Computer networks The physical layer

2025/2026, 1st semester

Dr. Szilveszter Kovacs

E-mail: szilveszter.kovacs@uni-miskolc.hu

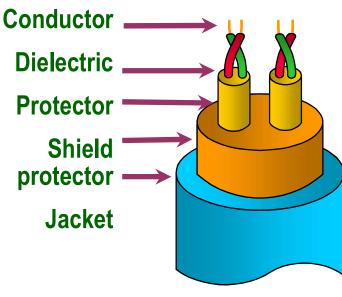
www.iit.uni-miskolc.hu/~szkovacs

Institute of Information Technology 107/a.

Phone: +36 46 565-111 / 21-07

The physical media

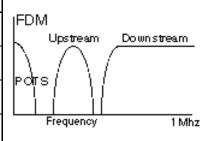
- The transmission media.
- Their goal: to transport the raw bitstream
- Their characteristics:
 - the available data transfer speed
 (based on signal/noise ratio from Shannon's theorem),
 - in practice we treat it separately
 - baseband pulse transmission
 - broadband (modulation) transmission.
 - The maximum distance that can be covered without signal refresh is
 - the interference immunity,
 - reliability (mechanical properties),
 - suitability for broadcast, point-to-point transmission, or both,
 - price, costs.


The transmission medium

- Metallic conductors (electric current) (Copper)
 - Twisted pair
 - Coaxial cable
- Light guides (light waves)
 - Glass, plastic (fiber optic)
- Wireless transmission (electromagnetic waves)
 - microwave,
 - satellite,
 - optical infrared, laser, etc.

Twisted pair

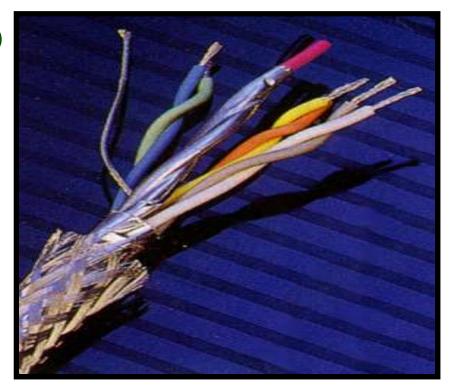
- Primarily for point-to-point connection.
- Telephone wire
 - To a nearby center (2-4 Km), modulated transmission,
 - a few Mbps (e.g. E1: 2.048 Mbps (32*64)),
 - medium immunity and reliability,
 - cheap solution.
 - Twisting: untwisted conductors are "loop antennas"; twisted is more balanced.



Twisted pair

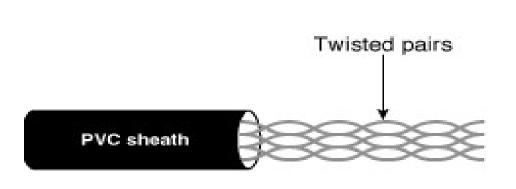
xDSL (Digital Subscriber Line)

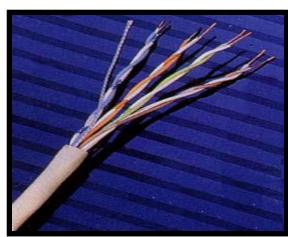
- DSL Existing Copper 2 x 64 Kbps + 16 Kbps DSL CORE Network DSL 2 x 64 Kbps + 16 Kbps DSL
- High Data-Rate Digital Subscriber Line (HDSL)
 - On two pairs of wires T1/E1 approx. 3.6 km away.
- Single-Line Digital Subscriber Line (SDSL)
 - On a single pair T1/E1 approx. 3 km away.
- Very high bit-rate Digital Subscriber Line (VDSL)
 - VDSL2 300Mbps 300-400m
- Asymmetric Digital Subscriber Line (ADSL)
 - Asymmetric (downstream and one duplex channel):
 - 1.5 2.0 Mbps downstream and one 16 kbps duplex channel, or
 - 6.1 Mbps downstream and 64 kbps duplex, nowadays
 - 8 Mbps downstream and 640 kbps duplex.
 - ADSL2+ 24 Mbps downstream

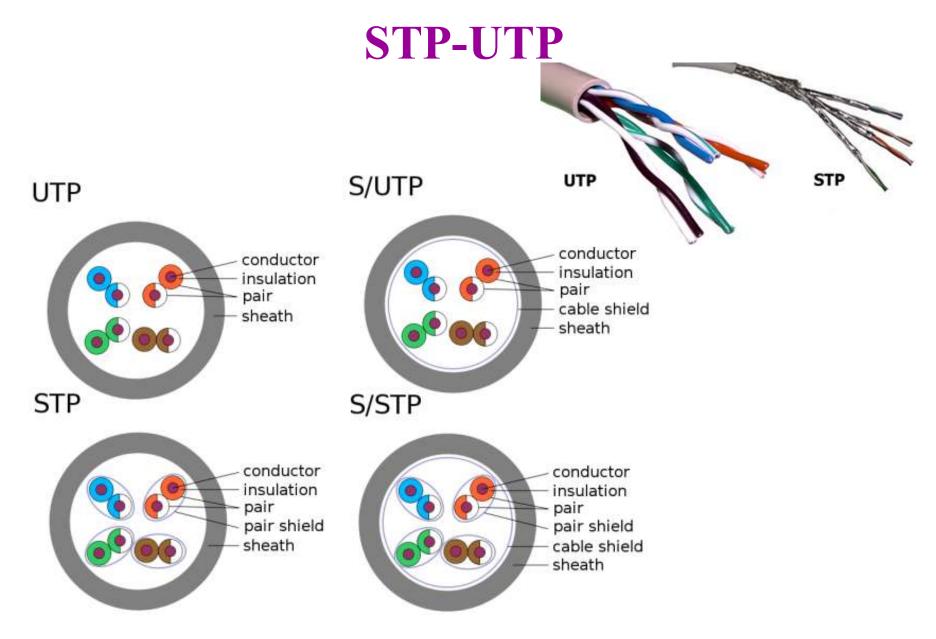

Sebesség	Vezeték vastagság	Távolság
1.5 or 2 Mbps	0.5 mm	5.5 km
1.5 or 2 Mbps	0.4 mm	4.6 km
6.1 Mbps	0.5 mm	3.7 km
6.1 Mbps	0.4 mm	2.7 km

Általános INFORMATIKAI Tanszék

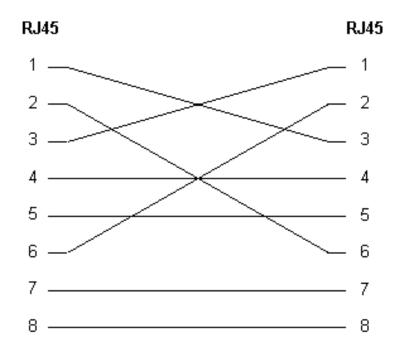
STP

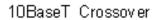

- STP (Shielded TP) shielded twisted pair
 - Shielding (reduces interference, crosstalk)
 - good interference immunity,
 - good reliability
 - 4 wires (transmit/receive)
 - Slightly more expensive
 - Thicker bundles
 - 1Gbps max. 25m (1000BaseCX)




UTP

- UTP (Unshielded Twisted Pair)
 - Medium immunity and reliability
 - Slightly cheaper, easy to install
 - For typical 10/100(/1000)BaseT Ethernet cabling
 - 4 wires, transmit and receive branches,
 - max 100 m, baseband pulse transmission

