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1. Introduction

The main goal of this research project was to create a novel pattern
matching based morphology model that can learn the morphological
features of the target language in an automated way without applying
any artificial intelligence methods, and perform inflection generation
and morphological analysis. I approached this problem on two levels:
first, I created two single-affix transformation engine models that can
learn the inflection rules of a single affix type from a word pair set,
then I constructed a higher-level model that can perform inflection
generation and morphological analysis for all the affix types of the
target language.

The proposed models were evaluated against the Hungarian lan-
guage, which is a morphologically complex agglutinative language
containing many affix types, complex inflection rules and numerous
exceptional cases. Even though such languages mean a huge chal-
lenge for morphology models, the proposed models were expected to
reach high accuracy and generalization factor.

1.1 Problem Domain

Morphology is the lowest level of grammar that analyzes the inter-
nal structure of words. Understanding the morphology of a language
helps in solving higher level grammatical problems such as the syn-
tactic analysis of sentences or the automated processing of free texts.

The smallest units of words with associated meaning are called
morphemes. The two main categories of morphemes are lemmas that
are the grammatically correct root forms of the words, and the affixes
that modify the base meaning of the words. The affixes that have the
same grammatical role are associated with the same affix type, e.g.
plural form, accusative case, past tense, etc. Affixes can appear at the
beginning (prefixes) or at the end (suffixes) of the words, but some-
times in Hungarian they appear on both sides, in case of for example
adjective superlative forms.
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The main grammatical role of lemmas is determined by their part
of speech (e.g. noun, verb, adjective, etc.). The part of speech of a
word can be changed using derivative affix types.

There are several operations that a morphology model could per-
form:

• Inflection generation: adding a new affix type to a word form
• Morphological analysis: determining all the affix types found in

an input word
• Segmentation: determining the affix boundaries in the input

word form
• Stemming: cutting off the affixes from the input word form1

• Lemmatization: determining the lemma of the input word
The existing morphology models usually target a specific language

category for which they can perform these operations optimally. The
simpler models usually work well for morphologically simpler lan-
guage categories such as analytic or isolating languages, in which
there are just a few affixes with simpler inflection rules. On the other
hand, agglutinative (Finnish, Hungarian, etc.) and fusional (Czech,
Slovakian, etc.) languages are morphologically more complex, since
they can have a high number of affixes in their words, and each added
affix might cause complex transformations in the base word form.

1.2 Research of the Baseline Models

In the dissertation I introduce several existing morphology models,
grouping them based on five dimensions. Those models that are used
during the evaluation tests as baseline models are presented in detail.

Most of the modern morphology models apply some kind of arti-
ficial intelligence methods. The models presented by the SIGMOR-
PHON2 group fall into this category, since most of them use neu-
ral networks. Among these models I chose Helsinki 20163 [Öst16],

1The output of stemming is the stem, that is not always the same as the lemma.
2https://sigmorphon.github.io
3https://github.com/robertostling/sigmorphon2016-system

https://sigmorphon.github.io
https://github.com/robertostling/sigmorphon2016-system
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UF 20174 [ZLL17], UTNII 20175 [SA17], Hamburg 20186 [SKBK18],
IITBHU 20187 [SKS18] and MSU 20188 [Sor18] as baseline models.

The proposed models are also evaluated against three popular
segmentation models, including Morfessor 2.09 [VSGK13], MORSEL10

[LCMY09, Lig10] and MorphoChain11 [NBJ15]. Their similarity is that
they can work both in supervised and semi-supervised mode, how-
ever, they can only determine the affix boundaries. Besides segmen-
tation models I also chose two morphological analyzers as baseline
models: Lemming [MCFS15] and Hunmorph-Ocamorph12 [TKG+05,
THR+06].

As opposed to AI based models, the pattern matching based mod-
els usually can only handle a single affix type by themselves. One of
the most frequently used pattern matching based morphology model
is the finite state transducer (FST) [DlH10] that essentially converts
input strings to output strings. In literature we can find several FST
categories, one possible implementation is provided by the Lucene
library.13 Another efficient single-affix morphology model is called
the tree of aligned suffix rules (TASR) [SF07] that can learn the word-
ending transformation rules of a single affix type from a training word
pair set. Although both its training and search algorithms are rela-
tively easy and efficient [9], its disadvantage is that it cannot model
transformations inside or at the beginning of words.

4https://github.com/valdersoul/conll2017/tree/master/dl
5https://github.com/hajimes/conll2017-system
6https://gitlab.com/nats/sigmorphon18
7https://github.com/abhishek0318/conll-sigmorphon-2018
8https://github.com/AlexeySorokin/Sigmorphon2018SharedTask
9https://github.com/aalto-speech/morfessor

10https://github.com/ConstantineLignos/MORSEL
11https://github.com/karthikncode/MorphoChain
12http://mokk.bme.hu/en/resources/hunmorph
13https://lucene.apache.org

https://github.com/valdersoul/conll2017/tree/master/dl
https://github.com/hajimes/conll2017-system
https://gitlab.com/nats/sigmorphon18
https://github.com/abhishek0318/conll-sigmorphon-2018
https://github.com/AlexeySorokin/Sigmorphon2018SharedTask
https://github.com/aalto-speech/morfessor
https://github.com/ConstantineLignos/MORSEL
https://github.com/karthikncode/MorphoChain
http://mokk.bme.hu/en/resources/hunmorph
https://lucene.apache.org
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1.3 Research Goals

The main goal of the research was to create a novel pattern matching
based morphology model that can learn the inflection rules of the tar-
get language in an automated way, and can perform inflection gener-
ation and morphological analysis efficiently, with high accuracy even
for morphologically complex agglutinative languages. The architec-
ture of such system can be seen in Figure 1.1.

