Péter Mileff PhD

Integrated Systems and
Testing

Version Control Systems,
Source Control

Department of Information Science
University of Miskolc

What will it be about?

Clarification of the concept of version control
Why is it needed? Who uses it? Where and How?
Version control models

Basic concepts in version control

Operations

Major version control systems

Presentation of software tools

Practical demonstration

ABOUT VERSION CONTROLLING
IN GENERAL...

What s version control?

Concept:

a set of procedures that allow variants (versions) of a
data set to be managed together
In case of softwares:

e Store changes to source code during the software lifecycle
o Most often, version support for source code files

Management. E.g. logging, history, change version, rollback, who /
when did what, etc
Designations:

® Revision Control, Version Control, Source Control, Source
Code Management (SCM)

Why is it needed?

@ Historical data is always needed during
development!
o The source code goes through many iterations
o Good to know when critical things happened
o If there is a problem, we can revert to previous versions
o ltis independent of the number of developers

® One-person development:

o No parallel development (within a project)
o itis advisable to manage each version ourselves

Why is it needed?

Today, developing more serious software requires
more people

Tasks are typically done in teams
o Continuous communication is required

o The processing of tasks is parallel
Each member of the team works on a task

This complex relationship needs to be managed
You need to see who developed what and when
You need to manage code merge when working on the same files
Other: marking special versions, merging versions, etc.

Why is it needed?

Feedback can be provided to management

The process of development is clear
o Who is working on what? Who implemented the gives feature.

Version control systems can often be connected:

With task scheduler, project manager tools (eg JIRA, TRAC)
With Wiki systems
Other systems (like Bugzilla)

They provide a visual interface on the development
process

Statistical data

Diagrams

JIRA - Fisheye extension

BL All Projects Da... P Add Gadget 7 Edit Layout

ABRC Dashboard
NBSTRN Dashboard
NFCR Dashboard

Biolocator Product...

Issues: 182 created and 143 resolved
Period: last 100 days (grouped Daily)

Recently Created Chart: NBSTRN - All issues Issues: 54 created and 35 resolved

Period: last 100 days (grouped Daily)
__-_-I--II

Recently Created Chart: NBSTRN - Bugs
Total Issues: 573

Period: last 360 days (grouped Monthly)

GreenHopper Statistics Burndown Chart Total Issues: 161

Biolocator (BL) - 2012-Q1-iter9 Pericd: last 360 days (grouped Monthly)

JIRA - Fisheye extension

(9] k Sea

DELWLLEIGEER G Projects i v Issuesi v Agilei v Administrationi v + Create Issue

Dashboard '{E‘ Add Gadget f Edit Layout é@‘} Tools ~

S FishEye Recent Changesets FishEye Charts

TPS Team Changelog: FE:/ Line Count: FE:/trunk/
TETRIS Team Conor

Cru P;i\alcNeill : CRUC-2506: c:out values in DB config 2 files .Jjava (302,179 - 53%)
tiassian

FishEye Gadgets Axt (40,177 - 7%)

Anna
Lyons
[Atlassian]

- > .js (33,691 - 6%)
S;SESRS‘:;‘] NONE: remove unused js function 1file
[.55 (23,476 - 4%)

CRUC-3015: review rework. Make the star 1 file
label go back to the default if it is cleared. .51 (34,476 - 6%)

®

®

Anna
Buttfield CRUC-2967 --- fix NPE for empty frxs 2 files Xml (22,485 - 4%)

[Atlassian) 1.jsp (21,239 - 4%)

®

Anna
Buttfield
[Atlassian]

Geqff NONE: remember last scroll position of all frxs
Crain 2 files

[Atlassian] in'single file view FishEye Charts

Geoff Line Count: FE:/trunk/
Crain CRUC-3026: more suggest reviewers fixes 3 files
[Atlassian]

Seb Ruiz
[Atlassian]

Seb Ruiz
[Atlassian]

CRUC-2967 --- add more details to
ReviewltemRevisionDataChangedEvent

®

3 files Other (93,388 - 16%)

®

®

&=

NONE: rework from CR-FE-3098 6 files

NONE: remove unused imports 1 file

®

CRUC-2965: The arrow position had been set
Craig from the left and accomodated only certain
Sharkie widths. By moving it to "right” it now sits on the
[Atlassian] = right hand edge all the time and the elements
padding pushes th...