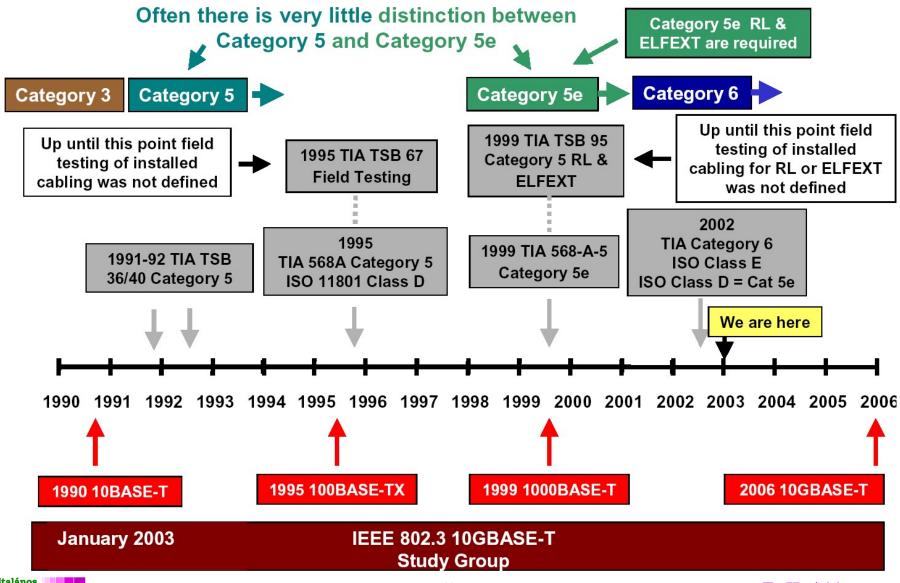


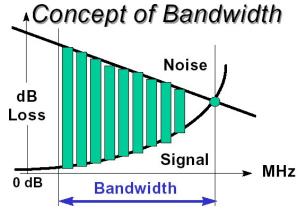


UTP

• RJ45 pinouts for 100 BaseT

RJ45 Pin	Function	Colour
1	Transmit	White/Orange
2	Transmit	Orange/White
3	Receive	White/Green
4		Blue/White
5		White/Blue
6	Receive	Green/White
7		White/Brown
8		Brown/White




- Category 1: voice transmission, 2 Mbps
- Category 2: data transmission, 4Mbps
- Category 3: data transmission, 10BaseT (10Mbps), 4Mbps IBM Token Ring, 16 MHz, (100BaseT4) TIA/EIA 568-A standard
- Category 4: data transmission, 10BaseT, 16Mbps IBM Token Ring, 20 MHz, (100BaseT4)
- Category 5: the most common today.
 100BaseTX, (1000BaseT)
 (3-4 twists/inch)
 ANSI/TIA/EIA-568-B.1 and 568-B.2 standards

• Category 1-5: attenuations, crosstalk

	Attenuation (dB per 100 m)		Near-end Crosstalk (dB)			
Frequency (MHz)	Category 3 UTP	Category 5 UTP	150 Ω STP	Category 3 UTP	Category 5 UTP	150 Ω STP
1	2.6	2.0	1,1	41	62	58
4	5.6	4.1	2.2	32	53	58
16	13.1	8.2	4.4	23	44	50.4
25	-	10.4	6.2	N	42	47.5
100		22.0	12.3	×-	32	38.5
300	7 2	<u></u>	21.4	_	<u>-</u> -	31.3

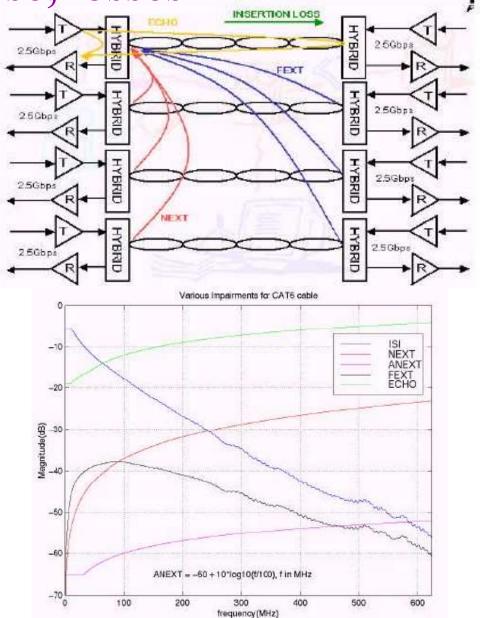
Shannon: MaxSpeed = $H \cdot log_2(1+S/N)$

Cat5: max. 600Mbps in the worst case approx.

Cat5 - 1000BaseT?

 \rightarrow 4-pair dual duplex and

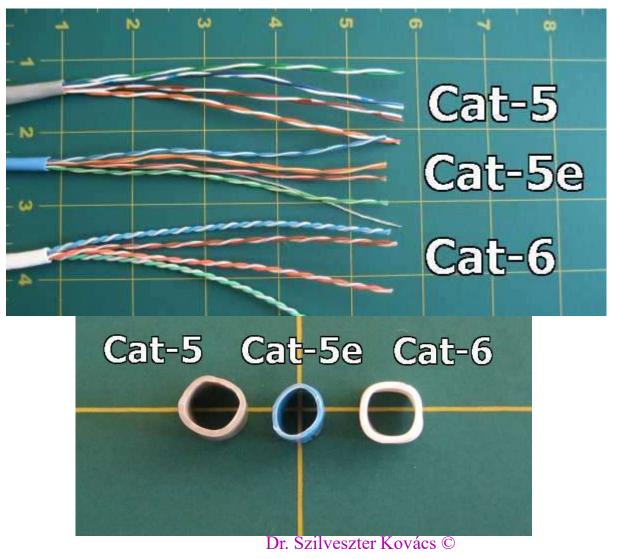
5-level Pulse Amplitude Modulation


UTP noise, losses

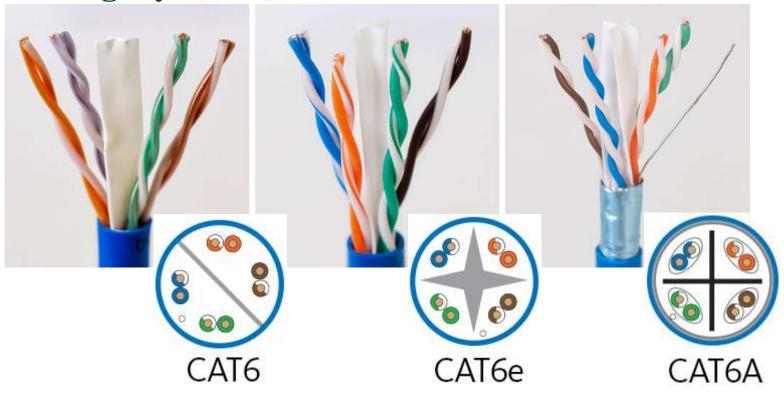
Dr. Szilveszter Kovács ©

- Insertions loss (attenuation)
- Return loss (echo)

Crosstalk:


- Caused by the interactions of different wire-pairs inside the same cable :
 - Near-end crosstalk (NEXT)
 - Far -end crosstalk (FEXT)
- C aused by other unrelated cables:
 - Alien cross talk (ANEXT)

E. II. / 13.

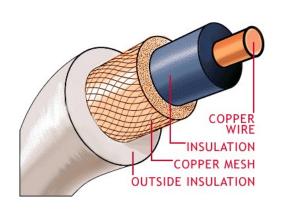

• Categories 5, 5e, 6,

Általános INFORMATIKAI Tanszék

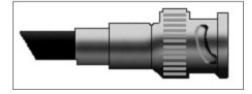
E. II. / 14.

• Category 6, 6e, 6A

10GBASE-T 802.3an-2006 (64B65B PAM-16 128-DSQ)


100m Cat 6A, 55m Cat 5e, Cat 6

2.5GBASE-T, **5GBASE-T IEEE 802.3bz-2016**, NBASE-T, MGBASE-T 100m Cat 5e, Cat 6



Coaxial cable

- Suitable for both point-to-point and broadcast
- Typical LAN application Ethernet - broadcast
 - -10Base5 Thick Ethernet ("Vampire" connector)
 - -10Base2 thin Ethernet
- Structure
 - -copper core, insulating dielectric, braided outer conductor, plastic sheath

Coaxial cables

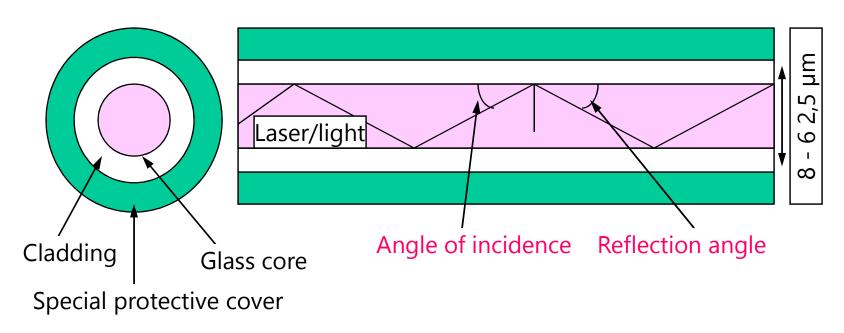
- Typical wave impedances:
 - 50 : data and radio cable
 - 75 : TV coaxial cable
 - 93 : ARCNET cable (Novell)
- For baseband transmission: 10 Mbps (Ethernet):
 - 500 m: thick coax,
 - 187 m: thin coax.
- Modulated: about 150 Mbps, up to 100Km distance
 - Cable television uses modulated
 - broadcasting (about 6 MHz channels, the amplifiers are unidirectional) (DVB-C modulation standard 8 MHz)
 - Computer connection
 - A separate return path is being built. Special modem, transmits and receives on a separate frequency
 - Data Over Cable Service Interface Specification (DOCSIS)
 - DOCSIS 1.0 (1997) Down: 40 Mbit/s Up: 10 Mbit/s
 - DOCSIS 3.1 Full Duplex (2017) Down: 10 Gbit/s Up: 10 Gbit/s