PLUR

almákat

ACC

alma
Inflection

Engine

PLUR

ACC

alma
Analysis

Engine

Training set

Rule Set

FIGURE 1.1: The architecture of the proposed
morphology model

The main hypotheses of the research are the following:
• Pattern matching can be used to learn the morphological fea-

tures of the Hungarian language.
• The accuracy of the proposed pattern matching models is com-

parable with that of models applying artificial intelligence.
• The proposed pattern matching models can be implemented in

an efficient way so that they can be used to process large data
sets and perform inflection generation and morphological anal-
ysis in acceptable finite time.

The goal during morphological analysis is to provide so much
morphological information about the input word form as possible,
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including not only its lemma and affix types, but also its intermedi-
ate word forms and a calculated weight that specifies how confident
the model is in the response. Another goal is to achieve the highest
possible generalization capability and accuracy.

The proposed models apply language independent concepts that
makes them applicable to languages other than Hungarian as well.
However, during the evaluation of the models I use Hungarian train-
ing and evaluation data sets, since Hungarian is a morphologically
complex agglutinative language, posing great challenge for morphol-
ogy models of all sorts. The main characteristic of the proposed mod-
els is that they use simple string transformations to model inflection
rules, and apply pattern matching techniques during search. This
means that the set of language dependent components (such as the
lemmas or affix types) is minimal. As we will see, these proposed
models can achieve high accuracy and generalization capability, even
without applying AI methods.
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2. Novel Scientific Results

2.1 The Analysis of Existing Hungarian
Morphological Analyzers

Since the proposed models are evaluated using Hungarian data sets,
choosing a morphological analyzer as a baseline model that can be
used for Hungarian words was an important task. Therefore, as a
first step, I created a novel method that can be used to compare and
rank such models. This method was applied on the following four
analyzers:

• Hunmorph-Ocamorph1 [TKG+05, THR+06]
• Hunmorph-Foma2

• Humor [PT93, PK99]
• Hunspell3

This comparison method is based on several measured values.
The output of the morphological analyzer A for the word w ∈ W
is A (w), while the set of recognized words by the analyzer A is

WA = {w ∈W | |A (w)| > 0} (2.1)

Besides that, we can also measure the recognition ratio of the ana-
lyzer A:

νA =

∣∣WA
∣∣

|W |
(2.2)

Based on the set of recognized words by the morphological ana-
lyzers Ai and Aj , we can calculate their recognition similarity:

SR
Ai,Aj

=

∣∣WAi ∩WAj
∣∣

|WAi ∪WAj |
(2.3)

1http://mokk.bme.hu/en/resources/hunmorph
2https://github.com/r0ller/hunmorph-foma
3https://hunspell.github.io

http://mokk.bme.hu/en/resources/hunmorph
https://github.com/r0ller/hunmorph-foma
https://hunspell.github.io
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The similarity of their token systems can also be calculated, given
there exists an mAi,Aj

mapping between the two token systems,4 and
TAi ∈ TAi denotes the tokens of the morphological analyzer Ai. The
similarity of the two token systems can be defined as

ST
Ai,Aj ,mAi,Aj

=

∣∣{TAi | ∃TAj : mAi,Aj

(
TAi

)
= TAj

}∣∣
|TAi |

(2.4)

The mapping similarity of two analyzers, denoted by SM
Ai,Aj ,mAi,Aj

is none other than the ratio of such words that result in equivalent
morphological structures in case of the two analyzers:∣∣{w ∈WAi ∪WAj |

∣∣mAi,Aj
(t (Ai (w))) ∩ t (Aj (w))

∣∣ > 0
}∣∣

|WAi ∪WAj |
(2.5)

where t (Ai (w)) denotes the tokens returned by the analyzer Ai for
the word w.

I also convert the three similarity formulae to distance values. The
distance value is the multiplicative inverse of the related similarity
value, for example the recognition distance is the reciprocal of the
recognition similarity. Finally, the cumulative distance is the sum of
the three distance values:

DC
Ai,Aj ,mAi,Aj

= DR
Ai,Aj

+DT
Ai,Aj ,mAi,Aj

+DM
Ai,Aj ,mAi,Aj

(2.6)

These measurements were evaluated against a Hungarian data set
that was assembled using an automated data generator algorithm.
The details of this algorithm is part of the fifth thesis. The calculated
distance values are also presented in 2D Eucledian space, so that we
can visually see the distances of the examined morphological analyz-
ers. The cumulative distances are visualized in Figure 2.1.

We can see in this figure that Hunspell and Humor are further
away from Hunmorph-Ocamorph and Hunmorph-Foma. The latter
two analyzers are similar to each other, but the detailed analysis of the
results shows that the Foma based analyzer has incorrect responses
that make it less usable than Hunmorph-Ocamorph.

