
Programming of Graphics

Introduction to 2D graphics

Peter Mileff PhD

University of Miskolc
Department of Information Technology

2

MOVING OBJECTS…

Moving objects in 2D

⦿ Better name for "moving texture": Object
● More than just a texture
● Has several features:

○ E.g. visible or not, movable, direction of rotation, etc.
● The name is used preferentially in the game industry

○ Or some other equivalent

⦿ Movement of an Object:
● the shape (in this case an image) changes its position as a result

of an event. E.g.: mouse movement, pressing a key
● Position change has a direction vector and velocity that determine

the nature of the movement

3

Moving objects in 2D

⦿ The theory of movement:

Object’s new position(x,y) = current pos (x,y) + speed(v)
* direction(x,y)

⦿ Continuous movement:
● In each frame, we perform the above operation for each object
● Thereby movement will continuous
● If the direction vector is a zero vector, the object stops.

4

Moving objects in 2D

The program main loop:
While (!exit) {
 HandleEvents();
 MoveObjects()
 DrawObjects();
}

The logic of the MoveObjects() function:
for (i =0; i < numOfObjects; i++) {

 Vector2 oldpos = obj[i].pos;
 obj[i].pos = oldpos + speed * direction;

 }

5

Moving objects in 2D

⦿ Advantage:
● The solution is very simple

⦿ Drawbacks:
● The solution is not efficient

⦿ The problem: it occurs when we work with computers at very
different speeds.
● 1) If computer is slow, movement speed will be slow,
● 2) If computer is fast, movement can be too fast
● In case of early games it was typically observed phenomenon

○ E.g. in DOS age

6

7

ELAPSED TIME BASED
MOVEMENT…
(TIME BASED MOVEMENT)

Time Based Movement

⦿ Modified version(s) of the classic solution
⦿ Ensures the same speed of moving objects

● also on different speed machines
⦿ Background of the theory:

● Each graphic engine has a main loop (game loop) inside
● This cycle runs faster on a fast computer and slower on a slow

machine
● The Objective: measure the time between two main cycles

○ we get a factor that can be used to standardize speed between
machines

○ with a higher resolution timer (at least milliseconds)

8

Time Based Movement
(Example)

while(game_is_running) {
 prev_frame_tick = curr_frame_tick;
 curr_frame_tick = GetTickCount();
 elapsed_time = curr_frame_tick – prev_frame_tick;
 update(elapsed_time);
 render();
}

9

GetTickCount() function:
returns milliseconds since the system was booted

Time Based Movement
characteristics

⦿ Your query is always OS dependent
⦿ Ideally, a double precision floating-point number between

0 and 1
● E.g.: 0.003568

⦿ If the value is zero, then the timer resolution is not
enough high
● Cannot measure time between two frames

⦿ Zero value cannot be used!
● Reason: the factor will be included as a multiplication factor at the

movements

 obj[i].pos = oldpos + elapsed_time*(speed*direction);

10

Time Based Movement

⦿ The multiplication factor affects the additive member of
the position

⦿ On a fast machine, this time is short:
● so the additive tag will be smaller
● Movement will be more continuous

⦿ On slower machines this value is higher:
● movement is less continuous

○ it may not be noticeable to the human eye
● but the movement distance will be the same as the version running

on the fast computer!

11

Time base movement
Extension 1

⦿ 1. Maximizing the elapsed time:

● Problem: certain background processes in the operating system
maybe use more resources
○ the elapsed time increases, resulting a larger “jump” in objects

movement
● A typical example is debugging: we stop the software for

debugging,
○ restarting the software, the elapsed time will be very high if not

maximized
● The objective: maximizing elapsed time

○ for example to 1.0 value

12

Time base movement
Extension 2

⦿ 2. “Smooting” the elapsed time:
● The problem: the elapsed time value may fluctuate between two

graphically identical loop
⦿ Usually does not cause any problem in the software

● However, it is advisable to compensate!
● For example, calculate an average for the past and new loop:

 elapsed_time += curr_frame_tick – prev_frame_tick;
 elapsed_time *= 0.5;

⦿ Although the supplements are effective, they are not perfect.
⦿ In some cases, it is also advisable to set a minimum or maximum

FPS.

