

A wide variety of other computations can be performed
on this processor

Shading language...

-

Shader language

Shading languages are usually used to program the
programmable GPU rendering pipeline

Makes possible to the programmer to replace the fixed
function pipeline

Properties of these lanquaqges:

®
O]

O]

Initially there were no high-level languages,

only in the Assembly language it was possible to write a
shader program

Today's languages are the result of many years of
development

Three main direction of the evolution:

1. General programming languages
2. Graphical interface languages
3. The shader languages

26

Shader language

The common language of the programs is C language

@ In terms of the syntax and semantics
@ today's major shading languages are based on this

Known languages:

® CG (C for Graphics) — NVIDIA
= One of the first GPU shading languages
® GLSL (GLslang) — OpenGL

@ HLSL (High Level Shading Language) — MICROSOFT
= XBOX — XNA — DirectX

27

Evolution of shading languages

Altalanos celd nyelvek

T T e Cc IRIS GL RenderMan
HraGraria Mok (AT&T, 1970’s) (SGI, 1982) (Pixar, 1988)

LA AR ARARRRARARRRRRRRRRRRNA) ‘
Arnyalé nyelvek ‘ ~ !
BN A A e e . . b

’J ,
/

4

l Reality Lab OpenGL 4 I
. | (RenderMorphics, || (ARB, 1992) PixelFlow
‘ 1994) R — Shading

0
CLELELEL | L T

et
o“.
*

=¥ gunnt® -
(AT&T, 1983) " 3

..'. a
* ..

h 4
Direct3D
(Microsoft, 1995)

i

|
Language

(UNC, 1998) :

|

\

L
’.
.’
*

.0
&

1’
Real-Time
Shading Language
(Stanford, 2001)

:
’
-- b Cqg/ HLSL P ”
(NVIDIA/Microsoft, 2002)
GLSL (ARB, 2003)

Java
(Sun, 1994)

\

-

.

4

OpenGL Assembly Language
(Sample (old) fragment shader)

NHARBfp1.0

TEMP color;

MUL color, fragment.texcoord[0].y, 2.0;
ADD color, 1.0, -color;

ABS color, color;

ADD result.color, 1.0, -color;

MOV result.color.a, 1.0;

END

GLSL Language

(Simple color fragment shader)

#version 330
out vec4 outputFragment;

void main() {
outputFragment = vec4(0.4,1,1,1);
}

GLSL overview (short)...

GLSL language

OpenGL Shading Language (often glslang)

Developed by the OpenGL ARB group as part of the
OpenGL 1.4 extension

From the OpenGL 2.0 it was integrated into the
standard

Main Characteristics:

e High level language,

e Based on C language syntax

e Makes possible to program the pipeline directly

Ky

GLSL language

Main Characteristics:

e Platform independent. Supported by GNU/Linux, Unix, BSD,
Windows and Mac OS X

e Shaders written in GLSL can be used on any graphics card that
supports GLSL

e Each graphics card driver includes the GLSL compiler,

o Card manufacturers can optimize the code generated by the compiler
according to the card architecture

The shader programs are primarily based on the
data-parallelism,

e the way the parallels depend on the implementation of the
driver
o Different optimizations

e communication between parallel running programs is not
supported

KK}

GLSL language

The programs are represented as a text form

We write vertex and pixel shaders during coding

They can be served into different files or into the main
application code as a string

But they are served into files:

e E.g.: example.vert, example.frag

e File extension is not relevant
o The compiler decides based on the content

34

GLSL language

Using the shaders:

Loading the shader files must be done manually by
the programmer
OpenGL does not provide a direct support for this

What does it really mean?

We only need to load the shaders into memory manually

From here, OpenGL gives the option of creating a real shader
object

35

The geometry world...

The geometry world

Computer graphics is built from geometry
What we want to render to the screen

These are so-called geometric primitives
They can be used to generate the desired geometry

Today’s most common approach to represent a model
IS polygonal modeling

It is an approach for modeling objects by representing or
approximating their surfaces using polygons

A geometry can be defined by points, lines, triangles, quads, triangle
strips, etc.

Example:

A square can be composed out of 2 triangles
A triangle can be composed from 3 points

37

The geometry world

A 3D point is represented as a vertex

e Two vertices defines a line and become an edge
e Three vertices with three edges define a triangle

Rendering the geometry primitives:

e \We need to define the vertices
e These points will then reside in system memory
e The GPU will need access to these points

The application will use the 3D API to transfer the defined
vertices from system memory into the GPU memory.

Also note that the order of the points can not be random

Mathematics Graphics programming

-@ P01, Y1 P (X1, Y1, Green)

A vertex can have several attributes, like:
e Color, texture coordinate, normal, etc

The geometry world

In games, complex polygon models are used

e They are built from (a lot of) triangles
o A modern game can contain 1M+ triangles

® Why triangle?
e is the simplest polygon in Euclidean space
e Graphics card can handle them effectively

The geometry world

\)

\
)

The geometry world
In practice

We can call the highest level geometry structure
as a model

e Contains everything

In practice, models should be logically subdivided
into objects

e Itis usually called: mesh

Main characteristics of an object:
e They are individually renderable
e Material and effect property varies usually by object

The geometry world
In practice

The reason of the logical separation:

It is not appropriate to more a complex model as a large set
of vertices

Better is to divide the model into several logical objects
Applying logical separation is also preferred in 3D Modelling
softwares
Why?

This way it is easier to handle parts that belong together, but
still represented as separate units

E.g.: modifying, replacing the parts

43

The geometry world
In practice

Example: A model of a car

It is advisable to design the wheels of a car as a
separate object
Because it can move, rotate, etc

The logical units can have names and other
properties
During the implementation it is better to refer to an object by its name

The geometry world

45

The geometry wor

WA

4 \A

NYASE
;,//’-vwi\
"‘» SANCRY \\
QAN
R
17 A,

&= -
SRR ?
RS

g\

The rendering [game loop...

Rendering Loop / Game loop

Loop: Graphics are repeatedly drawn on screen and
interactive (frames)

e This is real-time rendering
e This is the type of rendering used in games

e This style of rendering contrasts offline rendering

o where single images or frames are calculated over a
long period of time

e Rendering loop should reach 50-60 Frames per

Secundum (FPS)

Rendering Loop / Game loop

Rendering Loop [Game loop

Initialization:
e Choosing an OpenGL profile and configuring capabilities for a

rendering context
e Creating a window and an OpenGL Context
e Loading resources needed by program

Process Input:
e Listen for mouse and keyboard events
e Update user's view (often called a camera)

50

Rendering Loop [Game loop

Update (Simulate Game World):
e Calculate geometry

e Rearrange data
e Perform computations

Render:
e Draw scene geometry from a particular view

Shut Down:
e Save persistent data
e Clean up resources on graphics card

51

GAME OVER

