Peter Mileff PhD

Programming of Graphics

Introduction to 2D graphics

University of Miskolc
Department of Information Technology

MOVING OBJECTS...

Moving objects in 2D

Better name for "moving texture": Object
More than just a texture

Has several features:

o E.g. visible or not, movable, direction of rotation, etc.
The name is used preferentially in the game industry
o Or some other equivalent

Movement of an Obiject:

the shape (in this case an image) changes its position as a result
of an event. E.g.: mouse movement, pressing a key

Position change has a direction vector and velocity that determine
the nature of the movement

Moving objects in 2D

The theory of movement:

Object’s new position(x,y) = current pos (x,y) + speed(v)
* direction(x,y)

Continuous movement:
In each frame, we perform the above operation for each object
Thereby movement will continuous
If the direction vector is a zero vector, the object stops.

Moving objects in 2D

The program main loop:
While (lexit) {
HandleEvents();
MoveObjects()
DrawObjects();

}

The logic of the MoveObjects() function:
for (i =0; i < numOfObijects; i++) {

Vector2 oldpos = obij[i].pos;

obj[i].pos = oldpos + speed * direction;

Moving objects in 2D

Advantage:
The solution is very simple

Drawbacks:
The solution is not efficient

The problem: it occurs when we work with computers at very
different speeds.

1) If computer is slow, movement speed will be slow,
2) If computer is fast, movement can be too fast

In case of early games it was typically observed phenomenon
o E.g.in DOS age

ELAPSED TIME BASED
MOVEMENT...

(TIME BASED MOVEMENT)

Time Based Movement

Modified version(s) of the classic solution

Ensures the same speed of moving objects
also on different speed machines

Background of the theory:

Each graphic engine has a main loop (game loop) inside

This cycle runs faster on a fast computer and slower on a slow
machine

e The Objective: measure the time between two main cycles

o we get a factor that can be used to standardize speed between
machines

o with a higher resolution timer (at least milliseconds)

Time Based Movement
(Example)

while(game_is_running) {
prev_frame_tick = curr_frame_tick;
curr_frame_tick = GetTickCount();
elapsed_time = curr_frame_tick — prev_frame_tick;
update(elapsed_time);
render();

GetTickCount() function:

returns milliseconds since the system was booted

Time Based Movement
characteristics

Your query is always OS dependent

|deally, a double precision floating-point number between
0 and 1
E.g.: 0.003568

If the value is zero, then the timer resolution is not
enough high

Cannot measure time between two frames
Zero value cannot be used!

Reason: the factor will be included as a multiplication factor at the
movements

obj[i].pos = oldpos + elapsed_time*(speed*direction);

10

Time Based Movement

The multiplication factor affects the additive member of
the position
On a fast machine, this time is short:

so the additive tag will be smaller

Movement will be more continuous

On slower machines this value is higher:

movement is less continuous
o it may not be noticeable to the human eye

but the movement distance will be the same as the version running
on the fast computer!

Time base movement

Extension 1

1. Maximizing the elapsed time:

Problem: certain background processes in the operating system
maybe use more resources
o the elapsed time increases, resulting a larger “jump” in objects

movement
A typical example is debugging: we stop the software for
debugging,
o restarting the software, the elapsed time will be very high if not
maximized

The objective: maximizing elapsed time
for example to 1.0 value

12

Time base movement

Extension 2

2. “Smooting” the elapsed time:

The problem: the elapsed time value may fluctuate between two
graphically identical loop

Usually does not cause any problem in the software
However, it is advisable to compensate!
For example, calculate an average for the past and new loop:
elapsed_time += curr_frame _tick — prev_frame _tick;
elapsed_time *=0.5;

Although the supplements are effective, they are not perfect.

In some cases, it is also advisable to set a minimum or maximum
FPS.

13

Animationin 2D...

14

Objektumok animacioja

Animation plays an important role in computer graphics
This will make the software really "live"
E.g.: animation of a menu, window ot jumping shape

The classic animation: to alternate a set of textures in a
given sequence at a certain speed

Texture set: is an array of textures that contains each phase
of the animation

In practice, an object consisting of textures is also called
Sprite

The more the phase, the more continuous the animation of the
object will be when displayed

15

Example implementation

class CSprite {
string mName I/ Sprite name
vector<CSpriteFrame> mFrames; // Frames vector
int MNumFrames; /I Number of frames
int mActualFrame; /l Actual frame
Vector2 mPosition; /[position of the sprite
Vector2 mScale; /[Sprite scale value
int mLastUpdate; // The last update time
int mFps; // The number of frames per second
float mZRotation; /[l Z axis rotation value
public:

%

Example implementation

CSprite class: a compact unit, which stores an animation
sequence

It’s components:

e The name of the sprite: important, because it is much
easier to refer with a name
E.g.: getting the “jump” animation
e CSpriteFrame class: stores a single frame
The SpriteFrame vector represents the animation
e Position, size, rotation
e Number of phases, current phase id

e Animation speed

17

Example implementation

class CSpriteFrame {

CTexture2D mFrame; /I Frame texture
CString mName; /[Name of the frame
vector<CBoundingBox2D> mBBoxOriginal; // Original Bounding boxes

vector<CBoundingBox2D> mBBoxTransformed; // Transformed Bounding boxes

public:

/l] Default Constructor
CSpriteFrame();

18

Example implementation

CSpriteFrame class:
Storing the images: CTexture2D

Name of the frame: sometimes can be useful
(¢) Referring by name is much easier!