4One possible token mapping among the four examined analyzers can be found in
the appendix of the disseration.
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FIGURE 2.1: The cumulative distances of the four examined
morphological analyzers

Thesis 1 [1]
I have designed and implemented a new method to compare, ana-
lyze, evaluate and rank morphological analyzers. This method is
based on novel formulae to calculate similarity and distance val-
ues among the different analyzers, including the recognition similar-
ity, token similarity, mapping similarity; as well as the recognition
distance, token distance, mapping distance and cumulative distance.
I applied this analysis method on four popular morphological an-
alyzers of the Hungarian language, namely Hunmorph-Ocamorph,
Hunmorph-Foma, Humor and Hunspell. For the evaluation, I cre-
ated a token mapping among these analyzers as well. Based on the
performed evaluation, Hunmorph-Ocamorph proved to be the most
usable model among the four analyzers.
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2.2 Single-Affix Models

The first step towards learning the morphological features of the tar-
get language is to learn the inflection rules of a single affix type, based
on a training word pair set. To achieve this goal, I proposed two mod-
els: a lattice based model and the ASTRA model.

2.2.1 Lattice Based Model

The concept behind the lattice based model is rooted in lattice theory
[Bir40] and formal concept analysis (FCA) [GW12]. The generated
rules are stored in a compact lattice structure.

The first problem to solve during the training phase of the lattice
based model is to determine the changing parts of the training word
pairs. To solve this problem, I use the classical Levenshtein distance
[Lev66], applying a modified cost function that takes the phonetic at-
tributes of each character into account. This way, the cost of a single
step is equal to the number of changing phonetic attributes (instead
of 0 or 1), therefore it is easier to choose the correct list of elementary
transformation steps between two words.

After determining the list of elementary transformation steps for
every word pair in the training set, we can construct the transforma-
tion rules, having the following structure:

RL =
(
αL, σL, ωL, ηLf , η

L
b ,∆

L
)

(2.7)

where
• αL is the prefix of the rule (i.e. the characters before the trans-

formation),
• σL is the core of the rule (i.e. the characters to be changed),
• ωL is the postfix of the rule (i.e. the characters after the transfor-

mation),
• ηLf is the front index of the rule context occurrence in the source

word from its beginning,
• ηLb is the back index of the rule context occurrence in the source

word from its end, and
• ∆L =

〈
δLi
〉

is the list of elementary transformation steps.
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In order to store these rules in a lattice that can generalize well, we
need to generate the intersections of the transformation rules, and de-
termine their parent-child relationships. Intersection can be done by
rule components: we intersect the prefix components from the end,
the core in its entirety, and the postfix from the start. If any compo-
nent pairs cannot be intersected, then the two rules are disjoint. In-
tersecting the indices and the transformation steps can only be done
if they are identical for the two rules. The parent-child relationship is
determined by the ⊆ operator.

A

. . . . . . . .

. . . . . .

1

M

0

MM

C C C C

A

I III

G G

M M

FIGURE 2.2: The structure of a sample lattice
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The structure of a sample lattice can be seen in Figure 2.2. As we
can see, the nodes can be categorized into several categories. Under-
standing the role of each node category can help in minimizing the
lattice size.

If we insert every rule intersection in the lattice, we get a com-
plete lattice that contains every information about the training data
set. Since complete lattices can be very large, I also propose two more
lattice builder algorithms. The so-called consistent lattice builder al-
gorithm eliminates every inconsistent (G and I) node from the top of
the lattice. This means that if we find a matching rule in the lattice for
an input word, we can directly apply its transformation steps with a
high confidence. The minimal lattice builder algorithm first builds a
consistent lattice, then using the children of the root, it builds another
lattice that has a very small size, contains the maximal consistent rules
(M) and also the inconsistent rules that speed up the search process.

Analyzing these lattice builders, I proved that the consistency of a
node can only change if it was originally consistent, and a new con-
sistent descendant node is inserted into the lattice. This proposition
helps in identifying the important cases during the lattice building
process.

During inflection, the goal is to find the highest consistent rule
whose context matches the input word, and then apply its transfor-
mation steps one by one. The lattice based model is asymmetric,
which means that a given lattice can be applied either for inflection
generation or morphological analysis, based on how it was built.

2.2.2 ASTRA

The proposed ASTRA model (Atomic String Transformation Rule As-
sembler) has a simplified rule model that omits position indices and is
based on string transformations (changing substring and replacement
string pairs) instead of elementary transformation steps. The atomic
rule model has the following structure:

RA =
(
αA, σA, τA, ωA

)
(2.8)

where
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• αA is the prefix of the rule (i.e. some characters before the trans-
formation),

• σA is the changing substring (i.e. the characters that need to be
replaced in the base word form),

• τA is the replacement string (i.e. the characters that need to re-
placed in the base word form), and

• ωA is the postfix of the rule (i.e. some characters after the trans-
formation).

During the training phase, we first extend the input word pairs
with two special characters: $ marks the word start, while # marks
the word end. Then, we split each word pair to matching segments.
A segment contains a related substring from each word in a word
pair. If the two substrings are identical, then the segment is called
invariant, otherwise it is called variant. The core of the atomic rules
(the σA and τA components) are constructed from variant segments.

In case of the rule generated for a word pair using the minimal
context,

∣∣αA
∣∣ =

∣∣ωA
∣∣ = 0. The subsequent rules are generated by

extending the rule context with one character on the left and right
side. This way we generate a number of atomic rules for each word
pair, that are then grouped in so-called rule groups. A rule group
contains atomic rules with the same context.

To speed up the search process during inflection generation or
morphological analysis, ASTRA can also process the rules in paral-
lel. Another way to speed up searching is to insert the rule groups in
a prefix tree based on their contexts.