®

2003 2004 2008 2006 2007 2008 2009 2010

- matt . cmacneill . abuttfield conor
- pmcneil . evzijst TI]TLH tdavies maquail - gcrain
Othe

Trac

logged in as daniel | Logout | Help/Guide | About Trac

Browser ;' Timeline »' Reports 1' Search 1' New Ticket

Browsing Revision 171

[root] / trunk / trac Viewrev: 171

Name Size Rev Date

wikimacros/
About. py
Browser.py
Changeset. py
File.py
Href.py
Log.py
Module. py
PermissionError.py
Report. py
Search.py
Ticket. py
Timeline. py
Wiki. py
_init__.py
auth. py
db.py
perm.py
trac.py

J
2l
=
=
gl
=
3l
=1
gl
3l
gl
=
g
=
Zl
g
gl
=1
&l
=
gl

util. py

Primitive Version Control

The code is saved in a separate folder before each
major change

we try to distinguish them properly

o E.g.: give date or version number to directories
It works!

But the least efficient version control technique

For one-person development only

Problem:

over time, it becomes difficult to remember the differences in
content between versions,

can take up a lot of storage

There is no software tool that provides extra features or help
o E.g. Diff comparison

MODELS OF VERSION TRACKING
SYSTEMS...

Main types of Version Control
Systems

There are two general varieties of version
control:

@ Centralized model (traditional)
@ Distributed version control systems

13

Centralized Version Control
System

Server acts as the main repository which stores every
version of code
Every developer use this repository

Every operation is performed on the server

The workflow:

it is practically a commit and update process

After each commit, it is recommended to update the working directory to
get code changes created by others

Centralized Systems

Centralized version control system

Server

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

update: getting the latest code from the server
commit: put the local changes to the server

15

Centralized Version Control
System

Benefits:

Centralized systems are typically easier to understand and use

o developers of any sKill level can push changes and start contributing to
the code quickly

o Setting up the system and the workflow is also simple
You can grant access level control on directory level
Performs better with binary files

Offers full visibility:

o every team member has full visibility into what code is currently worked on
and what changes are made

o This knowledge helps software development teams understand the state
of a project and provides a foundation for collaboration

o centralized version control system only has two data repositories that
users have to monitor: the local copy and the central server.

Centralized Version Control
System

Disadvantages:
A single point of failure risks data:

o If the remote server goes down, then no one can work on the code or
push change

o The lack of offline access means that any disruption can significantly
impact code development and even result in code loss

o The entire project and team comes to a standstill during an outage
Slow speed delays development:

© Branching becomes a time-consuming:

users must communicate with the remote server for every command,
which slows down code development

task and allows merge conflicts to appear, because developers can'’t
push their changes to the repository fast enough for others to view

Centralized Version Control
System

Centralized VCS

e

—~ +Eggs n

r3

Every developer synchronize and commit their changes

Distributed Version Control
Systems...

Distributed Version Control
Systems

A type of version control where the complete codebase

IS mirrored on every developer's computer,
o including its full version history

Synchronization is accomplished by patches sent
between each machine

Sounds wasteful, but in practice, it’s not a problem:
o Most programming projects consist mostly of plain text files

o maybe a few images
o Disk space is cheap

o storing many copies of a file doesn’t create a noticeable dent in a hard
drive’s free space.

e Modern systems also compress the files to use even less space.

20

Distributed Version Control
Systems

©® Advantages:

Branching and merging is much easier
o Branching and merging can happen automatically and quickly

With a distributed system, we don’t need to be connected to

the network all the time

o Developers have the ability to work offline
o complete code repository is stored locally

Multiple copies of the software eliminate reliance on a single
backup
Performance of distributed systems is better

Distributed Version Control
Systems

© Disadvantages:

It may not always be obvious who did the most recent change
File locking doesn’t allow different developers to work on the
same piece of code simultaneously.

It helps to avoid merge conflicts, but slows down development
DVCS enables you to clone the repository — this could mean a
security issue

Working with a lot of binary files requires a huge amount of
space, and developers can't do diffs

Distributed version control system
Server

£ £ E
E £ £
S S S

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

pull: getting the latest code from the server
update: update local repository with the code getting with pull

commit: put the local changes to the local repository
push: send local commits to server

23

Distributed Version Control Systems

Distributed VCS

- Milk Milk
| Soup
Juice

Eggs ‘

Eve

» +luice _ '
+Eggs : ! +Eggs *

+Juice

Joe

ALAPFOGALMAK...

