
Programming of Graphics

Introduction to 2D graphics

Peter Mileff PhD

University of Miskolc
Department of Information Technology

The coordinate system...

2

The OpenGL coordinate system
in 3D

3

● When vertices have been processed by the pipeline, their coordinates will
have been transformed into device coordinates.

● Device X and Y coordinates are mapped to the screen between -1 and 1
● Any coordinates that fall outside this range will be discarded/clipped and

won't be visible on your screen

The OpenGL coordinate system
in 2D

4

● In 2D, the coordinate system is usually “easier” to understand
● Mostly used mapping:

○ Screen top-left (or top-bottom) is the origo
○ The other corner of the screen matches the window dimensions

The global picture

5

Drawing a quad to the
screen in 2D...

6

Drawing a quad

7

● To start drawing something we have to first give OpenGL
some input vertex data
○ Data may come from files
○ Or data can be constructed by the program

Vertices = {

 0.0, 0.0, 0.0,
 0.0, 32, 0.0,
 32, 0.0, 0.0,

 32, 0.0, 0.0,
 0.0, 32, 0.0,
 32, 32, 0.0,

}

Triangle 1

Triangle 2

The OpenGL coordinate system
in 3D

8

● The order of vertices is very important!
● This order can be:

○ Clockwise
○ Counter-clockwise

The OpenGL coordinate system
in 3D

9

● Winding order is used to
○ calculate the triangle normal vector,
○ decide that the triangle is being seen from the "front" or the

"back" side
■ Primary usage is to culling out the back faced geometry

Prepare the data

10

● Prepare the OpenGL to draw:
○ The vertex data should transfer into the GPU memory
○ A memory buffer should be created on the GPU

● Modern OpenGL solutions are:
○ Vertex Buffer Object (VBO)
○ Vertex Array Object (VAO)

● The advantage of using those buffer objects:
○ we can send large data all at once to the graphics card without

having to send data a vertex a time
○ Once the data is in the graphics card's memory the vertex

shader has access to the vertices
■ making it extremely fast

Prepare the data

11

● Preparing the data has the following steps:

○ 1. Create a buffer: this buffer has a unique

int vboID = glGenBuffers();

○ 2. Bind the buffer: after we can use it

glBindBuffer(GL_ARRAY_BUFFER, vboID);

OpenGL has many types of buffer objects. The buffer type of a vertex
buffer object is GL_ARRAY_BUFFER

Prepare the data

12

○ 3. Transfer data to th GPU memory

In java:
glBufferData(GL_ARRAY_BUFFER, verticesBuffer,

GL_STATIC_DRAW);
In C/C++:
glBufferData(GL_ARRAY_BUFFER, sizeof(verticesBuffer),

verticesBuffer, GL_STATIC_DRAW);

GL_STATIC_DRAW: the data will most likely not change at all or very
rarely (e.g. the world)
GL_DYNAMIC_DRAW: The vertex data will be created once, changed
from time to time, but drawn many times more than that
GL_STREAM_DRAW: the data will change every time it is drawn

This usage value will determine in what kind of memory the data is stored on your graphics
card for the highest efficiency

Shaders

13

● Because of the modern pipeline, we should write
shaders:

○ Vertex and fragment shaders

#version 330 core
layout (location = 0) in vec3 aPos;

void main()
{
 gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);
}

Position vertex
attribute

Shaders

14

● The fragment shader:

#version 330 core
out vec4 FragColor;

void main()
{
 FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);
}

The color of the pixel

R G B A

Compiling the shaders

15

● In order to use the shaders, a shader program
should be created:

○ Steps:

■ Compile each shaders

■ Link shaders into a shader program

Compiling the shaders

16

● We compile shaders at run-time from its source
code
○ The first thing we need to do is create a shader object
○ We store the vertex shader as an (unsigned) int and create

the shader with glCreateShader:

int vertexShaderID = glCreateShader(GL_VERTEX_SHADER);

○ We provide the type of shader we want to create as
an argument.
■ Since we're creating a vertex shader we pass in

GL_VERTEX_SHADER

Compiling the shaders

17

● Next we attach the shader source code to the shader
object and compile the shader:

In C/C++:
glShaderSource(vertexShaderID, 1, &vertexShaderSource, NULL);
glCompileShader(vertexShaderID);

In LWJGL:
glShaderSource(vertexShaderID, vertexShaderSource);
glCompileShader(vertexShaderID);