Coaxial cable

- Coaxial cable (grounded at 1 point) has good interference protection and good reliability.
- Moderately expensive
 - (thin Ethernet is cheaper than UTP).
- Creating a broadcast channel (bus) on coaxial cable:
 - A single power line, terminated at the ends with a wave impedance.
 - High impedance connections (transceiver), voltage monitoring, current generator drive.
 - T-plug or push-on, "vampire" connection (can be connected/disconnected during operation)

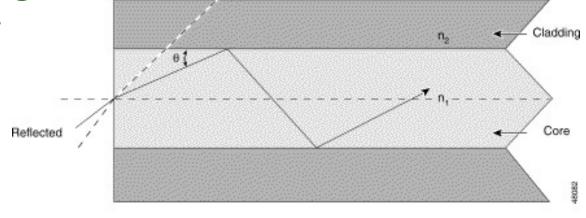
Optical cable

- Thin glass fiber (silicate), "guides" light waves
- Excellent interference immunity, good reliability.
- Currently approx. max. 400 Gbps 80km distance (DWDM)
- Typically for point-to-point connections.
- High costs (connections, extensions, transmitters/receivers).
 - Connectors: SMA: screw; ST bayonet;
 MIC: FDDI dual, SC plug



The optical cable

- Core (higher refractive index), core diameter:
 9-50-62.5 μ m
- lower refractive index outside (clad) (typical diameter: $125 \mu m$).



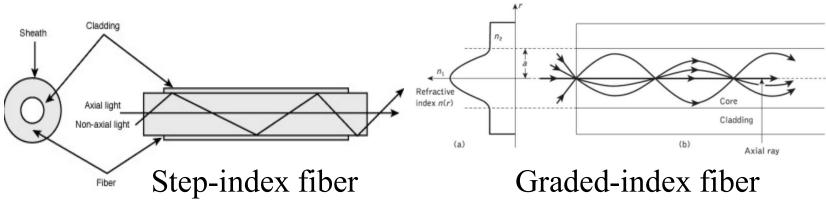
Light cables

- Light is reflected below the "critical angle", above it: absorbed
- Visible light frequency: nearly 10⁸ MHz: potentially huge bandwidth!
- Depending on the relationship between the wavelength of light and the core size, it can be

- Multimode, or

- Single-mode.

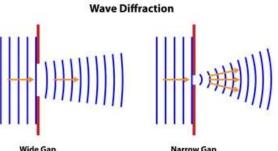
n = index of refraction

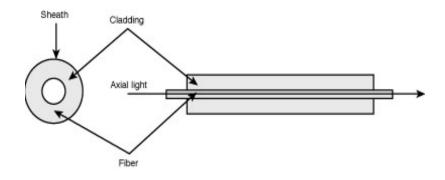

n, > n, gives total internal reflection

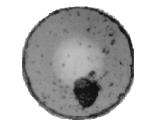
Dr. Szilveszter Kovács ©

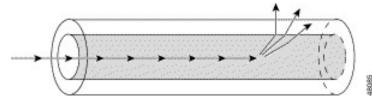
Multimode fiber

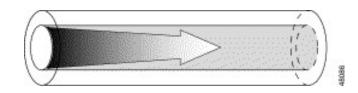
- Core diameter > light wavelength
 - Light travels by reflecting at the boundaries,
 - Light can travel with different path lengths, it does not arrive at the same time (modal dispersion).
 - Typically, the transmitter is an LED (Light Emitting Diode), visible red (wavelength: 850 nm), the receiver is a photodiode/transistor.
 - Bridgeable < 10Km, opt. Ethernet 2 Km, FDDI
 - Data transfer rate: approximately < 10 Gbps




Single-mode fiber

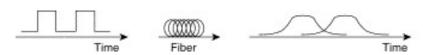



- The transmitter is a semiconductor laser, infrared 1300nm (1310nm, 1550nm) wavelength, core diameter 9 μm
- lower attenuation, greater distance covered, approx. 100 Km.
- Fast, data transfer speed < 10Gbps (depending on the device, it can be higher).

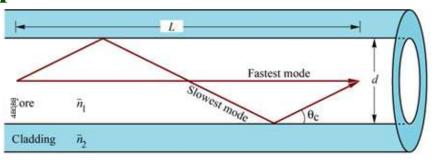


Rayleigh scattering: on atomic glass defects

Absorption: absorption

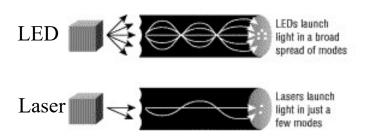


TIA/EIA-568A max. damping	Wavelength	Max Attenuation (dB/Km)
Multi-Mode	850	3.75
Multi-Mode	1300	1.5
Single - Mode	1300	0.5


Extension (cold/warm): 0.3 - 1 dB

Connector: 0.5 - 2 dB

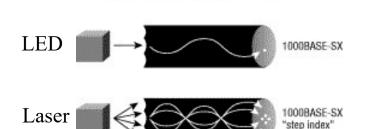
Modal Dispersion: dispersion path length difference