Basic definitions

The logical operation of the version control softwares may
differ

But the applied definitions are the same!

Repository: repo in short. A data structure that stores metadata for a set
of files or directory structure

stores all project files and their versions
usually a special directory structure with special files
S0 each project must be stored in a separate repo!

Working copy:

A copy of some of the code that a developer is currently working on on their own
machine.

Upon completion of the work, its status/change will be stored in the repository in
the form of commits

26

Basic definitions

Commit:
The “commit” command is used to save changes to the repository
Every set of changes implicitly creates a new, different version of the
project
o Therefore, every commit also marks a specific version.
It's a snapshot of your complete project at that certain point in time.
e It can be used to restore the project to that certain state

Every commit item consists the following metadata:

unique id/hash — every commit has a unique identifier.

date — information when commit happened. It helps later on to lists the
commits in chronological order

author — information who performed changes

message — the author of a commit has to comment what he did in a
short “commit message”.

27

Basic definitions

Revision: a version
After each commit, the value of the revision in the repo increases,
o so this is the version number. E.g: r3522

Checkout:

Make a local copy of a versioned file.
By default, the user will receive the latest version,
o but it is also possible to request a specific version based on version number

Head: indicates the most recent commit (version) at the top of the
current branch

Push(ing): upload data to the main repository
only at distributed version control systems (e.g. git, mercurial)

28

Basic definitions

Trunk: It represents the main branch of development. Essentially it
Is also a branch with a special name

Update: it incorporates the changes in the repo into the user's
working copy, i.e. the local version.

Diff/Change/Delta: find / show change between two files.

Basic Diffs

T

Milk Milk Milk Milk

; 5 Eggs [l Eggs | =Juice | Eggs

m | Juice " +Soup [Soup
—

r3 rd

Basic definitions

Branch: is a copy of a codeline, managed by a version control
system (VCS).
Branching helps software development teams work in parallel. It
separates out “in-progress work” from tested and stable code.
It is an alternative development “line”

Branching

Milk

Eggs
Soup

Rice

ré

New Features

Basic definitions

Merge: there will come a time when we want to integrate changes
from one branch into another

o for example: we finished developing a feature and want to integrate it into
the “production” branch

Or the opposite:
o we are not yet finished working on the feature,

o but so many things have happened in the rest of the project in the
meantime

o we want to integrate these back into the feature branch.
o Such an integration is called “merging”

Basic definitions

Merging

Milk Milk

Eggs Rice |
Soup — +RICe >

Eggs
Soup
Rice

ré

New Features

Master 1.0 branch

Release 1.0.1 branch

1.01 fix branch

Release 11.0 branch

1.1.0 feature branch

Merge & deploy

Basic definitions

Conflict:

Phenomenon arising from the merging of branches

The version of the two branches contains code that
cannot be merged automatically

The merging process must be performed manually
Modern IDEs provide a graphical interface for this

Example (SVN):

<<<<<<< mine
This is fun stuff!

This is a documentation file
>>>>>>> 1o

Basic definitions

Conflict:

Conflicts

-Eggs |
| +Cheese Valid Checkin

Milk
Cheese
Juice

Milk ‘ Milk

Eggs r3* (Joe) Cheese
o N

r3 . r4

\—1 -Eggs
+HotDog Conflicting Checkin

Milk (Cannotremove eggs)

Hot Dog
Juice |

- J
r3* (Sue)

Basic definitions

Another way to avoid conflict:

Lock: tilos a konkurens hozzaférés

o if someone starts modifying a file, it cannot be opened for writing by
another user

o In case of complex source code changes, merge conflicts can be
avoided

o Locking a file for too long can cause problems for other users

Basic definitions

Version tagging:
A tag represents a version of a particular branch at a moment in time
(tag mark a specific commit in your repository history).

Tags are commonly used to mark release versions, with the release
name as the tag name (i.e. v1.0.1).

A tag is like a branch that doesn’t change.

o Unlike branches, tags, after being created, have no further history of
commits.