As we can see from the training process and rule structure, the AS-
TRA model is incremental, and its stored rules are symmetric. During
inflection, we must find the best matching rules for the input word,
and apply them one by one. In case of overlapping rules, only the one
with the higher fitness value is used. The fitness function is defined
as

f
(
RA | w

)
=

∣∣γ (RA
)∣∣

|w|
· θ
(
γ
(
RA
)
, w
)

(2.9)

where γ
(
RA
)

is the rule context and the simplest implementation of
the θ function returns 1 if the γ

(
RA
)

rule context is contained by the
input word w, and 0 otherwise.
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It can be easily seen that if a word pair can be found in the training
data set, then the model will be able to transform its word correctly.

During morphological analysis, the same rules can be used, only
the rule groups and the contexts change. While the RA atomic rule
has a context of αA+σA+ωA during inflection generation, this context
changes to αA + τA + ωA during morphological analysis.

2.2.3 Experiments

To evaluate the proposed models, I compared them with a simple dic-
tionary based system, the FST implementation of the Lucene5 library
and a TASR implementation6 developed by me for the experiments.
The proposed models included the complete, consistent and minimal
lattice, as well as the sequential, parallel and prefix tree based ASTRA.

Regarding the training time, the three lattice builder algorithms
and the TASR model show significant increase as we extend the train-
ing data set, while the prefix tree based and normal ASTRA model,
the FST and the dictionary based system take less time to be trained.

The ASTRA model generated the most rules, reaching the largest
model size, while the TASR model became the second. The complete
and consistent lattice, and the FST model had smaller size, but the
minimal lattice became the most compact.

The search time was way below 1 second for all the evaluated
models. It is interesting to see that although the sequential ASTRA
model had the slowest search time, the prefix tree based ASTRA was
quicker to find the matching rules than the lattice based models.

The accuracy of the examined models can be seen in Figure 2.3.
The set of training and test data sets were disjoint in all cases. In the
figure we can see that the ASTRA and TASR models reached the high-
est accuracy values, but the ASTRA model was already more accurate
using smaller training data sets. The FST model and the dictionary
based system is not part of the diagram, since they cannot transform
previously unseen words correctly.

The test results using 10 thousand training word pairs are sum-
marized by Table 2.1.

5https://lucene.apache.org
6https://github.com/szgabsz91/morpher

https://lucene.apache.org
https://github.com/szgabsz91/morpher
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FIGURE 2.3: Accuracy of the transformation engine models

Thesis 2 [2] [3] [9] [10] [11] [12] [13] [14] [15] [16]
I have proposed two novel single-affix transformation engine models
that can learn inflection rules from a provided set of training word
pairs. The first one is a lattice based model that has a more com-
plex, position dependent rule structure, and stores its rules in a lat-
tice. The second model called ASTRA describes inflection as a set of
simple string transformations, omitting the position indices from its
rule model. The atomic rules are stored in either a set or a prefix tree
based data structure. Both models apply pattern matching during
the rule search process. I performed the evaluation of the proposed
models, showing that while the lattice based model can achieve min-
imal storage size, the ASTRA model has an outstanding accuracy for
previously unseen words (about 94%), beating the examined baseline
models including TASR, FST and a dictionary implementation.
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TABLE 2.1: The test results using
10 thousand training word pairs

Model Training Size Search Accuracy

Sequential ASTRA 237 ms 65,894
15 ms

94.06%Parallel ASTRA 2 ms

Prefix tree based ASTRA 472 ms 32 µs

Complete lattice 330 s 14,404 73 µs 88.03%

Consistent lattice 406 s 14,072 220 µs 87.57%

Minimal lattice 503 s 2,412 43 µs 88.23%

TASR 79 s 55,849 1.5 ms 93.79%

FST 125 ms 20,541 1.5 µs 0%

Dictionary 10 ms 9,978 232 ns 0%

2.3 Multi-Affix Morphology Model

To solve the multi-affix inflection generation and morphological anal-
ysis, I proposed the Morpher model, whose main components can be
seen in Figure 2.4:

• Transformation engines: low-level transformation engine mod-
els that are capable of learning the transformations of a single
affix type based on a set of training word pairs. (The ASTRA
and the lattice based models can be used.)

• Probability store: the set of conditional probabilities among all
the known affix types of the target language.

• Lemma store: the store of lemmas and their associated parts of
speech.

To solve the multi-affix inflection generation and morphological
analysis, the Morpher model coordinates the work of these compo-
nents.

In case of agglutinative languages and concatenative morphology,
it is important that a word might have several different morpholog-
ical structures and inflected word forms generated by the same affix
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FIGURE 2.4: The main components of the Morpher model

type. Therefore the Morpher model has been designed so that it can
return multiple responses for an input, and it also can provide a con-
fidence value for each answer. Another important observation is that
the words of the target language can be represented as dots in a vec-
tor space, where the basis is the set of lemmas, and every other word
form can be reached from lemmas, applying a number of affix types.

The Morpher model can be trained using a T =
{(
w, w̄, T̄ , 〈Ti〉

)}
set, wherew ∈W are the words, w̄ ∈ W̄ are the lemmas, T̄ ∈ T̄ are the
parts of speech and T ∈ T are the affix types, while 〈〉 denotes a list.
During the training phase, the Morpher model executes the following
steps:

1. It creates and trains a separate transformation engine (ASTRA)
instance for each affix type with an appropriate word pair set
deduced from the original training data.