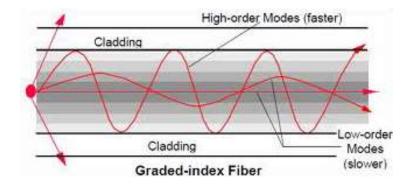


Chromatic Dispersion: components of different frequencies

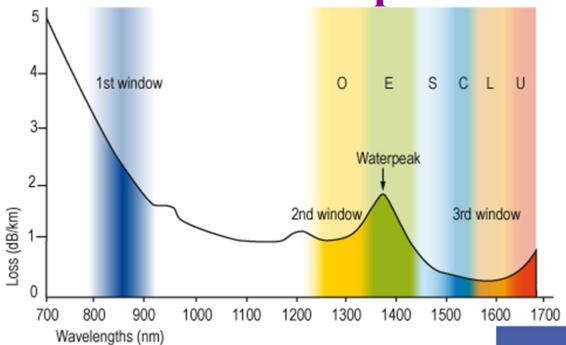
Step-index Fiber

• Dispersion due to path length difference

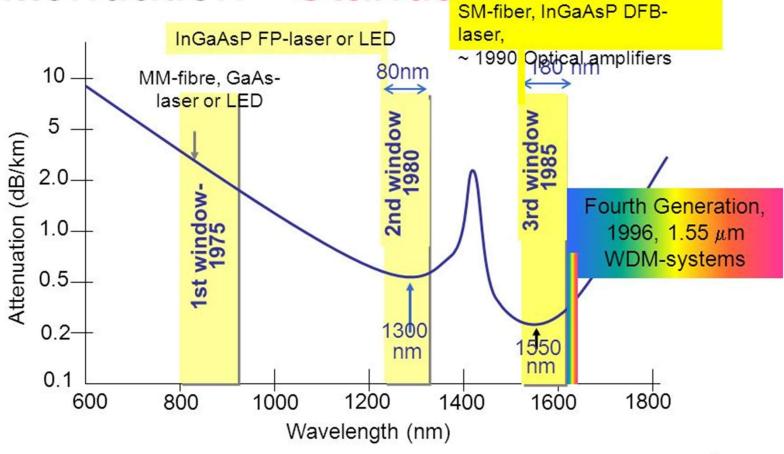


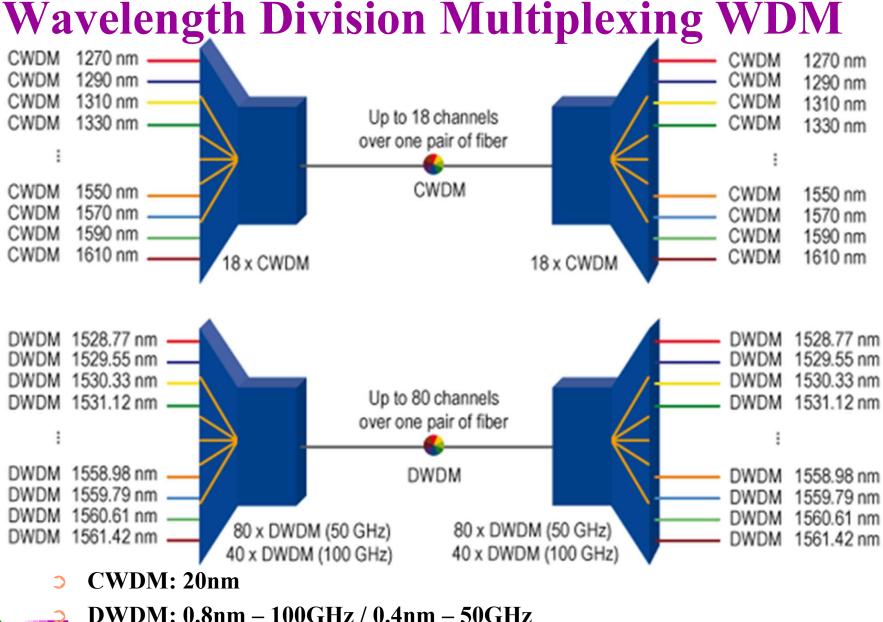

Modes traveling through the center (where the refractive index may dip) propagate too fast in some fibers, causing the optical signal to be "smeared"

• "Conditioner" installation, "Graded-index" fiber


Prohibit laser-based transmitters from concentrating their light in the center of a fiber

This is referred to as 'conditioned launch'

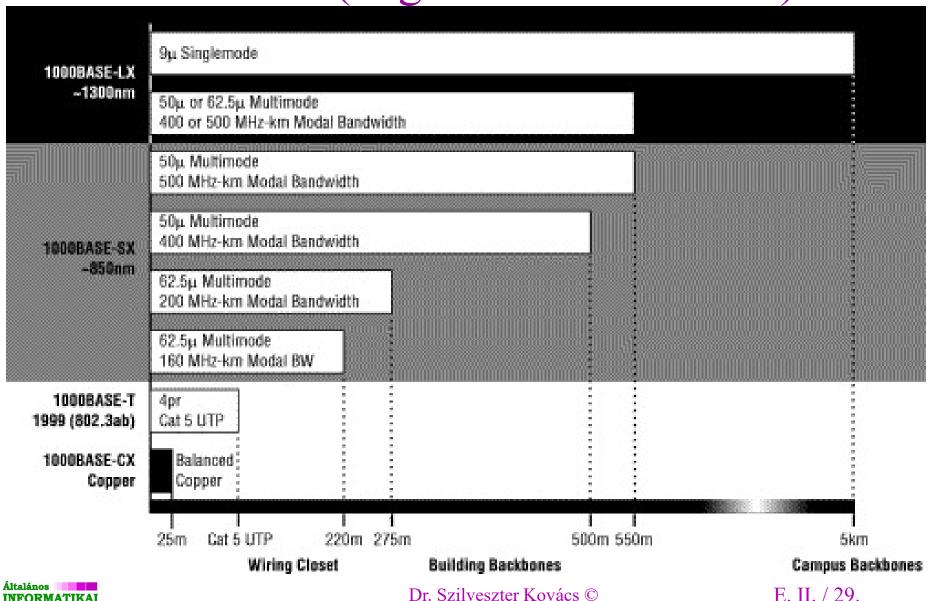

	Optical band	Wavelengths
0	(Original)-Band	1260 nm - 1360 nm
Е	(Extended)-Band	1360 nm - 1460 nm
S	(Short)-Band	1460 nm - 1530 nm
С	(Conventional)-Band	1530 nm - 1565 nm
L	(Long)-Band	1565 nm - 1625 nm
U	(Ultralong)-Band	1625 nm - 1675 nm



Dr. Szilveszter Kovács ©

E. II. / 26.

Attenuation - Standard Fibre



Dr. Szilveszter Kovács ©

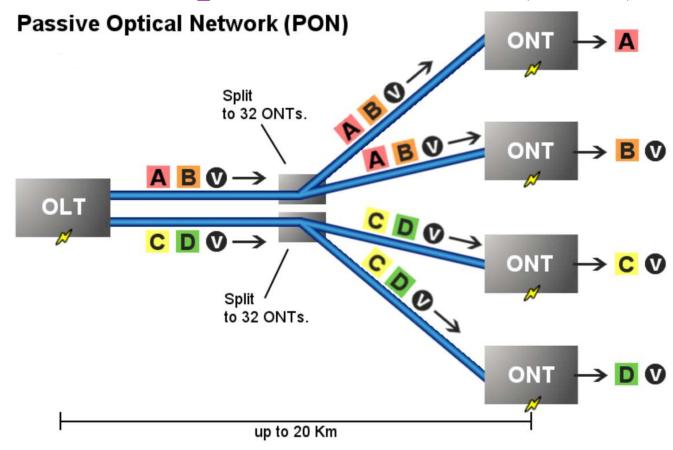
E. II. / 28.

Distances (Gigabit Ethernet LAN)

10GBASE Ethernet (802.3ae 802.3an)

10GBASE-LX4	1310 nm	62.5μm MMF	500 MHz/km	2 - 300 m
10GBASE-LX4	1310 nm	50μm MMF	400 MHz/km	2 - 240 m
10GBASE-LX4	1310 nm	50μm MMF	500 MHz/km	2 - 300 m
10GBASE-LX4	1310 nm	10μm MMF	N/A	2 - 10 km
10GBASE-S	850 nm	62.5μm MMF	160 MHz/km	2 - 26 m
10GBASE-S	850 nm	62.5µm MMF	200 MHz/km	2 - 33 m
10GBASE-S	850 nm	50μm MMF	400 MHz/km	2 - 66 m
10GBASE-S	850 nm	50μm MMF	500 MHz/km	2 - 82 m
10GBASE-S	850 nm	50μm MMF	2000 MHz/km	2 - 300 m
10GBASE-L	1310 nm	10μm SMF	N/A	2 - 10 km
10GBASE-E	1550 nm	10μm SMF	N/A	2 - 30 km

10GBASE-SR SFP+ transceiver


10GBASE-T 802.3an-2006 (64B65B PAM-16 128-DSQ)

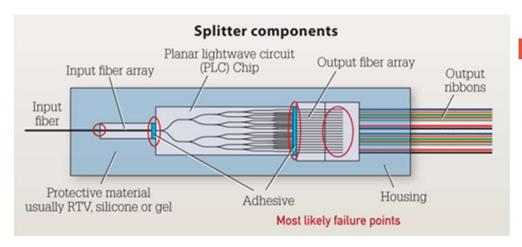
100m Cat 6A, 55m Cat 5e, Cat 6

2.5GBASE-T, **5GBASE-T** IEEE **802.3bz-2016**, NBASE-T, MGBASE-T 100m Cat 5e, Cat 6

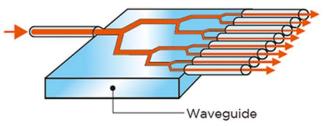
Passive Optical Network (PON)

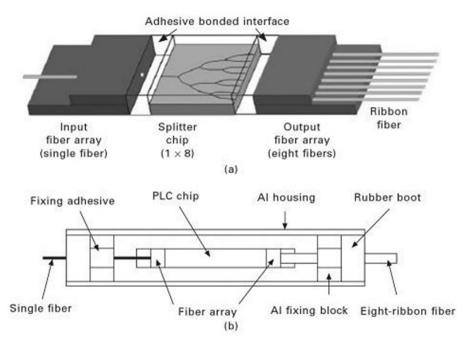
Optical Line Terminal (OLT) - service provider