Tagging

Eggs

Version Control Systems in practice...

Grouping aspects of version
control systems

Repository model (central or distributed)
Supported platforms (Linux, Windows,..)
Price (free, paid licence)

How the history is handled (model)
changeset, patch, snapshot

Version identifier method (Revision ID: namespace,
sequence, pseudorandom)

Supported network protocol (http, https, ftp,sftp,ssh)
Open vs. Closed source code

Most well known VCSs

GIT: free, distributed. one of the best vcs tool in the present
market

The Linux source code is stored in git

Mercurial: free, distributed, open source, one of the best

Concurrent Versions System(CVS):
free, centralized, open source, one of the oldest

Subversion(SVN): free, open source, centralized. before git, it
was the most used VCS

Bazaar: free, distributed, open source
Team Foundation Server (TFS - Microsoft): based on

client-server, distributed repository model and has a proprietary
license

Portals for developers

GitHub

GitHub helps software teams to collaborate and maintain the entire
history of code changes.

Weu can track changes in code, undo errors and share our efforts
with other team members.

It is a repository to host Git projects.

GitLab

It comes with a lot of handy features like an integrated project, a
project website

Using the continuous integration (Cl) capabilities, we can
automatically test and deliver the code.

We can access all the aspects of a project, view code, pull requests,
and combine the conflict resolution.

Portals for developers

Bitbucket
Bitbucket is a part of the Atlassian software suite,
it can be integrated with other Atlassian services including HipChat,
Jira, and Bamboo.

The main features of Bitbucket are code branches, in-line
commenting and discussions, and pull requests.

AWS CodeCommit

It is @ managed version control system that hosts secure and
scalable private Git repositories.

It seamlessly connects with other products from Amazon Web
Services (AWS) and hosts the code in secured AWS environments.

It is a good fit for the existing users of AWS.

42

SVN overview

Open source version control system
e Unix, Linux, Windows, OSX, BSD, Solaris, BeOS, Haiku, etc

Use it to manage changes to files and directories over
time.

The storage logic is similar to an average file server,

e except that it records all changes to files and directories.

What it offers:

e full version control management from command line

http://subversion.apache.org/

43

SVN overview

Create an SVN server:

svhnserve - Linux

svnserve.exe - Windows

Built-in lightweight server:

« ltis installed with an installation package
o« Communicates via TCP / IP protocol

« HAs an own protocol - svn: //

» Able to communicate with ssh tunnel

Run SVN server as a daemon:
svnserve.exe -d -r c:/MySVNRepo

44

SVN protocols

file://
http://

https://

svn://

svn+ssh://

direct access respository (on local disk)

We can integrate SVN into main
webservers. Like: apache, ningx, lighthttpd

Same as http://, but with SSL secure

Communicate with svnserve server
through its own protocol

Same as svn://, but over SSH tunnel

45

SVN usage

® Repo creation (server): the basic file structure is created

svnadmin create MyRepo

® Creating working copy (svn checkout):
e create a working copy on the client side

svn checkout place_of repo where to_save it

E.g.:
svn checkout http://example.org/svn/MyRepo C:/LocalRepo

SSH tunel sample:
svn co svn+ssh:/lexample.org/svn/MyRepo C:/LocalRepo

46

SVN usage

Add new file to our working copy:

svn add sample.txt

Remove file from repository:

svn del sample.txt

Comitting changes into repository:
All changes will be sent into the repository

svn commit —-m " Commit text

Get latest code from the repository:

svn update

47

SVN usage

® Revert changes of a file:

svn revert test.c

® Creating a branch:

svn copy svn+ssh://example.com/svn/MyRepo/trunk
svn+ssh://lexample.com/svn/MyRepo /INAME_OF BRANCH
-m "Creating a branch of project”

® Merging:

e Merge branch into revision 250 of the main branch

svn merge -r 250:HEAD
http://example.com/svn/MyRepo/branches/my-branch

48

SVN usage

Make a taq:

svn copy http://path/to/revision http://path/to/tag

49

Well know SVN clients

Tortoise SVN, RapidSVN

More advanced version controls allow integration with
other devices

Version control add-ons for different IDEs are often
available for download

Graphical based diff, merge, commit, revert

Sync view, history, and more

Eclipse/Netbeans based clients:
Subversive
Subclipse

GAME OVER