2. It calculates the conditional probability of each affix type chain
found in the training data.

3. It stores the lemmas and their parts of speech.
During inflection generation, the Morpher model does the follow-

ing things:
1. It determines the possible orders of the input affix types based

on the previously calculated conditional probabilities.
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2. It has the appropriate transformation engine instances trans-
form the input lemma one by one, until it reaches the final in-
flected word form.

3. It calculates an aggregated weight for every response, that serves
as a confidence value.

4. It sorts the responses based on their aggregated weight in a de-
scending order.

IfFCET denotes the conversion operator of the transformation en-
gine model during inflection generation, then the inflection operator
of the Morpher model can be defined as the following multi-valued
function:

I : W̄ × {Ti}mi=1 →
〈(

T̄i0 ,
〈
SI
ij

〉m
j=1

, ϑi

)〉n

i=1

(2.10)

where
SI
ij =

(
Tij , FC

ETij
(
wij−1

))
(2.11)

and ϑi denotes the aggregated weight of the ith response.
According to this definition, the input of the inflection operator of

the Morpher model is a lemma and a set of m affix types, while its
output is n responses. These responses all contain a part of speech,
m − 1 intermediate word forms with their related affix type, and an
mth final word form, as well as an aggregated weight.

During morphological analysis, the Morpher model executes the
following steps:

1. It determines which affix types may appear in the input word.
2. It has the appropriate transformation engine instances trans-

form the input word one by one backwords, until it reaches a
valid lemma.

3. It calculates an aggregated weight for every response, that serves
as a confidence value.

4. It sorts the responses based on their aggregated weight in a de-
scending order.

If BCET denotes the backwards conversion operator of the trans-
formation engine model during morphological analysis, then the mor-
phological analysis operator of the Morpher model can be defined as
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the following multi-valued function:

A : W →
〈(〈

SA
ij

〉1
j=mi

, T̄i0 , ϑi

)〉n

i=1

(2.12)

where
SA
ij =

(
Tij , BC

ETij
(
wij

))
(2.13)

and ϑi denotes the aggregated weight of the ith response.
According to this definition, the input of the morphological analy-

sis operator of the Morpher model is an inflected word form, while its
output is n responses containing a part of speech, mi − 1 intermedi-
ate word forms with their related affix type, and the mith final word
form (the lemma), as well as an aggregated weight.

It is important to note that morphological analysis is a more com-
plex operation than inflection generation, since we do not know in
advance which or even how many affix types there are in the input
word form.

To evaluate the Morpher model, I compared it with several exist-
ing models found in literature: 6 SIGMORPHON models (Helsinki
2016,7 UF 2017,8 UTNII 2017,9 Hamburg 2018,10 IITBHU 201811 and
MSU 201812), 3 segmentation models (Morfessor 2.0,13 MORSEL14 and
MorphoChain15), as well as 2 morphological analyzers (Lemming16

and Hunmorph-Ocamorph17).
The training phase of the Morpher model using 100 thousand train-

ing records took less than 4 seconds, which is a good result among the
examined models.

7https://github.com/robertostling/sigmorphon2016-system
8https://github.com/valdersoul/conll2017
9https://github.com/hajimes/conll2017-system

10https://gitlab.com/nats/sigmorphon18
11https://github.com/abhishek0318/conll-sigmorphon-2018
12https://github.com/AlexeySorokin/Sigmorphon2018SharedTask
13https://github.com/aalto-speech/morfessor
14https://github.com/ConstantineLignos/MORSEL
15https://github.com/karthikncode/MorphoChain
16http://cistern.cis.lmu.de/lemming
17http://mokk.bme.hu/en/resources/hunmorph

https://github.com/robertostling/sigmorphon2016-system
https://github.com/valdersoul/conll2017
https://github.com/hajimes/conll2017-system
https://gitlab.com/nats/sigmorphon18
https://github.com/abhishek0318/conll-sigmorphon-2018
https://github.com/AlexeySorokin/Sigmorphon2018SharedTask
https://github.com/aalto-speech/morfessor
https://github.com/ConstantineLignos/MORSEL
https://github.com/karthikncode/MorphoChain
http://cistern.cis.lmu.de/lemming
http://mokk.bme.hu/en/resources/hunmorph
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Regarding the size of the exported file containing the knowledge
base, the Morpher model reached 5th place, with 8.5 megabytes. Al-
though Morfessor 2.0 had the smallest exported file, it is only a seg-
mentation model, therefore its knowledge base can omit some infor-
mation about the training data set. There were also three models that
produced much larger files than Morpher: Hunmorph-Ocamorph,
Helsinki 2016 and UTNII 2017.

The inflection time of Morpher proved to be the fastest among
the examined models, while its morphological analysis time tied for
second with the segmentation time of MORSEL using 100 thousand
training records. However, the analysis time of Morpher produced a
steeper curve.

Figure 2.5 displays the average accuracy of the examined models.
As we can see, Morpher reached the highest precision with more than
97%. The SIGMORPHON models were very close to it, except for
the Hamburg 2018 model. Finally, the segmentation models reached
much lower accuracy.

Since Morpher can return multiple responses for a single input,
it is important to check how many responses it produces in average,
and where is the expected (correct) answer in the response list based
on the aggregated weight. During inflection generation, the average
number of responses became 37, while during morphological anal-
ysis it became 5.4. Although these numbers can seem high, the ex-
pected response was in average at the index of 1.5 and 2.4, respec-
tively, meaning that the correct response was at the beginning of the
list, with high confidence.