Optical Network Terminals (Units) (ONTs) – end users

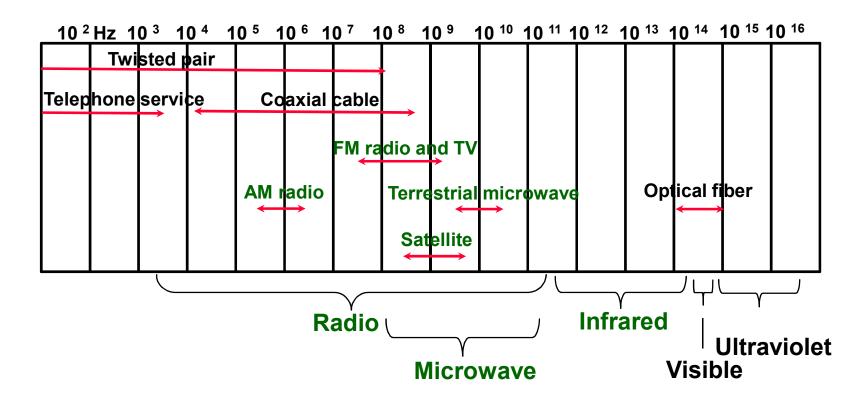

Downstream: broadcast, single mode, 1490 nm

Upstream : TDMA, single mode, 1310 nm

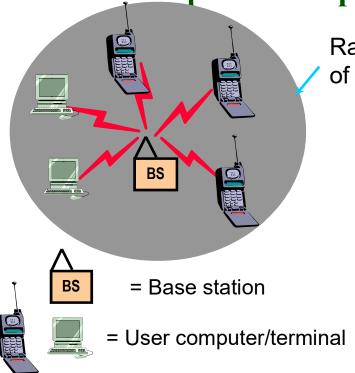

1550 nm is reserved for optional overlay services, e.g. RF (analog) video

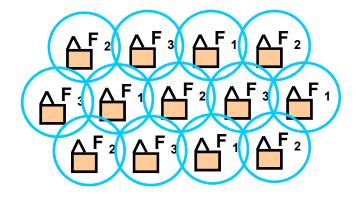


Passive Optical Network (PON)


PLC splitter (ex. 1x8 splits.)

Wireless transmission


- •Propagation of electromagnetic waves "in the air" (no need to establish a separate physical connection)
- •You can even cover very long distances with it.


Terrestrial radio (VHF)

• Short-range, low-speed mobile connection between the base station and the terminals.

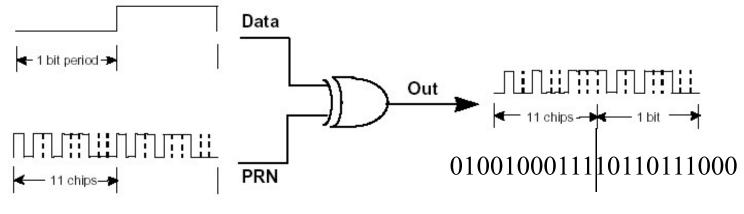
 Satisfactory availability, weather and position-dependent bit error rate.

Radio coverage area of base station

F₁, F₂, F₃ = Frequencies used in cell

Terrestrial radio (WLAN)

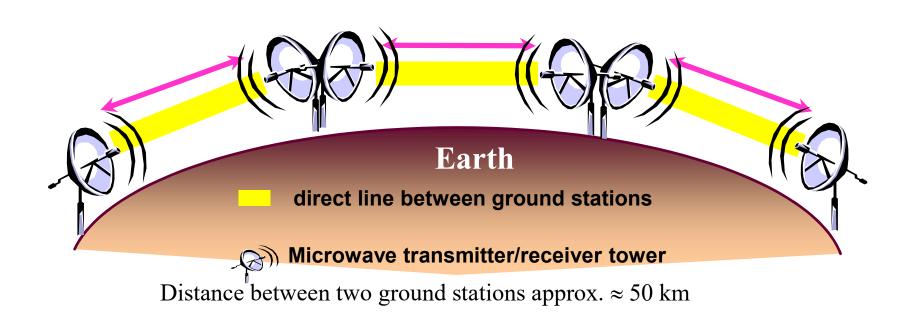
- Wireless LAN (WLAN) e.g. IEEE 802.11b
- Speed: 1, 2, 5.5, 11 Mbps (IEEE 802.11b)
- Frequency 2400-2483.5 MHz
- **Power: 100mW**
- Range 1Mbps (typical):
 460m in open area, 300m for handheld, 90m in office
- Range 11Mbps (typical):
 120m in open area, 90m handheld, 30m office
- Spread spectrum radio channel
 - Direct Sequence Spread Spectrum (DSSS), or
 - Frequency Hopped Spread Spectrum (FHSS)
- No need for frequency license



Terrestrial radio (WLAN)

- Spread spectrum radio channel
 - Higher bandwidth: reduced transmitter power, unchanged signal power

• Direct Sequence Spread Spectrum (DSSS)


11 Bit Barker Code (PRN): 1 0 1 1 0 0 1 1 0 0 0

- Demodulation with a correlator (removal of the Barker code)
- Frequency Hopped Spread Spectrum (FHSS)
 - Rapid change of transmitter frequencies according to some
 predefined function (followed by the receiver)

Terrestrial microwave

- Bridging medium or long distances (instead of expensive cables),
- between stable stations where there is "microwave line of sight." High speed, weather dependent.

Telecommunications satellites

- Microwave transmission (also for long-distance computer networks) between ground stations and satellites.
- high speed (although weather dependent: rain absorbs it),
 high propagation delay is a problem.
- Transponder: they monitor a certain spectrum, amplify it and retransmit it (in a different spectrum, with different polarization, to avoid interference). International agreements for frequency bands. Geostationary satellites at an altitude of about 36,000 km:
 - They can also cause a delay of 250-300 msec.
 - Three satellites can "cover" the entire earth.

Satellite frequencies

- Optimal is 1 10 GHz.
 - Below it are atmospheric noises, noises from electrical devices;
 - There is strong atmospheric attenuation above it.
- C-band 4/6 GHz
 - "uplink" 5.925 6.425 GHz
 - "downlink" 3.7 4.2 GHz
- KU band 12/14 GHz (requires higher transponder sensitivity)
 - uplink 14 14.5 GHz
 - downlink 11.7 12.2 GHz

Laser optical

- Short-distance, stable installation (e.g. between buildings),
- · high bandwidth,
- · weather dependent.

Factors for choosing the medium

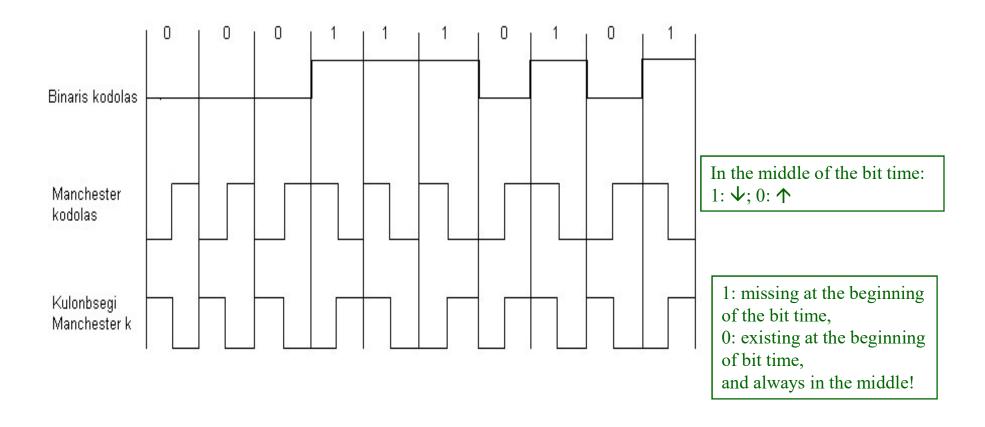
- Bandwidth and data transfer speed: choose the one that suits your needs
- **Distance:** consider the distance you can cover. You also need to consider the delay!
- Quality: difficulties are tolerable or not? (interference immunity, reliability, e.g. availability in bad weather)
- Suitability for Broadcasting
- Cost: the medium and the tools have different costs

Let's compare

	Terestrial radio	Laser	Microwave	Satellite
Transfer speed	16 Kbps	100 Mbps	100 Mbps	500MHz more 500Mbps
Max distance	10-50 Km	1-2 Km	100 Km	continent
Delay	3 μs/km	-	3 μs/km	250-300 msec
Noise tolerance	Weather dependent			
Robustness	average	good	good	kiváló
Broadcast	possible	point-point	point-point	suitable
Cost	Expensive devices			

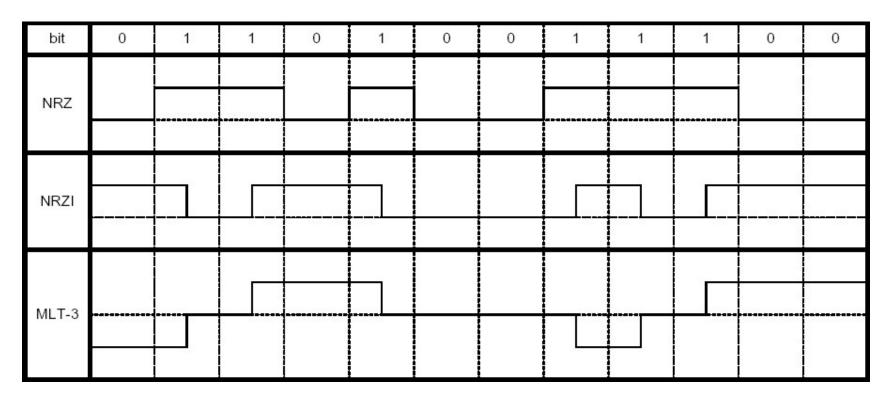
Codec

- Transmission modes can be
 - Baseband transmission
 - Broadband transmission
 (telephony: modulation –
 transmission of digital signals over an analog channel)
- Simple binary code (baseband)
 - for binary values the signal levels (voltage or current):
 - e.g. 1: 1V; 0: 0V
 - Problem synchronization :
 e.g. in case of all 0s no change in signal
 - Manchester encoding can help with this, for example.



