
Programming of Graphics

The graphics pipeline

Peter Mileff PhD

University of Miskolc
Department of Information Technology

What is the Graphics Pipeline?
⦿ A conceptual model that describes what steps a

graphics system needs to perform to render a 3D
scene to a 2D screen

⦿ The steps highly depend on the used software and
hardware and the desired display characteristics
● Therefore there is no universal graphics pipeline suitable for

all cases

⦿ The model of the graphics pipeline is usually used in
real-time rendering.
● Often, most of the pipeline steps are implemented in

hardware

2

What is the Graphics Pipeline?

⦿ The implementation of the pipeline can be:

● 1. Pure software based: only using the CPU
○ Early era

● 2. Hardware based using the GPU
○ Today era

● 3. As a combination of the two
○ Transitional period (today's era)

3

What is the Graphics Pipeline?

4

⦿ A graphics pipeline can be divided into three
main parts:

● Application
● Geometry
● Rasterization

Application

⦿ The application step is executed by the software on
the main processor (CPU),
● it cannot be divided into individual steps, which are

executed in a pipelined manner

⦿ However, it is possible to parallelize it on multi-core
processors or multi-processor systems.

5

Geometry

⦿ The geometry step is responsible for the majority of
the operations with polygons and their vertices

⦿ It can be divided into the five tasks
● It depends on the particular implementation of how these

tasks are organized as actual parallel pipeline steps.

6

Model and Camera
transformation

⦿ This stage transforms models and the view into the
target place

⦿ The World Coordinate System:
● the coordinate system in which the virtual world is created
● Usually a rectangular Cartesian coordinate system in

which all axes are equally scaled

7

Lighting
⦿ A scene often contains light sources placed at

different positions
● Lighting makes virtual world more realistic

⦿ Calculating realistic lighting is very performance
intensive

⦿ Two main types of lighting:
● Local illumination: light bounces once on the way from

light source to camera
○ for real time rendering. Fast, bust less realistic

● Global illumination: simulates real world lighting
○ It is a system that models how light is bounced off of surfaces

onto other surfaces (indirect light)
○ Mainly used in case of non real time rendering

8

Global vs Local illumination

9

Projection
⦿ Graphical projection is a protocol by which an

image of a three-dimensional object is projected
onto a planar surface

⦿ Two types of projection:
● Parallel: the lines of sight from the object to the

projection plane are parallel to each other.
○ Lines that are parallel in three-dimensional space remain

parallel in the two-dimensional projected image.
● Perspective: object positions are transformed to the

view plane along lines that converge to a point called
projection reference point

10

Projection

11

Clipping
⦿ Only the primitives which are within the visual

volume need to actually be rastered

⦿ This visual volume is defined as the inside of a
frustum, a shape in the form of a pyramid with a cut
off top

⦿ Primitives which are completely outside the visual
volume are discarded;
● This is called frustum culling

12

Clipping

13

Window-Viewport
transformation

⦿ In order to output the image to any target area
(viewport) of the screen, Window-Viewport
transformation must be applied

⦿ This is a shift, followed by scaling
⦿ The resulting coordinates are the device coordinates of

the output device
● The viewport contains 6 values:

○ height and width of the window in pixels,
○ the upper left corner of the window in window

coordinates (usually 0, 0)
○ and the minimum and maximum values for Z (usually 0

and 1)

14

Window-Viewport
transformation

15

Rasterization

⦿ This is the task of taking an image described in a
vector graphics format (shapes) and converting it
into a raster image (pixels or dots)
● the grid points are also called fragments
● discrete fragments are created from continuous surfaces
● Each fragment corresponds to one pixel in the frame buffer

and this corresponds to one pixel of the screen

⦿ Fragments can be colored and illuminated.
⦿ Furthermore, it is necessary to determine the visible, closer to

the observer fragment, in the case of overlapping polygons
● Visibility algorithms

16

Rasterization

⦿ Rasterization is usually performed by polygon
(usually triangle) filling:

17

Modern GPU pipeline

18

⦿ Modern GPUs use programmable pipeline

⦿ Why programming is needed?
● We can customize the pipeline stages via vertex and

fragment shaders

Modern GPU pipeline...