To measure the generalization capability of the examined models,
I tested them with generated artificial words as well. First, I took real
syllables from meaningful Hungarian words and combined them to
produce the base artificial word forms. Then, I transformed them em-
pirically using the transformation rules of the Hungarian accusative
case. Finally, I checked if the examined models can handle these ar-
tificial word pairs correctly. Only the Helsinki 2016 (41%), Morfessor
2.0 (80%) and Hunmorph-Ocamorph (89%) models could transform
some of these words correctly, however, the Morpher model reached
the highest accuracy with 95%.

In the final evaluation test, I used the Hungarian data sets pro-
vided by SIGMORPHON to train and evaluate the Morpher model.
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FIGURE 2.5: The average accuracy of the examined models

Table 2.2 contains the test results. As we can see, the model could
reach outstanding accuracy using the training sets of high informa-
tion, which dropped to around 50-60% using the medium and low
information data sets.

Thesis 3 [3] [4]
I have proposed a novel multi-affix morphology model called Mor-
pher that can solve the inflection generation and morphological anal-
ysis problems, handling all the affix types of the target language. The
main feature of the proposed Morpher model is that it builds a sepa-
rate transformation engine instance for each affix type, and it takes
the conditional probabilities of the affix type chains into account
during inflection generation and morphological analysis. During the
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TABLE 2.2: The accuracy of Morpher using the data sets
provided by SIGMORPHON

Data set Accuracy

SIGMORPHON 2016 98.03%
SIGMORPHON 2017 low 49.64%
SIGMORPHON 2017 medium 54.40%
SIGMORPHON 2017 high 95.14%
SIGMORPHON 2018 low 53.69%
SIGMORPHON 2018 medium 59.92%
SIGMORPHON 2018 high 95.43%

evaluation of Morpher I used the ASTRA model to train the trans-
formation engines. The experiments confirmed the outstanding gen-
eralization capabilities and accuracy of Morpher, comparing it with
state of the art models including 6 SIGMORPHON models, 3 unsu-
pervised segmentation models and 2 analyzer models.

2.4 Complexity Analysis and Optimization of
Morpher and ASTRA

The following components contribute to the space requirements of
the Morpher and ASTRA models:

• the stored conditional probabilites whose number equals to the
affix types found in the training data set

• the stored lemmas and their parts of speech whose number can
be approximated with the size of the training data, as well as
the number of parts of speech in the target language

• the trained transformation engines whose number equals the
number of affix types in the target language

For every ASTRA instance, a training word pair set is generated,
whose size can be approximated with the number of training records
whose affix type list ends with the associated affix type. From these
word pairs, atomic rules are constructed. For every word pair, the
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number of constructed atomic rules depends on the word length and
the length of the transformed substring.

Based on the space complexity approximations, we can also ap-
proximate the time complexity of the inflection generation and mor-
phological analysis operations. From these approximations it can be
seen that during morphological analysis, the Morpher model needs
to check much more possible cases, since it does not know how many
or what kind of affix types can be found in the input word.

The goal of the optimization techniques is to reduce the size of the
rule base by eliminating rules that do not contribute much to the high
accuracy, so that the time requirements of the inflection generation
and morphological analysis are reduced in case of the same training
data set size, while retaining high average accuracy. In the disserta-
tion I proposed three optimization techniques that are based on new
configuration parameters of the proposed models:

• Eliminating the redundant atomic rules: the pmax parameter de-
termines how many atomic rules should be generated at most
for each word pair during the training phase of the ASTRA
model.

• Limiting the generalization factor: the pgen parameter deter-
mines the minimum context length of the generated rules. The
atomic rules with shorter context are eliminated.

• Indirect noise reduction: using the psupp and pfreq parameters
will drop those atomic rules whose support and word frequency
values18 are lower than the parameter values.

I analyzed these optimization parameters empirically, examining
how their values change the previously measured metrics (e.g. accu-
racy, number of responses, index of expected response). The small-
est rule base was achieved using the combination of pgen and pmax,
specifically pgen = pmax = 1. This observation was not a surprise, as
I proved formally that in this case, the rule base does not contain any
redundant rules. However, although the rule base size is optimal us-
ing this configuration, the information content of the system reduces
significantly, increasing its uncertainty.

18The support value of a rule is equal to the number of training words that are covered
by the rule, while its word frequency value is equal to the number of occurrences of these
words in the source free texts.
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The winner configuration became psupp = 10. Using this param-
eter value the rule base reduced to less than 2% of the original one,
retaining high accuracy. The average inflection and morphological
analysis times decreased significantly as well. Moreover, in case of
inflection generation, the average number of responses dropped from
37 to 8.4, which is also an important result.

Using the psupp = 10 configuration, I compared the original base-
line, non-optimized Morpher model with the optimized one. During
the evaluation, using 100 thousand training records, both the aver-
age inflection and analysis times decreased. Moreover, as Figure 2.6
shows, the analysis time curve became less steep. The original 2.4
seconds of average analysis time became a less more than 20 millisec-
onds using the optimized model.
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FIGURE 2.6: The average inflection and analysis times of
the baseline and the optimized Morpher model

After comparing the baseline and optimized Morpher model, I
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increased the training data size up to 3 million. The original, non-
optimized Morpher model could not handle such data sizes, but the
optimized model could perform the training, inflection generation
and morphological analysis in acceptable finite time. This is due to
the time curves being less steep. However, from the test results we
can see that after 1 million training items, further increasing the train-
ing data size does not have real benefit, as the accuracy stagnates.

