
Integrated Systems and
Testing

 Version Control Systems,
Source Control

Péter Mileff PhD

Department of Information Science
University of Miskolc

What will it be about?

⦿ Clarification of the concept of version control
⦿ Why is it needed? Who uses it? Where and How?
⦿ Version control models
⦿ Basic concepts in version control
⦿ Operations
⦿ Major version control systems
⦿ Presentation of software tools
⦿ Practical demonstration

2

3

ABOUT VERSION CONTROLLING
IN GENERAL…

What is version control?
Concept:
⦿ a set of procedures that allow variants (versions) of a

data set to be managed together
⦿ In case of softwares:

⚫ Store changes to source code during the software lifecycle
○ Most often, version support for source code files

Management. E.g. logging, history, change version, rollback, who /
when did what, etc

⦿ Designations:
⦿ Revision Control, Version Control, Source Control, Source

Code Management (SCM)

4

Why is it needed?

⦿ Historical data is always needed during
development!
⚫ The source code goes through many iterations

○ Good to know when critical things happened
⚫ If there is a problem, we can revert to previous versions
⚫ It is independent of the number of developers

⦿ One-person development:
⚫ No parallel development (within a project)

○ it is advisable to manage each version ourselves

5

Why is it needed?

⦿ Today, developing more serious software requires
more people
⚫ Tasks are typically done in teams

○ Continuous communication is required
○ The processing of tasks is parallel

⚫ Each member of the team works on a task

⦿ This complex relationship needs to be managed
⚫ You need to see who developed what and when
⚫ You need to manage code merge when working on the same files
⚫ Other: marking special versions, merging versions, etc.

6

Why is it needed?

⦿ Feedback can be provided to management
⚫ The process of development is clear

○ Who is working on what? Who implemented the gives feature.

⦿ Version control systems can often be connected:
⚫ With task scheduler, project manager tools (eg JIRA, TRAC)
⚫ With Wiki systems
⚫ Other systems (like Bugzilla)

⦿ They provide a visual interface on the development
process
⚫ Statistical data
⚫ Diagrams

7

JIRA – Fisheye extension

8

JIRA – Fisheye extension

9

Trac

10

Primitive Version Control

⦿ The code is saved in a separate folder before each
major change
⚫ we try to distinguish them properly

○ E.g.: give date or version number to directories

⦿ It works!
⚫ But the least efficient version control technique
⚫ For one-person development only

⦿ Problem:
⚫ over time, it becomes difficult to remember the differences in

content between versions,
⚫ can take up a lot of storage
⚫ There is no software tool that provides extra features or help

○ E.g. Diff comparison

11

12

MODELS OF VERSION TRACKING
SYSTEMS…

Main types of Version Control
Systems

There are two general varieties of version
control:

⦿ Centralized model (traditional)
⦿ Distributed version control systems

13

Centralized Version Control
System

⦿ Server acts as the main repository which stores every
version of code

⦿ Every developer use this repository
⚫ Every operation is performed on the server

⦿ The workflow:
⚫ it is practically a commit and update process
⚫ After each commit, it is recommended to update the working directory to

get code changes created by others

14

Centralized Systems

15

⦿ update: getting the latest code from the server
⦿ commit: put the local changes to the server

Centralized Version Control
System

⦿ Benefits:
⚫ Centralized systems are typically easier to understand and use

○ developers of any skill level can push changes and start contributing to
the code quickly

○ Setting up the system and the workflow is also simple
⚫ You can grant access level control on directory level
⚫ Performs better with binary files
⚫ Offers full visibility:

○ every team member has full visibility into what code is currently worked on
and what changes are made

○ This knowledge helps software development teams understand the state
of a project and provides a foundation for collaboration

○ centralized version control system only has two data repositories that
users have to monitor: the local copy and the central server.

16

Centralized Version Control
System

⦿ Disadvantages:
⚫ A single point of failure risks data:

○ If the remote server goes down, then no one can work on the code or
push change

○ The lack of offline access means that any disruption can significantly
impact code development and even result in code loss

○ The entire project and team comes to a standstill during an outage
⚫ Slow speed delays development:

○ Branching becomes a time-consuming:
⚫ users must communicate with the remote server for every command,

which slows down code development
⚫ task and allows merge conflicts to appear, because developers can’t

push their changes to the repository fast enough for others to view
⚫

17

Centralized Version Control
System

18

Every developer synchronize and commit their changes

19

Distributed Version Control
Systems…

Distributed Version Control
Systems

⦿ A type of version control where the complete codebase
is mirrored on every developer's computer,
⚫ including its full version history

⦿ Synchronization is accomplished by patches sent
between each machine

⦿ Sounds wasteful, but in practice, it’s not a problem:
⚫ Most programming projects consist mostly of plain text files

○ maybe a few images
⚫ Disk space is cheap

○ storing many copies of a file doesn’t create a noticeable dent in a hard
drive’s free space.