19

Modern GPU pipeline

20

⦿ Programmable pipeline allows developers to create
customized programs
● Using Shading languages

⦿ With shaders we can extend the graphics card’s
pipeline functionalities

○ We are able to achieve several “non API supported”
features
⦿ E.g.: Own lighting and shadowing algorithms

⦿ The shading language code that is intended for execution
is called shader

⦿ Because two programmable processor is defined we have:
● Vertex shader (vertex program)
● Fragment shader (fragment program)

The vertex processor

⦿ The vertex processor is a configurable hw unit
⦿ It operates on incoming vertex values and their

associated data
⦿ The vertex processor usually performs traditional

graphics operations such as:

⦿ Vertex transformation
⦿ Normal transformation and normalization
⦿ Texture coordinate generation
⦿ Texture coordinate transformation
⦿ Lighting
⦿ Color material

21

The vertex processor
⦿ Because of its general-purpose programmability, this

processor can also be used to perform a variety of
other computations

⦿ The vertex processor is responsible for running the
vertex shaders

⦿ The input for a vertex shader is the vertex data:
⦿ its position, color, normals, etc, depending on what the

application sends
⦿ There are called: vertex attributes

⦿ Vertex programs are applied to each vertex of a model
⦿ But vertex program cannot create new vertices!

22

The fragment processor

⦿ The fragment processor is a programmable unit
⦿ It is responsible for running the fragment shaders
⦿ How it works?

⦿ Fragment programs operate on each generated fragment
(pixel)

⦿ The task of a shader is to take the fragment attributes and
uniform parameters as input

⦿ and compute a final color for that fragment which will be
written to the render target (e.g. screen)

23

The fragment processor
⦿ The fragment attributes are the interpolated attributes

of the associated vertices
⦿ It usually performs traditional graphics operations such

as the following:

⦿ Calculation of accurate lighting models
⦿ Post-processing effects like glow and depth-of-field
⦿ Texture access and application
⦿ Fog
⦿ Color sum
⦿ Alpha blending

⦿ A wide variety of other computations can be performed
on this processor 24

Shading language...

25

Shader language
⦿ Shading languages are usually used to program the

programmable GPU rendering pipeline
⦿ Makes possible to the programmer to replace the fixed

function pipeline
⦿ Properties of these languages:

⦿ Initially there were no high-level languages,
⦿ only in the Assembly language it was possible to write a

shader program
⦿ Today's languages are the result of many years of

development
⦿ Three main direction of the evolution:

⦿ 1. General programming languages
⦿ 2. Graphical interface languages
⦿ 3. The shader languages

26

Shader language

⦿ The common language of the programs is C language
⦿ In terms of the syntax and semantics
⦿ today's major shading languages are based on this

⦿ Known languages:

⦿ CG (C for Graphics) – NVIDIA
⦿ One of the first GPU shading languages

⦿ GLSL (GLslang) – OpenGL
⦿ HLSL (High Level Shading Language) – MICROSOFT

⦿ XBOX – XNA – DirectX

27

Evolution of shading languages

28

OpenGL Assembly Language
 (Sample (old) fragment shader)

!!ARBfp1.0
TEMP color;
MUL color, fragment.texcoord[0].y, 2.0;
ADD color, 1.0, -color;
ABS color, color;
ADD result.color, 1.0, -color;
MOV result.color.a, 1.0;
END

29

GLSL Language
 (Simple color fragment shader)

#version 330
out vec4 outputFragment;

void main() {
 outputFragment = vec4(0.4,1,1,1);
}

30

GLSL overview (short)...