Thesis 4 [3] [4] [5]
I have performed the space and time complexity analysis of the Mor-
pher and ASTRA models. After analyzing the required space of the
model components and the required time of the training phase, in-
flection generation and morphological analysis operations, I have
proposed three optimization techniques that aim to reduce the rule
base of the model and thus decrease the average inflection and analy-
sis times. Evaluation shows that using the same amount of training
data, the number of retained rules dropped from 578,497 to 10,291,
the average inflection time decreased from 2.4 ms to 0.7 ms, and the
average analysis time was reduced from 2.4 s to 21.75 ms, while the
average accuracy remained 93.01%. Finally I evaluated the optimized
Morpher model using up to 3 million training items, and both inflec-
tion generation and morphological analysis could be performed in
acceptable, finite time, even though the unoptimized original model
could not handle such big training data volumes at all.

2.5 The Reference Implementation of
the Morpher Ecosystem

The proposed models including the Hungarian data sets were pub-
lished on Github.

The training and test data sets were generated from the documents
of the Hungarian Electronic Library.19 From the 16,250 documents I
extracted unique word candidates using a parallel algorithm, then

19https://mek.oszk.hu

https://mek.oszk.hu
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used Hunmorph-Ocamorph to determine the morphological struc-
tures of these word candidates. Using this automated method, I man-
aged to extract more than 4.4 million morphological structures for
more than 2.5 million unique word forms.

The obtained records were applicable to train the Morpher model,
however the training of the single-affix transformation engine mod-
els I needed to get training word pairs relating to a single affix type,
thus this data set had to be processed further. To optimally deduce
the appropriate word pairs, I did not process every single record pair,
only those that had the same lemma. This way the time of data pro-
cessing was reduced significantly. Moreover, those records that only
contained a single affix type, could be processed on their own, since
the base form and the inflected form could be used as a word pair.

The total number of word pairs that can be found in the Github
repository20 is 3,625,036.

The reference implementation of the proposed models including
all the source code can be found in three Github projects:

• Morpher framework:21 a Java based, modular project that con-
tains the reference implementation of the Morpher model, the
lattice based model and the ASTRA model, as well as the other
baseline single-affix transformation engine models.

• Morpher API:22 a Spring Boot based REST API application that
simplifies the usage of Morpher from software environments
other than Java, like .NET or Node.js.

• Morpher client:23 a React and React Native based client appli-
cation that provides a graphical user interface for the inflection
generation and morphological analysis operations of the Mor-
pher framework, invoking the Morpher API.

The Morpher framework has been published on Maven Central24

and jcenter25. The Docker images have also been published on Docker

20https://github.com/szgabsz91/morpher-data
21https://github.com/szgabsz91/morpher
22https://github.com/szgabsz91/morpher-api
23https://github.com/szgabsz91/morpher-client
24https://search.maven.org/search?q=morpher
25https://bintray.com/search?query=morpher

https://github.com/szgabsz91/morpher-data
https://github.com/szgabsz91/morpher
https://github.com/szgabsz91/morpher-api
https://github.com/szgabsz91/morpher-client
https://search.maven.org/search?q=morpher
https://bintray.com/search?query=morpher
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Hub, including the Docker image of the Morpher API26 and the Mor-
pher web client.27

The morphological analysis page of the Morpher web client can
be seen in Figure 2.7.

FIGURE 2.7: The morphological analysis page of the Mor-
pher web client

Thesis 5 [1] [3] [4] [5] [8]
I have developed the reference implementation of the Morpher ecosys-
tem, that consists of several layers such as the Morpher multi-affix

26https://hub.docker.com/r/szgabsz91/morpher-api
27https://hub.docker.com/r/szgabsz91/morpher-client

https://hub.docker.com/r/szgabsz91/morpher-api
https://hub.docker.com/r/szgabsz91/morpher-client
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morphology model and the single-affix transformation engine models
including the lattice based model and ASTRA. I have also developed
a Spring Boot based Morpher REST API, so that the Morpher frame-
work can be consumed more easily from different software environ-
ments. To provide web and mobile user interfaces for inflection gen-
eration and morphological analysis, I have developed the Morpher
client application using React and React Native. For training and
evaluation purposes, I have also implemented an automated method
to generate large training and evaluation data sets for the Hungar-
ian language, resulting in more than 4.4 million morphological struc-
tures, covering more than 2.5 million unique word forms. The source
code of these projects can be found on Github, while the binaries are
published to jcenter and Maven Central, and the Docker images are
published to Docker Hub.
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3. Összefoglalás

A kutatás célja egy olyan mintaillesztésen alapuló morfológiai modell
kidolgozása volt, amely képes morfológiailag komplex, agglutináló
nyelvek (pl. a magyar nyelv) esetén automatizáltan megtanulni a cél-
nyelv toldalékolási szabályait, és hatékonyan megoldani a ragozás és
morfológiai elemzés problémáját.

A bemutatott morfológiai modellek két fő csoportba sorolhatók:
• az alacsonyabb szintű, egytoldalékos transzformációs modellek

(a hálóalapú és az ASTRA modell) a célnyelv egy adott tolda-
léktípusának szabályait képesek betanulni egy megfelelő szó-
párhalmaz alapján, míg

• a magasabb szintű, többtoldalékos Morpher modell a célnyelv
összes toldaléktípusát képes kezelni.