13

14

Animation in 2D…

Objektumok animációja

⦿ Animation plays an important role in computer graphics
⦿ This will make the software really "live"

● E.g.: animation of a menu, window ot jumping shape
⦿ The classic animation: to alternate a set of textures in a

given sequence at a certain speed
⦿ Texture set: is an array of textures that contains each phase

of the animation
⦿ In practice, an object consisting of textures is also called

Sprite
⦿ The more the phase, the more continuous the animation of the

object will be when displayed

15

Example implementation

class CSprite {
 string mName // Sprite name

 vector<CSpriteFrame> mFrames; // Frames vector
 int mNumFrames; // Number of frames
 int mActualFrame; // Actual frame
 Vector2 mPosition; // position of the sprite
 Vector2 mScale; // Sprite scale value
 int mLastUpdate; // The last update time
 int mFps; // The number of frames per second

 float mZRotation; // Z axis rotation value
public:
...
};

16

Example implementation

⦿ CSprite class: a compact unit, which stores an animation
sequence

⦿ It’s components:
● The name of the sprite: important, because it is much

easier to refer with a name
⦿ E.g.: getting the “jump” animation

● CSpriteFrame class: stores a single frame
⦿ The SpriteFrame vector represents the animation

● Position, size, rotation
● Number of phases, current phase id
● Animation speed

17

Example implementation

18

class CSpriteFrame {
 CTexture2D mFrame; // Frame texture
 CString mName; // Name of the frame
 vector<CBoundingBox2D> mBBoxOriginal; // Original Bounding boxes
 vector<CBoundingBox2D> mBBoxTransformed; // Transformed Bounding boxes

public:

 /// Default Constructor
 CSpriteFrame();
 …
};

Example implementation

⦿ CSpriteFrame class:
● Storing the images: CTexture2D
● Name of the frame: sometimes can be useful
⦿ Referring by name is much easier!

● Bounding box: for collision detection
⦿ original: it is important to keep it to speed up your

calculations
⦿ transformed: the rotated, scaled and translated box

of the original version

19

Example implementation

20

class CTexture2D {
 CVector2 mPosition;
 CVector2 mRotation;
 CVector2 mScale;
 bool bVisible;
 CVAOobject mTextureVAO; // Storage data in VAO
 sColor mColor; // Color information
 string mFilename; // Holds the filename of the texture
 string mName; // Name
 float mWidth; // Stores the width of the texture
 float mHeight; // Stores the height of the texture
 unsigned int mTextureID; // Holds the texture ID
 int mID; // Global ID of the texture
…
};

Example implementation

⦿ CTexture2D class:
● Position, rotation, translation, size
● Filename
● Name of the texture
● Color information
● IDs:
⦿ OpenGL ID: unique texture ID from the OpenGL
⦿ Global ID in the engine

● Store vertex and texture coordinate in VAO

21

Store animation on the
filesystem

⦿ There are several ways to store animation images in the
file system

1) Spritesheet solution
⦿ The most common solution:

⦿ we store each frame next to each other in a larger image

2) Separate image for each frame
⦿ maybe processing is easier

22

Sample Spritesheet

23

Aladdin game (SNES)

24

Spritesheet

Classic spritesheet

⦿ The animations are stored side by side
⦿ Early spritesheet solution:

⦿ Developer choose a uniform background color
⦿ so they know what not to display - colorkey

⦿ Now we use alpha channel for this
⦿ The size of the phases may vary:

⦿ during loading, the loader must be able to break it down by
some logic,
⦿ then organize these sections into a separate texture

⦿ however, we need to know the dimensions of the frames

⦿ If the frames were in a separate file, that wouldn't be a problem

⦿ There is a need for some additional descriptive file!

25

Sprite descriptor file

⦿ What does a description file provide?
⦿ Defines the frames exact pixel position
⦿ The exact size of the bounding boxes

⦿ a frame can have multiple boxes
⦿ Maybe the name of the frame

⦿ sometimes special frames need to be distinguished
⦿ it is possible to store any other data that is considered

important
⦿ What format?