Manchester encoding

- Manchester encoding
 - Each bit period is divided into 2 parts,
 - there is always a transition in the middle of the bit time (bit synchronous):
 - 1: high-low,
 - 0: low-to-high transition.
 - Disadvantage: double bandwidth requirement (pulses half as wide).
- Differential Manchester encoding (variant)
 - 1: missing transition at the beginning of the bit time,
 - 0: transition present at the beginning of the bit time and the
 - There is always a transition here in the middle of the bit,
 but
 - insensitive to signal polarity.


Example of three different codecs

MLT-3 Encoding

• Non - Return to Zero, NRZ- Invertive (switches at 1), Multi - Level Transition 3

- In case of all "1" e.g.: $1111=+1.0,-1.0 \rightarrow 1/4$ frequency decrease
- In case of all "0" \rightarrow no transmission (there may be a bit synchronization error)
- The max. frequency decreases, but bit sync cannot be extracted from it

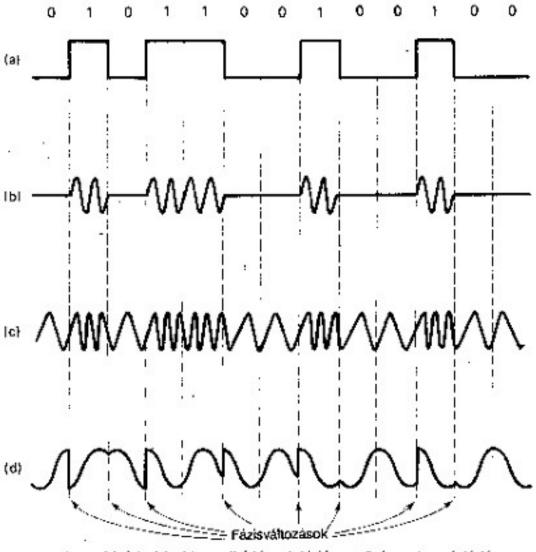
4B/5B Encoding · Control codes

				• Error detection	
Data Input (4 bits)	Code Group (5 bits)	NRZI pattern	Interpretation	• 25% loss (4+1)	
0000	11110		Data 0	 Synchronization 	
0001	01001	$\overline{}$	Data 1	• $4B/5B + MLT-3 \rightarrow 100BaseT$	
0010	10100		Data 2	1101 11011	
0011	10101		Data 3		
0100	01010		Data 4	1110 11100 Data H	
0101	01011	$\neg \neg$	Duta 5	1111 11101 Data F	
0110	01110		Duta 6	11111 Idie	
0111	01111		Data 7	Start of stream defimiter, part 1	
1000	10010		Data 8	1 0001 Start of stream definiter, part 2	
1001	10011	, <u> </u>	Data 9	01101 End of stream definiter, part 1	
1010	10110		Data A	00111 End of stream definiter, part 2	
1011	10111		Data B	00100 Transmit error	
1100	11010		Data C	other invalid codes	

Signal modulation

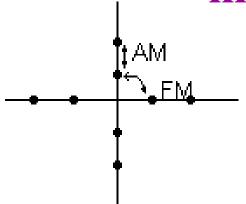
- This is what is needed, for example, for digital signal transmission over an analog telephone system
 - The telephone system: public switched network → a worldwide (analog) switched line network
- The problem is the transmission of digital signals over an analog switched line. A modem (modulator-demodulator) is required. Its function:
 - establishing and ending a connection (like a telephone)
 - dialing,
 - in-band signaling DTMF signals (2 sinuses at the same time out of 7)
 - conversion of the digital bit stream into a modulated carrier signal (back and forth).

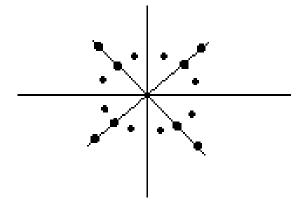
Existing Copper


Existing Copper

Converting a digital bitstream into a modulated carrier signal

- Modulation methods (sine carrier wave)
 - amplitude modulation: the amplitude of the carrier signal is changed;
 - frequency modulation: the frequency of the carrier signal is changed;
 - phase modulation: the phase of the carrier signal is changed;
 - and a combination of these (combined).


Modulation methods



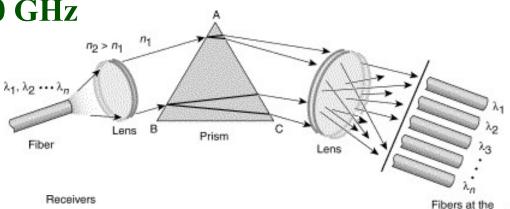
a) egy bináris jel; b) amplitúdómoduláció; c) frekvenciamoduláció;
 d) fázismoduláció

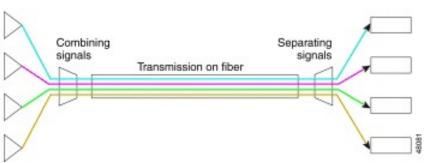
Combined amplitude and phase modulation

- 0, 90, 180 and 270 degrees per phase (4 pcs),
- two amplitude levels →
- 8 possible signals3 bits/baud modulation.

- 30 degree phase shifts, of which 8 have one and 4 have two amplitude levels:
- There can be 16 signal combinations with 4 bit/baud modulation.
- Quadrature Amplitude Modulation (QAM)
 It provides 9600 bps on a 2400 baud line.

Modems


- Shannon limit on telephone line: Bandwidth: 2,400 Hz 2,800 Hz , S/N 24 d B 30 dB $\Rightarrow \approx 24,000$ bps
- 1950: manufacturer specific, mainly FSK (300 bps 600 bps) and vestigial sideband (1200 bps 2400 bps).
- 1964: The first CCITT Modem Recommendation, V.21 (1964), 200 bps FSK modem (now 300 bps) V.34/V.8 interface
- 1968 : 4 Phase (2X2 QAM)
- 1984: 4X4 QAM, V.22bis
- 1984: technological breakthrough V.32 echo cancellation and trellis coding V.32bis 14,400 bps.
- 1989/90 : V.34 19,200 bps , 24,000 bps then 28,800 bps.
- 1996 : V.34 33,600 bps.
- Nowadays 56,600 bps (but it is asymmetric)
- But telephone bandwidth limits are typically not due to the subscriber loop, but to the bandpass filters of the switching machines
 - → much higher bandwidth is available on the subscriber loop (xDSL)



Optical modulation

Wavelength Division Multiplexing (WDM)

• > 64 channels 25-50 GHz

SONET/SDH:

Synchronous Optical Network/Synchronous Digital Hierarchy

STS-1:

Transmitters

Synchronous Transport Signal level 1

SONET	SDH	Data Rates
STS-1		51.840 Mbps
STS-3	STM-1	155.520 Mbps
STS-12	STM-4	622.080 Mbps
STS-48	STM-16	2,488.320 Mbps
STS-192	STM-48	9,953.280 Mbps

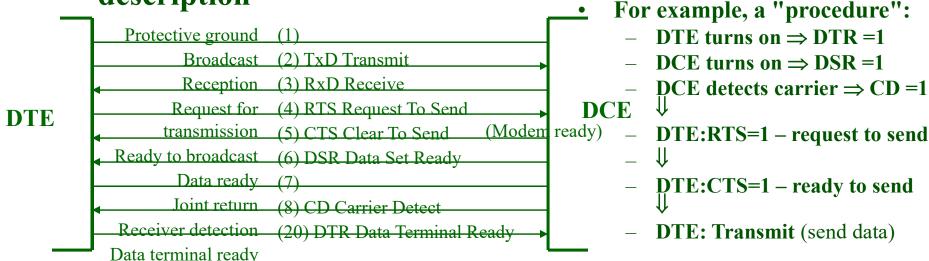
focal points

- Interface between a computer and a terminal or modem.
- Standard names:
 - Computer or terminal: Data Terminal Equipment: DTE
 - Modem or Data Circuit-Terminating Equipment: DCE
- Physical layer protocol:
 - mechanical
 - electrical
 - functional
 - proceedings

definition of interfaces.