A modelleket a kiértékelés közben számos létező alapmodellel ve-
tettem össze, és a bemutatott modellek mind pontosságban, mind az
általánosítóképesség terén kiemelkedőnek bizonyultak.

Az új tudományos eredmények a következő öt tézisben foglalha-
tók össze.

1. tézis [1]
Létrehoztam egy új módszert morfológiai elemzők összehasonlítá-
sára, elemzésére és rangsorolására. A módszer alapját olyan for-
mulák képezik, melyekkel kiszámolhatjuk az elemzők hasonlóságát
és távolságát, figyelembe véve azok szófelismerési képességeit, to-
kenrendszereit és leképzési tulajdonságait. Az elkészült módszert
négy népszerű, magyar nyelvvel is kompatibilis morfológiai elemzőn
alkalmaztam, a Hunmorph-Ocamorph, Hunmorph-Foma, Humor és
Hunspell eszközökön. A mérések kivitelezéséhez elkészítettem egy
token leképzést is a négy elemző között. Az elvégzett mérések alap-
ján a Hunmorph-Ocamorph modell bizonyult a legjobban használ-
ható morfológiai elemzőnek.
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2. tézis [2] [3] [9] [10] [11] [12] [13] [14] [15] [16]
Létrehoztam két új transzformációs modellt, melyek képesek meg-
tanulni a szükséges toldalékolási szabályokat egytoldalékos eset-
ben, az adott toldaléktípusra jellemző szópárok alapján. Az első
egy hálóalapú modell, amely egy komplexebb, pozíciófüggő szabály-
struktúrával rendelkezik, és ezeket a szabályokat egy hálóban tá-
rolja. A második modell (ASTRA) a toldalékolási szabályokat egy-
szerű string transzformációkként írja le, elhagyva a pozícióindexe-
ket a szabályleíróból. Ezeket az atomi szabályokat egy halmaz vagy
prefixfa alapú adatstruktúrában tárolja. Mindkét modell a mintail-
lesztés elvét alkalmazza az illeszkedő szabályok keresésekor. A mo-
dellek kiértékelése azt mutatja, hogy míg a hálóalapú modell képes
minimális tárigényt elérni, addig az ASTRA modell pontossága ki-
emelkedő a betanított modell által még nem látott, ismeretlen szavak
esetén (kb. 94%), megelőzve a TASR, FST és szótár alapú modelleket.

3. tézis [3] [4]
Létrehoztam egy új morfológiai modellt, amely többtoldalékos eset-
ben is képes a toldalékolás és morfológiai elemzés megtanulására és
elvégzésére, lefedve a célnyelv összes toldaléktípusát. A Morpher
modell alapja, hogy minden egyes toldaléktípushoz külön ASTRA
példányt hoz létre a transzformációs szabályok betanulásához, tol-
dalékolás és morfológiai elemzés közben pedig figyelembe veszi a tol-
daléktípus láncok feltételes valószínűségeit. A modell kiértékelése
megerősíti annak kiemelkedő általánosítóképességét és pontosságát
számos korszerű modellel szemben, beleértve 6 SIGMORPHON mo-
dellt, 3 szegmentációs modellt és 2 morfológiai elemzőt.
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4. tézis [3] [4] [5]
Elvégeztem a Morpher és ASTRA modellek tár- és időkomplexitásá-
nak elemzését. A különböző komponensek tárigényének, valamint
a betanítás, a toldalékolás és a morfológiai elemzés időigényének
vizsgálata után három optimalizációs technikát vezettem be, melyek
célja, hogy a transzformációs szabályok eliminálásával csökkent-
sék az átlagos toldalékolási és elemzési időt. A kiértékelés megmu-
tatta, hogy az optimalizált modell azonos méretű tanítóhalmaz mel-
lett az eddigi 578 497 szabály helyett csak 10 291 szabályt generált,
így az átlagos toldalékolási idő 2.4 milliszekundumról 0.7 millisze-
kundumra csökkent, az átlagos elemzési idő 2.4 másodpercről 21.75
milliszekundumra esett vissza, míg az átlagos pontosság 93,01% ma-
radt. A bevezett optimalizációnak köszönhetően a Morpher modell
képessé vált elfogadható, véges időn belül elvégezni a toldalékolást
és morfológiai elemzést akár 3 milliós tanítóminta betanítása után
is, amire az eredeti modell még nem volt képes.

5. tézis [1] [3] [4] [5] [8]
Elkészítettem a Morpher rendszer referenciaimplementációját, amely
magában foglalja a Morpher többtoldalékos morfológiai modellt és
az egytoldalékos transzformációs modelleket, köztük a hálóalapú
modellt és az ASTRA modellt. A Morpher keretrendszer különböző
szoftverkörnyezetekből történő kényelmesebb felhasználásához egy
Spring Boot alapú Morpher REST API-t is fejlesztettem. A böngé-
szőben, Android és iOS eszközökön történő felhasználás érdekében
pedig elkészítettem a Morpher kliens alkalmazást, React és React
Native alapokon. A modellek kiértékeléséhez egy automata betaní-
tási és tesztadat generáló módszert dolgoztam ki, amely több mint
4,4 millió morfológiai felbontást eredményezett, lefedve több mint
2,5 millió egyedi szóalakot. Ezen projektek forráskódja megtalál-
ható a Githubon, míg a binárisokat a jcenter és Maven Central repo-
sitorykba, a Docker image-eket pedig a Docker Hubra publikáltam.
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