⦿ What format?
⦿ It is advisable to choose a known storage format such as JSON

or XML

26

A serious game needs some kind of descriptive!

Sample sprite descriptor file

<animation name="My sprite anim">

 <frames numofframes="2">

 <frame name="Robot Anim 1" file="robot1.tga">

 <aabb minx="0" miny="0" maxx="64" maxy="64" />

 </frame>

 <frame name="Robot Anim 2" file="robot2.tga">

 <aabb minx="0" miny="0" maxx="70" maxy="60" />

 </frame>

 </frames>

</animation>

27

Sprite based animation

⦿ These kind of two-dimensional drawings are referred to
collectively as "Pixel Art"

⦿ Reason: Mostly drawn pixel by pixel
⦿ it's a difficult, time-consuming process

⦿ Today, most games made for mobile devices fall into this
category

28

Sprite based animation

⦿ The technique is also capable of producing very high
quality so-called cinematic games

⦿ Key features:
⦿ very smooth animation
⦿ many, even hundreds of frames

⦿ Animations can also be digitized:
⦿ Name: Rotoscoping

Famous Games:

Prince of Persia (1989), Flashback (1992), Aladdin (1993), Lion King
(1994), Heart of Darknes (1998)

29

Heart of Darkness (1998)

30

Professional work:
⦿ lots of cinematic elements
⦿ lots of frames, smooth animation

31

Drawing the animations…

Drawing the animations

⦿ The realization of the animation is to draw the various
frames one after the other

⦿ The speed of animation should be taken into account
⦿ We cannot draw the next frame in each main loop

● the animation will be too fast

⦿ What we need:
● to set the animation speed and consider it in the drawing process

⦿ To achieve this, elapsed time can be used again!

32

Drawing the animations

/** Update frames */
void Update() {
 long ticks = GetOSTicks();
 // Decide to jump to next frame or not
 if (1000.0f/mFps < (ticks - mLastUpdate)){
 mLastUpdate = ticks;
 if (++mActualFrame > mNumFrames){
 mActualFrame = 0;
 }
 }
}

33

Drawing the animations

Example explanation:

⦿ mFps is the speed of the frame change

⦿ The solution logic is simple:
● The value of 1000.0f / mFps gives how many times you need to

make the frame change in 1 second
● When the elapsed time exceeds this value, we can switch to the

next phase.

34

35

The GAMEOBJECT class...

GameObject class

⦿ The Sprite class alone is not enough!
⦿ It can be used:

● For example as a basis for creating GUI elements (eg Animated
buttons, etc.) or for actual game objects

⦿ Sprite is not complete in itself:
● In a two-dimensional game, an object has usually more than one

animation
⦿ For different object state

⦿ GameObject: an array of Sprites
● where they can be changed depending on the state of the object

(walking, squatting, etc.)
⦿ We can call it GameObject2D

36

GameObject class

⦿ The order the objects are drawn is important!
● In some situations, objects may overlap each other
● For example, there are objects (e.g.: Cloud) that are drawn on

another objects
⦿ The order is always based on the program logic

● Level design question

⦿ Implementation: requires the introduction of a numeric
value
● the order will be represented by this value
● E.g.: z value

37

GameObject class

An implementation logic can be:

⦿ The lower the z value of the object, the closer it is to the
viewer,
● this means that it will be drawn later

⦿ The implementation requires sorting objects by their
z-value
● this ensures the proper order of the drawing

38

Sample implementation
class CGameObject2D {
 Vector2 m_vPosition; // Position of the object
 Vector2 m_vNewPosition; // Position of the object
 vector<CSprite> m_Animations; // Animation
 Vector2 m_vDirection; // Direction of the movement
 float m_fSpeed; // Speed of the object
 bool m_bVisible; // Visible or not
 bool m_bCollidable; // Collidable or not
 int m_uiCurrentAnim; // Current Animation Frame
 int m_uiNumberOfFrames; // Number of Animations
 int ID; // ID of the Object
 int m_iZindex; // z index of the object
public:
...
};

39

40