- RS-232-C is the third, improved version of RS-232
 - Created
 - by : Electronic Industries Association \rightarrow EIA RS-232-C
 - CCITT version: V.24 (very similar) (CCITT is a UN organization)

CCITT: Comite Consultatic International de Télégraphique et Téléphonique

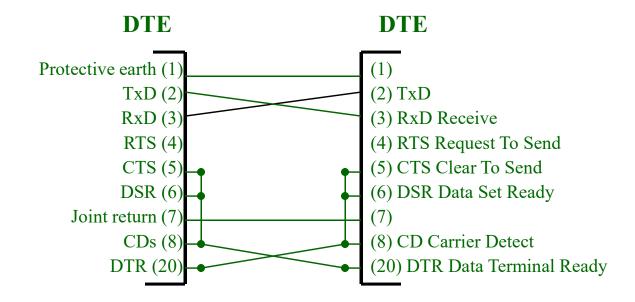

- The mechanical definition:
 - -47.04+-0.13 mm wide 25-pin (D-CANNON) connector
 - The top row needles are numbered 1-13 from left to right, the bottom 14-25.
- The electrical specification

A voltage less than -3 V means a binary 1, Greater than +4 V: binary 0. Cables up to 15 m,

20 Kbps speed is allowed.

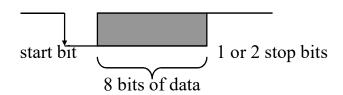
• Functional specification: designation of circuits associated with pins and their description

The circuits not shown are circuits for synchronous transmission or other signals, e.g. ringing signal detection.


• The procedure specification:

a protocol that defines the valid sequences of events. It is based on action-reaction event pairs.

The null modem


- Cable suitable for DTE-DTE connection:
 - R T/T R swap and some crossovers (and loopbacks)

Detecting bit times

Asynchronous case: start-stop bit solution

- The timing must be so precise that the bit time does not fall out during the transmitted data.
- standard speeds are needed that DTE and DCE agree on (or manually configure):
 1200, 2400, 4800, 9600 bps, etc.
- Start-stop bits: loss (poor channel utilization)
- Synchronous case: separate bit timing spike
 - The DCE (modem) dictates the transmission speed.
 - no speed needs to be configured in the DTE
 - (sync character or flag) for frame boundaries.

Analog signals on a digital line

- In telephony, trunks are digital
- Subscriber loops, on the other hand, are analog.
- It is therefore necessary:
 - Coder-decoder (codec): which converts analog signals into digital bit sequences (back and forth)

Digital data on an analog voice channel

- The analog voice channel
 - The bandwidth is 0-4 KHz, this is (according to Nyquist)
 - written at 8000 samples/sec . That is
 - 125 μ sec/sample (one frame every 125 $\mu sec)$ and convert this to an 8-bit (7-bit in the US) number
 - its name is PCM (Pulse Code Modulation)
 - One audio channel has a speed of 2*4K*8 → 64Kbps (in America only 7 bits → there only 56 Kbps)

	USA, Japan (CCITT, Bell System)	Europe (CCITT)
Standard	$T_1: 1.544 \text{ Mbps} \rightarrow 24 \text{ PCM channels}$	$E_1: 2.048 \text{ Mbps}: \rightarrow 30\text{PCM} + 2 \text{ signal}$
PCM rates \{	$T2:6.312_{Mbps}$	channels.
	T3: 44.736 _{Mbps}	E ₂ : 8.848 Mbps
	T4: 274.176 _{Mbps}	E ₃ : 34.304 Mbps
	Поро	E ₄ : 565.148 Mbps

PCM carriers

- The T1 carrier multiplexes 24 PCM channels
 - 7 data + 1 control bit per channel, 56 Kbps;
 - one frame: 24 * 8 bits + 1 framing bit = 193 bits;
 - 1 frame (193 bits)/ 125 μsec: 1.544 Mbps
- The E1 carrier bundles 30 PCM+2 signaling channels
 - in the 125 µsec frame;
 - 256 bits / 125 μsec : 2.048 Mbps

	USA, Japan (CCITT, Bell System)	Europe (CCITT)
Standard	$T_1: 1.544 \text{ Mbps} \rightarrow 24 \text{ PCM channels}$	$E_1: 2.048 \text{ Mbps}: \rightarrow 30 \text{PCM} + 2 \text{ signal}$
PCM rates {	T2: 6.312 _{Mbps}	channels.
	T3: 44.736 _{Mbps}	E ₂ : 8.848 Mbps
l	T4: 274.176 _{Mbps}	E ₃ : 34.304 Mbps
	Mohs	E ₄ : 565.148 Mbps

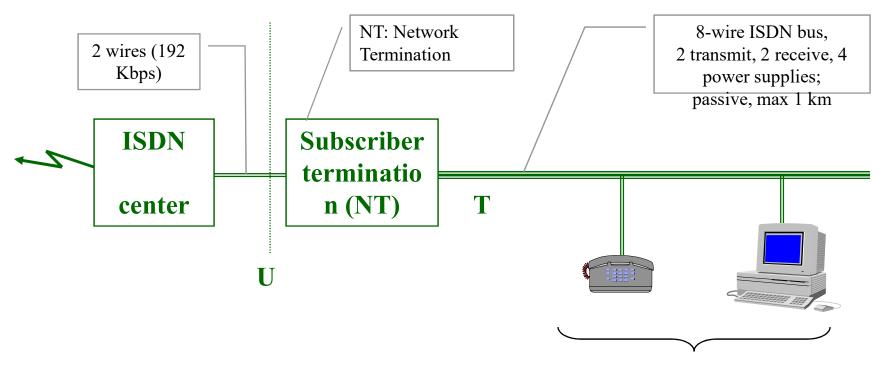
Coding systems

How could the number of bits to be transmitted be reduced by coding?

- With differential pulse code modulation: the difference between the current and previous sample is transmitted
- With delta modulation: only 1 bit is used to indicate whether the signal is increasing or decreasing (it can be lost)
- With predictive encoding: extrapolating from a few previous values, the next value is predicted, and then the difference between the current and estimated values is transmitted. (The decoder also estimates using the same method.)

Fast circuit-switched network: ISDN

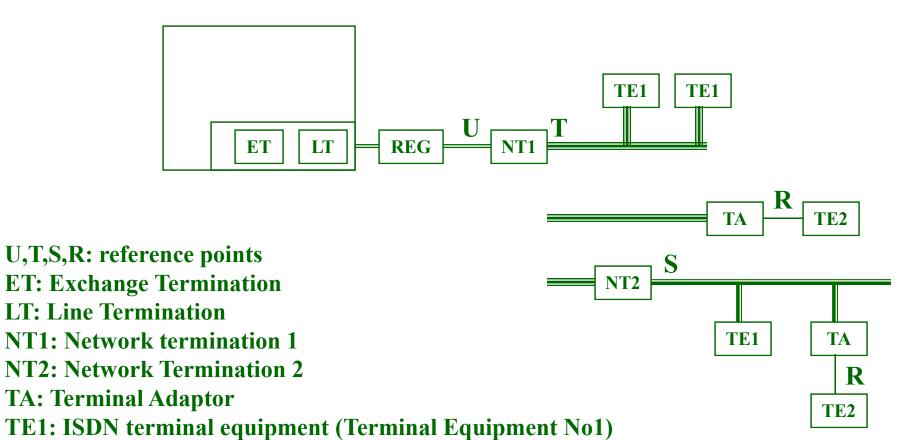
- ISDN (Integrated Services Digital Network): integrated services digital network
- Design goal:
 - integrate voice and digital transmission;
 - the telephone system needs to be redesigned...
 - therefore
- standardized by CCITT (not ISO).
- Approved in 1984, refined in 1988...
- It's like line switching, only it builds/breaks very quickly...