Bounding box: for collision detection
(®) original: it is important to keep it to speed up your
calculations
(® transformed: the rotated, scaled and translated box
of the original version

19

Example implementation

class CTexture2D {

CVector2 mPosition;
CVector2 mRotation;
CVector2 mScale;

bool bVisible;
CVAOobject mTextureVAO;
sColor mColor;

string mFilename;

string mName;

float mWidth;

float mHeight;

unsigned int mTexturelD;
int mID;

// Storage data in VAO

/[Color information

/[Holds the filename of the texture
/[Name

/[Stores the width of the texture
// Stores the height of the texture
// Holds the texture ID

// Global ID of the texture

Example implementation

CTexture2D class:
Position, rotation, translation, size
Filename
Name of the texture

Color information

IDs:
(¢) OpenGL ID: unique texture ID from the OpenGL
(o) Global ID in the engine

Store vertex and texture coordinate in VAO

Al

Store animation on the
filesystem

There are several ways to store animation images in the
file system

1) Spritesheet solution

(® The most common solution:
(® we store each frame next to each other in a larger image

2) Separate image for each frame
maybe processing is easier

22

Sample Spritesheet

23

Aladdm game (SNES)

Ves
Q@@Q%@Q@ TP %agw*@%@%@%

P 5 i %‘ﬁw%
@w{aﬁ’ 26 m%%’%@ﬁ% D TR R

Bl ol s BE
% 5 %//f@x@%éx%@%“@%@%(%

24

Classic spritesheet

The animations are stored side by side

() Early spritesheet solution:
Developer choose a uniform background color
(® so they know what not to display - colorkey

(® Now we use alpha channel for this

(® The size of the phases may vary:

(® during loading, the loader must be able to break it down by
some logic,
(®) then organize these sections into a separate texture
(® however, we need to know the dimensions of the frames

(® If the frames were in a separate file, that wouldn't be a problem

(® There is a need for some additional descriptive file!

Sprite descriptor file

(® What does a description file provide?
(®) Defines the frames exact pixel position

(®) The exact size of the bounding boxes
(® a frame can have multiple boxes

(® Maybe the name of the frame
() sometimes special frames need to be distinguished

(® it is possible to store any other data that is considered
important

(® What format?

() What format?

(@ It is advisable to choose a known storage format such as JSON
or XML

A serious game needs some kind of descriptive!

26

Sample sprite descriptor file

<animation name="My sprite anim">
<frames numofframes="2">
<frame name="Robot Anim 1" file="robotl.tga">
<aabb minx="0" miny="0" maxx="64" maxy="64" />
</frame>
<frame name="Robot Anim 2" file="robot2.tga">
<aabb minx="0" miny="0" maxx="70" maxy="60" />
</frame>
</frames>

</animation>

Sprite based animation

These kind of two-dimensional drawings are referred to
collectively as "Pixel Art"

Reason: Mostly drawn pixel by pixel

it's a difficult, time-consuming process

Today, most games made for mobile devices fall into this
category

Sprite based animation

The technique is also capable of producing very high

quality so-called cinematic games
(® Key features:
(®) very smooth animation
() many, even hundreds of frames
() Animations can also be digitized:
(¢ Name: Rotoscoping

Famous Games:

Prince of Persia (1989), Flashback (1992), Aladdin (1993), Lion King
(1994), Heart of Darknes (1998)

Heart of Darkness (1998)

' -r_..a.-——.-_-—-—_——_—'

Professional work:

(® lots of cinematic elements
(® lots of frames, smooth animation

30

Drawing the animations...

O

O,
O

Drawing the animations

The realization of the animation is to draw the various
frames one after the other

The speed of animation should be taken into account

We cannot draw the next frame in each main loop
e the animation will be too fast

What we need:
to set the animation speed and consider it in the drawing process

To achieve this, elapsed time can be used again!

Ky

Drawing the animations

[** Update frames */
void Update() {
long ticks = GetOSTicks();

// Decide to jump to next frame or not
if (1000.0f/mFps < (ticks - mLastUpdate)){
mLastUpdate = ticks;
if (++mActualFrame > mNumFrames){
mActualFrame = 0;

KK}

Drawing the animations

Example explanation:

mFps is the speed of the frame change

The solution loqic is simple:
The value of 1000.0f / mFps gives how many times you need to

make the frame change in 1 second
When the elapsed time exceeds this value, we can switch to the

next phase.

34

The GAMEOBJECT class...

GameObject class

The Sprite class alone is not enough!

It can be used:

For example as a basis for creating GUI elements (eg Animated
buttons, etc.) or for actual game objects

Sprite is not complete in itself:

In a two-dimensional game, an object has usually more than one
animation

For different object state
GameObject: an array of Sprites

where they can be changed depending on the state of the object
(walking, squatting, etc.)

We can call it GameObject2D

36

GameObject class

The order the objects are drawn is important!
In some situations, objects may overlap each other

For example, there are objects (e.g.: Cloud) that are drawn on
another objects

The order is always based on the program logic
e [evel design question

Implementation: requires the introduction of a numeric
value

the order will be represented by this value
E.g.: zvalue

37

GameObject class

An implementation logic can be:

The lower the z value of the object, the closer it is to the
viewer,

this means that it will be drawn later
The implementation requires sorting objects by their
z-value

this ensures the proper order of the drawing

38

Sample implementation

class CGameObject2D {

Vector2 m_vPosition; // Position of the object

Vector2 m_vNewPosition; // Position of the object

vector<CSprite> m_Animations; // Animation

Vector2 m_ vDirection; // Direction of the movement

float m_fSpeed; /Il Speed of the object

bool m_DbVisible; // Visible or not

bool m_bCollidable; // Collidable or not

int m_ uiCurrentAnim; /I Current Animation Frame

int m_uiNumberOfFrames; // Number of Animations

int ID; //'ID of the Object

int m_iZindex; // z index of the object
public:

%

GAME OVER