Compiling the shaders

18

● Check shader compilation status:
In C/C++:

int success;
char infoLog[512];
glGetShaderiv(vertexShaderID, GL_COMPILE_STATUS, &success);
if(!success)
{
 glGetShaderInfoLog(vertexShaderID, 512, NULL, infoLog);
 std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" <<
infoLog << std::endl;
}

In LWJGL:
if (glGetShaderi(vertexShaderID, GL_COMPILE_STATUS) == 0) {

throw new Exception("Error compiling Shader code: " +
glGetShaderInfoLog(vertexShaderID, 1024));

}

Creating the shader program

19

● What is it?
○ A shader program object is the final linked version of

multiple shaders combined

● To use the recently compiled shaders we have to link them
to a shader program object

● How to use it?
○ When rendering objects we activate this shader

program
■ Everything we draw after it will use this program

Creating the shader program

20

● Creating a program is easy:

unsigned int shaderProgram;
shaderProgram = glCreateProgram();

● Attach the previously compiled shaders to the program
object:

glAttachShader(shaderProgram, vertexShader);
glAttachShader(shaderProgram, fragmentShader);

● Link the shaders:
glLinkProgram(shaderProgram);

Creating the shader program

21

● Get the link status:
In C/C++:

glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);

if(!success) {
 glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);
 ...
}

In LWJGL:

if (glGetProgrami(programId, GL_LINK_STATUS) == 0) {
throw new Exception("Error linking Shader code: " + glGetProgramInfoLog(programId,
1024));

 }
}

Using the shader...

22

Applying the shader program

23

● The vertex shader allows us to specify any input we want
in the form of vertex attributes

● After shader program and VBO is created:
○ we have to manually specify what part of our input data goes

to which vertex attribute in the vertex shader.

In LWJGL:

glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);

If you remember our vertex shader:

Attribute 0 3 coordinates

layout (location = 0) in vec3 aPos;

Applying the shader program

24

● Using the shader object to draw our quad is very simple:

glUseProgram(shaderProgram);

glBindVertexBuffer(vboID);

glDrawArrays(GL_TRIANGLES, 0, 6);

glUseProgram(0);

We draw 6
vertices

Deactivate shader

Basics of Texture mapping...

25

Texture Mapping

26

● Texture mapping means applying any type of picture
on one or more faces (triangles) of a 3D model
● For example, if we wanted to convert a basic cube into a wooden

box, we simply paint wooden panels onto the individual polygons

Picture = Texture

● A texture can be anything
● It is often a pattern such as bricks, foliage, barren land,

etc
● Texture adds realism to the scene.
● Today modern computer games use a lot of high

quality textures
○ Needs a lot of GPU memory!

Uncharted 4 Game

27

Rage Game Megatexture technology

28

Texture Mapping

29

● OpenGL supports also RGB and RGBA textures
● But is recommended to create texture images as PNG or

TGA files
● PNG / TGA image files have the ability to store alpha

values (transparency settings),
● which is an invaluable feature when creating advanced

models and objects.
● ALWAYS ensure that the dimensions of the texture

images are in power of two

● e.g. 32x32, 64x64, 128x128, 256x256, 512x512, etc.
● GPU “likes” these formats only

How texture mapping
works?

30

● Once we created a texture, the painting of the
texture onto polygons is a very straight forward
process
● We simply map the coordinates of the texture to the vertices

of the polygon,
● and OpenGL will automatically map the texture to the

polygon

How texture mapping
works?

31

● A polygon/triangle is usually scaled, rotated and
translated
● During the projection it can land on the screen in

numerous ways
● and look very different depending on its orientation to the

camera.
● What is needed for the GPU?

● A texture need to follow the movement of the vertices of
the triangle

● To do this the developer supplies a set of coordinates
known as “texture coordinates” to each vertex

● As the GPU rasterizes the triangle it interpolates the
texture coordinates across the triangle face

Texture coordinates

32

● The question is how can we specify the texture
coordinates of a vertex?
● A 2D texture has a width and height that can be any

number
● An universal method needed, which is independent of

the texture width and height parameters
○ Because a texture of a model can be changed during the

visualisation
● Solution

● texture coordinates are specified in “texture space” which is simply
the normalized range [0,1].

● This means that the texture coordinate is usually a fraction
● By multiplying that fraction with the corresponding width/height of a

texture we get the coordinate of the texel in the texture.