⚫ Modern systems also compress the files to use even less space.

20

Distributed Version Control
Systems

21

⦿ Advantages:
⚫ Branching and merging is much easier

○ Branching and merging can happen automatically and quickly
⚫ With a distributed system, we don’t need to be connected to

the network all the time
○ Developers have the ability to work offline
○ complete code repository is stored locally

⚫ Multiple copies of the software eliminate reliance on a single
backup

⚫ Performance of distributed systems is better

Distributed Version Control
Systems

22

⦿ Disadvantages:
⚫ It may not always be obvious who did the most recent change
⚫ File locking doesn’t allow different developers to work on the

same piece of code simultaneously.
⚫ It helps to avoid merge conflicts, but slows down development

DVCS enables you to clone the repository – this could mean a
security issue

⚫ Working with a lot of binary files requires a huge amount of
space, and developers can't do diffs

23

⦿ pull: getting the latest code from the server
⦿ update: update local repository with the code getting with pull
⦿ commit: put the local changes to the local repository
⦿ push: send local commits to server

Distributed Version Control Systems

24

25

ALAPFOGALMAK…

Basic definitions
⦿ The logical operation of the version control softwares may

differ
⚫ But the applied definitions are the same!

⦿ Repository: repo in short. A data structure that stores metadata for a set
of files or directory structure
⚫ stores all project files and their versions
⚫ usually a special directory structure with special files
⚫ so each project must be stored in a separate repo!

⦿ Working copy:
⚫ A copy of some of the code that a developer is currently working on on their own

machine.
⚫ Upon completion of the work, its status/change will be stored in the repository in

the form of commits

26

Basic definitions
⦿ Commit:

⚫ The “commit” command is used to save changes to the repository
⚫ Every set of changes implicitly creates a new, different version of the

project
○ Therefore, every commit also marks a specific version.

⚫ It’s a snapshot of your complete project at that certain point in time.
⚫ It can be used to restore the project to that certain state

⦿ Every commit item consists the following metadata:

⚫ unique id/hash — every commit has a unique identifier.
⚫ date — information when commit happened. It helps later on to lists the

commits in chronological order
⚫ author — information who performed changes
⚫ message — the author of a commit has to comment what he did in a

short “commit message”.

27

Basic definitions

⦿ Revision: a version
⚫ After each commit, the value of the revision in the repo increases,

○ so this is the version number. E.g: r3522

⦿ Checkout:
⚫ Make a local copy of a versioned file.
⚫ By default, the user will receive the latest version,

○ but it is also possible to request a specific version based on version number

⦿ Head: indicates the most recent commit (version) at the top of the
current branch

⦿ Push(ing): upload data to the main repository
⚫ only at distributed version control systems (e.g. git, mercurial)

28

Basic definitions

⦿ Trunk: It represents the main branch of development. Essentially it
is also a branch with a special name

⦿ Update: it incorporates the changes in the repo into the user's
working copy, i.e. the local version.

⦿ Diff/Change/Delta: find / show change between two files.

29

Basic definitions
⦿ Branch: is a copy of a codeline, managed by a version control

system (VCS).
⚫ Branching helps software development teams work in parallel. It

separates out “in-progress work” from tested and stable code.
⚫ It is an alternative development “line”

30

Basic definitions

⦿ Merge: there will come a time when we want to integrate changes
from one branch into another

○ for example: we finished developing a feature and want to integrate it into
the “production” branch

⚫ Or the opposite:
○ we are not yet finished working on the feature,
○ but so many things have happened in the rest of the project in the

meantime
○ we want to integrate these back into the feature branch.
○ Such an integration is called “merging”

31

Basic definitions

32

Merge

33

Basic definitions

⦿ Conflict:
⚫ Phenomenon arising from the merging of branches
⚫ The version of the two branches contains code that

cannot be merged automatically
⚫ The merging process must be performed manually
⚫ Modern IDEs provide a graphical interface for this

⦿ Example (SVN):

34

<<<<<<< .mine
This is fun stuff!
=======
This is a documentation file
>>>>>>> .r6

Basic definitions
⦿ Conflict:

35

Basic definitions

⦿ Another way to avoid conflict:
⚫ Lock: tilos a konkurens hozzáférés

○ if someone starts modifying a file, it cannot be opened for writing by
another user

○ In case of complex source code changes, merge conflicts can be
avoided

○ Locking a file for too long can cause problems for other users

36

Basic definitions
⦿ Version tagging:

⚫ A tag represents a version of a particular branch at a moment in time
(tag mark a specific commit in your repository history).

⚫ Tags are commonly used to mark release versions, with the release
name as the tag name (i.e. v1.0.1).

⚫ A tag is like a branch that doesn’t change.
○ Unlike branches, tags, after being created, have no further history of

commits.