31

GLSL language

⦿ OpenGL Shading Language (often glslang)
⦿ Developed by the OpenGL ARB group as part of the

OpenGL 1.4 extension
⦿ From the OpenGL 2.0 it was integrated into the

standard

⦿ Main Characteristics:
● High level language,
● Based on C language syntax
● Makes possible to program the pipeline directly

32

GLSL language

⦿ Main Characteristics:
● Platform independent. Supported by GNU/Linux, Unix, BSD,

Windows and Mac OS X
● Shaders written in GLSL can be used on any graphics card that

supports GLSL
● Each graphics card driver includes the GLSL compiler,

○ Card manufacturers can optimize the code generated by the compiler
according to the card architecture

⦿ The shader programs are primarily based on the
data-parallelism,
● the way the parallels depend on the implementation of the

driver
○ Different optimizations

● communication between parallel running programs is not
supported

33

GLSL language

⦿ The programs are represented as a text form

⦿ We write vertex and pixel shaders during coding

⦿ They can be served into different files or into the main
application code as a string

⦿ But they are served into files:

● E.g.: example.vert, example.frag

● File extension is not relevant
○ The compiler decides based on the content

34

GLSL language

Using the shaders:

⦿ Loading the shader files must be done manually by
the programmer
● OpenGL does not provide a direct support for this

⦿ What does it really mean?

● We only need to load the shaders into memory manually
● From here, OpenGL gives the option of creating a real shader

object

35

The geometry world...

36

The geometry world

⦿ Computer graphics is built from geometry
● What we want to render to the screen
● These are so-called geometric primitives

○ They can be used to generate the desired geometry
⦿ Today’s most common approach to represent a model

is polygonal modeling
● It is an approach for modeling objects by representing or

approximating their surfaces using polygons
○ A geometry can be defined by points, lines, triangles, quads, triangle

strips, etc.

● Example:
○ A square can be composed out of 2 triangles
○ A triangle can be composed from 3 points

37

The geometry world

⦿ A 3D point is represented as a vertex
● Two vertices defines a line and become an edge
● Three vertices with three edges define a triangle

⦿ Rendering the geometry primitives:

● We need to define the vertices
● These points will then reside in system memory
● The GPU will need access to these points

○ The application will use the 3D API to transfer the defined
vertices from system memory into the GPU memory.

○ Also note that the order of the points can not be random

38

Vertex

39

⦿ A vertex can have several attributes, like:
● Color, texture coordinate, normal, etc

The geometry world

⦿ In games, complex polygon models are used
● They are built from (a lot of) triangles

○ A modern game can contain 1M+ triangles

⦿ Why triangle?
● is the simplest polygon in Euclidean space
● Graphics card can handle them effectively

40

The geometry world

41

The geometry world
 in practice

⦿ We can call the highest level geometry structure
as a model
● Contains everything

⦿ In practice, models should be logically subdivided
into objects
● It is usually called: mesh

⦿ Main characteristics of an object:
● They are individually renderable
● Material and effect property varies usually by object

42

The geometry world
 in practice

⦿ The reason of the logical separation:
● It is not appropriate to more a complex model as a large set

of vertices
○ Better is to divide the model into several logical objects

● Applying logical separation is also preferred in 3D Modelling
softwares

● Why?
● This way it is easier to handle parts that belong together, but

still represented as separate units
○ E.g.: modifying, replacing the parts

43

The geometry world
 in practice

Example: A model of a car
⦿ It is advisable to design the wheels of a car as a

separate object
● Because it can move, rotate, etc

⦿ The logical units can have names and other
properties
● During the implementation it is better to refer to an object by its name

44

The geometry world

45

The geometry world

46

The rendering / game loop...

47

Rendering Loop / Game loop

48

● Loop: Graphics are repeatedly drawn on screen and
interactive (frames)

● This is real-time rendering
● This is the type of rendering used in games
● This style of rendering contrasts offline rendering

○ where single images or frames are calculated over a
long period of time

● Rendering loop should reach 50-60 Frames per
Secundum (FPS)

Rendering Loop / Game loop

49

Rendering Loop / Game loop

50

Initialization:
● Choosing an OpenGL profile and configuring capabilities for a

rendering context
● Creating a window and an OpenGL Context
● Loading resources needed by program

Process Input:
● Listen for mouse and keyboard events
● Update user's view (often called a camera)

Rendering Loop / Game loop

51

Update (Simulate Game World):
● Calculate geometry
● Rearrange data
● Perform computations

Render:
● Draw scene geometry from a particular view

Shut Down:
● Save persistent data
● Clean up resources on graphics card

52