Texture coordinates

33

● Example:
● The texture coordinate is [0.5,0.1]
● It has a width of 320 and a height of 200
● The texel location will be (160,20):

0.5 * 320 = 160 and 0.1 * 200 = 20

● The usual convention is to use U and V as the axis of the
texture space
● U corresponds to X in the 2D cartesian coordinate system

and V corresponds to Y
● OpenGL treats the values of the UV axes as going from

left to right on the U axis and down to up on the V axis

Texture coordinates

34

Texture coordinates

35

Texture coordinates

36

Texture coordinates

37

● The texture can be of different types (1D, 2D, etc) with
different dimensions
● the underlying data type can have multiple formats (RGB, RGBA,

etc).
● OpenGL provides a way to specify the starting point of the

source data in memory
● and all the above attributes and load the data into the GPU.

● There are also multiple parameters that you can control
● Such as the filter type

● A texture object is associated with a handle
● After creating the handle and loading the texture we can

simply switch textures on the fly
○ by binding different handles into the OpenGL state.

Texturing in OpenGL

38

● Define texture coordinate
glTexCoord2f(u, v)

● Enable / disable texturing
glEnable(GL_TEXTURE_2D);
glDisable(GL_TEXTURE_2D);

● Using a texture
glBindTexture (GL_TEXTURE_2D, texture_number);

● Specifying a texture (load into the GPU memory):

void glTexImage2D(
 GLenum target, - e.g: GL_TEXTURE_2D
 GLint level, - Specifies the level-of-detail number
 GLint internalFormat, - Specifies the number of color components
 GLsizei width, - width
 GLsizei height, - height
 GLint border, - This value must be 0
 GLenum format, - the format of the pixel data. E.g.: GL_RGBA
 GLenum type, - the data type of the pixel data. E.g: GL_UNSIGNED_BYTE
 const GLvoid * data); - Specifies a pointer to the image data in memory.

Texture coordinates

39

● An example of texturing a quad (texture is already loaded)

glBindTexture (GL_TEXTURE_2D, 13);
glBegin (GL_QUADS);
glTexCoord2f (0.0, 0.0);
glVertex3f (0.0, 0.0, 0.0);
glTexCoord2f (1.0, 0.0);
glVertex3f (10.0, 0.0, 0.0);
glTexCoord2f (1.0, 1.0);
glVertex3f (10.0, 10.0, 0.0);
glTexCoord2f (0.0, 1.0);
glVertex3f (0.0, 10.0, 0.0);
glEnd ();

Texturing in Modern OpenGL

40

● We need to define the texture coordinates in a VBO
Example (quad):

textCoords = {
0.0f, 1.0f, 1.0f,
1.0f, 1.0f,0.0f,
1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f };

Generate VBO for texture coordinates:

vboId = glGenBuffers();
glBindBuffer(GL_ARRAY_BUFFER, vboId);
glBufferData(GL_ARRAY_BUFFER, textCoords, GL_STATIC_DRAW);
glVertexAttribPointer(1, 2, GL_FLOAT, false, 0, 0);

UV attributes location is shader

Texturing in Modern OpenGL

41

The vertex shader:
layout (location=0) in vec3 position;
layout (location=1) in vec2 texCoord;

out vec2 outTexCoord;

uniform mat4 worldMatrix;
uniform mat4 projectionMatrix;

void main()
{
 gl_Position = projectionMatrix * worldMatrix * vec4(position, 1.0);
 outTexCoord = texCoord;
}

Texturing in Modern OpenGL

42

The fragment shader:

in vec2 outTexCoord;
out vec4 fragColor;

uniform sampler2D texture_sampler;

void main()
{
 fragColor = texture(texture_sampler, outTexCoord);
}

The final color of the pixel

Buffers in the OpenGL...

43

OpenGL Buffers

44

● An OpenGL system can manipulate the following
Buffers:

● Color buffer: this is the buffer to which we usually draw.
Contains the colors in RGBA or indexed mode.

OpenGL Buffers

45

● Depth buffer (z-buffer):
stores a depth value for each
pixel.
○ Depth is usually measured

in terms of distance to the
eye, so pixels with larger
depth-buffer values are
overwritten by pixels with
smaller values.

OpenGL Buffers

46

● Stencil buffer: One use for the stencil buffer is to restrict
drawing to certain portions of the screen.
○ Other usage: real time shadows and reflections

OpenGL Buffers

47

● Accumulation buffer: The buffer holds RGBA color data
just like the color buffers do. It's typically used for accumulating
a series of images into a final, composite image

●
○ Typical usage:

■ scene antialiasing

■ Blending

■ Motion blur

OpenGL Buffers

48

● Motion Blur Effect

OpenGL Buffers

49

● Scene antialiasing

50