37

38

Version Control Systems in practice…

Grouping aspects of version
control systems

⦿ Repository model (central or distributed)
⦿ Supported platforms (Linux, Windows,..)
⦿ Price (free, paid licence)
⦿ How the history is handled (model)

⚫ changeset, patch, snapshot
⦿ Version identifier method (Revision ID: namespace,

sequence, pseudorandom)
⦿ Supported network protocol (http, https, ftp,sftp,ssh)
⦿ Open vs. Closed source code

39

Most well known VCSs

⦿ GIT: free, distributed. one of the best vcs tool in the present
market
⚫ The Linux source code is stored in git

⦿ Mercurial: free, distributed, open source, one of the best
⦿ Concurrent Versions System(CVS):

⚫ free, centralized, open source, one of the oldest
⦿ Subversion(SVN): free, open source, centralized. before git, it

was the most used VCS
⦿ Bazaar: free, distributed, open source
⦿ Team Foundation Server (TFS - Microsoft): based on

client-server, distributed repository model and has a proprietary
license

40

Portals for developers

GitHub
⦿ GitHub helps software teams to collaborate and maintain the entire

history of code changes.
⦿ Weu can track changes in code, undo errors and share our efforts

with other team members.
⦿ It is a repository to host Git projects.
GitLab
⦿ It comes with a lot of handy features like an integrated project, a

project website
⦿ Using the continuous integration (CI) capabilities, we can

automatically test and deliver the code.
⦿ We can access all the aspects of a project, view code, pull requests,

and combine the conflict resolution.

41

Portals for developers

Bitbucket
⦿ Bitbucket is a part of the Atlassian software suite,
⦿ it can be integrated with other Atlassian services including HipChat,

Jira, and Bamboo.
⦿ The main features of Bitbucket are code branches, in-line

commenting and discussions, and pull requests.
AWS CodeCommit
⦿ It is a managed version control system that hosts secure and

scalable private Git repositories.
⦿ It seamlessly connects with other products from Amazon Web

Services (AWS) and hosts the code in secured AWS environments.
⦿ It is a good fit for the existing users of AWS.

42

SVN overview
⦿ Open source version control system

⚫ Unix, Linux, Windows, OSX, BSD, Solaris, BeOS, Haiku, etc

⦿ Use it to manage changes to files and directories over
time.

⦿ The storage logic is similar to an average file server,
⚫ except that it records all changes to files and directories.

⦿ What it offers:
⚫ full version control management from command line

http://subversion.apache.org/

43

SVN overview
⦿ Create an SVN server:

44

svnserve - Linux
svnserve.exe - Windows

⦿ Built-in lightweight server:
⚫ It is installed with an installation package
⚫ Communicates via TCP / IP protocol
⚫ HAs an own protocol - svn: //
⚫ Able to communicate with ssh tunnel

svnserve.exe -d -r c:/MySVNRepo
Run SVN server as a daemon:

SVN protocols

45

Protocol Description
file:// direct access respository (on local disk)

http:// We can integrate SVN into main
webservers. Like: apache, ningx, lighthttpd

https:// Same as http://, but with SSL secure

svn:// Communicate with svnserve server
through its own protocol

svn+ssh:// Same as svn://, but over SSH tunnel

SVN usage
⦿ Repo creation (server): the basic file structure is created

46

svnadmin create MyRepo

⦿ Creating working copy (svn checkout):
⚫ create a working copy on the client side

 svn checkout place_of_repo where_to_save_it

E.g.:
 svn checkout http://example.org/svn/MyRepo C:/LocalRepo

SSH tunel sample:
 svn co svn+ssh://example.org/svn/MyRepo C:/LocalRepo

SVN usage
⦿ Add new file to our working copy:

47

svn add sample.txt

⦿ Remove file from repository:
svn del sample.txt

⦿ Comitting changes into repository:
⚫ All changes will be sent into the repository

svn commit –m `Commit text`

⦿ Get latest code from the repository:

svn update

SVN usage
⦿ Revert changes of a file:

48

svn revert test.c

⦿ Creating a branch:

svn copy svn+ssh://example.com/svn/MyRepo/trunk
svn+ssh://example.com/svn/MyRepo /NAME_OF_BRANCH
 -m "Creating a branch of project"

⦿ Merging:
⚫ Merge branch into revision 250 of the main branch

svn merge -r 250:HEAD
http://example.com/svn/MyRepo/branches/my-branch

SVN usage

Make a tag:

49

svn copy http://path/to/revision http://path/to/tag

Well know SVN clients
⦿ Tortoise SVN, RapidSVN
⦿ More advanced version controls allow integration with

other devices
⦿ Version control add-ons for different IDEs are often

available for download
⚫ Graphical based diff, merge, commit, revert
⚫ Sync view, history, and more

⦿ Eclipse/Netbeans based clients:
⚫ Subversive
⚫ Subclipse

50

51