The basic idea of ISDN

- The digital bit pipe,
 - where bits can flow in both directions...
 - Separate signaling channel for connection management,
 - but once the connection is established, any digital data (telephone, fax, digital data such as images, etc.) can be transmitted.
 - The bitpipe is bundled: it supports multiple independent channels using time division multiplexing.

The structure


After NT, there can be ISPBX, which can connect S reference point devices, e.g. LAN ...


Addressable ISDN devices
The addresses are assigned by the NT at powerup.

The NT also handles "access" to the ISDN bitpipe. A maximum of 8 TE1 devices can be connected to the AT interface.

The structure

Általános

REG: Regenerator

TE2: Non-ISDN terminal equipment

CCITT channel types

A: 4 KHz analog telephone channel

B: 64 Kbps PCM channel for voice and data transmission

C: 8 v. 16 Kbps digital channel

D: 16 v. 64 Kbps digital channel for out-of-band signals

E: 64 Kbps digital channel for in-band signaling

H: 384 v, 1536 v. 1920 Kbps digital channel

Standard combinations:

- 1) Basic access: 2 B + 1 D ₁₆
- 2) Primary access:

USA and Japan: 23 B +1 D $_{64}$ (~ T1)

Europe: 30 B + 1 D $_{64}$ (~E1)

3) Hybrid: 1 A + 1 C (practically not used)

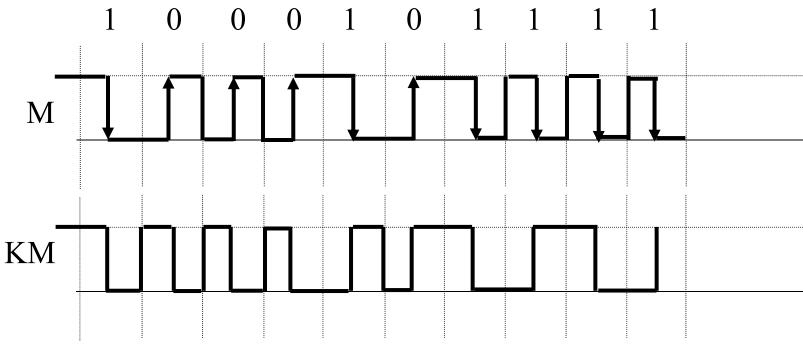
- Task 1: Data transfer rate
 - What is the minimum signal-to-noise ratio required to place an E1 carrier (2.048 Mbps) on a 50KHz bandwidth line?

Shannon:

Max-data-transfer-speed = $H \log_2 (1 + S/N)$ [bps]

$$2.048 * 10^{6} = 50 * 10^{3} * \log_{2}(1 + S/N)$$

 $40.96 = \log_{2}(1 + S/N)$
 $2^{40.96} = 1 + S/N$
 $2.14 * 10^{12} = 1 + S/N$
 $S/N \approx 2.14 * 10^{12}$
 $S/N_{[DB]} \approx 10 * \log_{10}(2.14 * 10^{12})$
 $S/N_{[DB]} \approx 10 * 12.33 = 123 dB$


- Task 2: Coding
 - Sketch the signal changes for the following bit stream: 0 0 0 1 1 1 0 1 0 1
 - a) binary,
 - b) Manchester and
 - c) differential Manchester coding!

Manchester: in the middle

1 - \downarrow transition; 0 - \uparrow transition.

differential Manchester encoding:

- 1 missing transition at the beginning of the bit time,
- 0 transition at the beginning of the bit time.

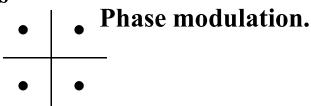
- Task 3: Data transfer rate
 - What maximum signal-to-noise ratio can we expect for a telephone line if it is transmitted over a PCM channel? (H =4kHz, 64Kbps)

Shannon:

Max-data-transmission-speed = H *
$$\log_2(1 + S/N)$$

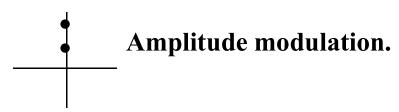
64 * 10 ³ = 4 * 10 ³ * $\log_2(1 + S/N)$
16 = $\log_2(1 + S/N)$
2 ¹⁶ = 1 + S/N
65536 = 1 + S/N
S/N = 65535
S/N _[DB] = 10 $\log_{10}(S/N)$ = 10* $\log_{10}65535$ = 10* 4.82
S/N _[DB] = 48.2 dB max .

- Task 4: Data transfer rate
 - The bandwidth of a data transmission channel is 30 MHz, on which we want to transmit data at a maximum speed of 120 Mbps.
 - a) At least how many signals do we need to be able to distinguish on the physical medium to achieve this maximum data transfer rate?
 - b) What is the maximum signal speed on the channel?
 - c) What minimum signal-to-noise ratio do we need to ensure for this maximum speed?


a) Nyquist : data rate = 2 H log
$$_2$$
 V $_2$ 120*10 $_6$ = 2*30*10 $_6$ * log $_2$ V $_2$ = log $_2$ V , V = 4 You must be able to distinguish at least 4 signs .

b)
$$\log_2 V \rightarrow \text{bit/Baud}$$

Max . signaling speed : 2 * H = 2*30*10 6 = **60*10** 6 B aud


c) Shannon $120*10^{6} = 30*10^{6} * \log_{2}(1 + S/N) \rightarrow 4 = \log_{2}(1 + S/N) \rightarrow 16 - 1 = 15 = S/N$ S/N _{IDBI} = $10*\log_{10}15 = 11.76$ [dB]

- Task: 5 Data transfer rate
 - The data points of a modem's operating diagram can be characterized by the following coordinates:
 - a) (1,1); (1,-1); (-1, 1); (-1, -1)
 - b) (0, 1); (0, 2)
 - How many bps of data transfer speed can the modem achieve with these parameters at a signaling rate of 1200 baud? What modulation does the modem use?
- a) V = 4; $log_2V = 2$, **2 bits/baud**, data bit = signal bit * bit/baud, data transfer rate = 12000 * 2 = 2400 bps

b) V = 2; $\log_2 V = 1$ bit/baud data rate = 1200 bps

- Task 6: Comparison of line and packet switching
 - X bit message transmission a., line-switched, or
 b., on a packet-switched network (non-interleaved).
 - Parameters :

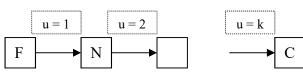
Vonalkapcsolt hálózat	Áramkör felépítési idő	s [sec]
	Adatátviteli sebesség	b [bps]
Csomagkapcsolt hálózat	Ugrások száma	k
	Ugrásonként késleltetés (feldolgozási idő)	d [sec]
	Csomagméret	p [bit]
	Adatátviteli sebesség	b [bps]

Questions:

- How long will the delay time be? (when does the first bit arrive)? $T_k = ?$
- What will be the data transfer time? $T_{\text{átv}} = ?$

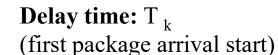
Problem 6 solution

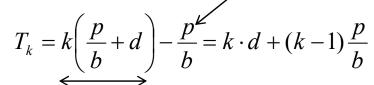
Line-connected network: $T_k = \text{circuit setup time} = s [\text{sec}]$, $T_{\text{átv}} = s + X/b [\text{sec}]$


u = k

Packet switched network:

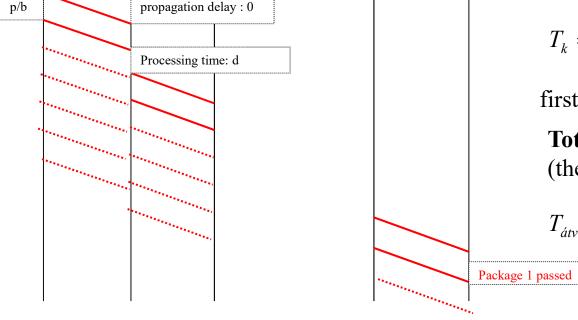
Number of packets: $\mathbf{n} = \mathbf{X}/\mathbf{p}$; number of hops: \mathbf{k}


1 jump requires $\mathbf{p/b} + \mathbf{d}$ time


(packet transfer + delay time)

u = 2

u = 1



first package arrives completely

Total transfer time: T_{transfer} (the end of last package arrival)

$$T_{\dot{a}tv} = k \left(\frac{p}{b} + d\right) + (n-1) \left(\frac{p}{b}\right)$$

the rest will arrive completely

Problem 6 solution

Packet switched network:

Total transfer time: T _{transfer} (last package arrival end)

$$T_{atv} = k \left(\frac{p}{b} + d\right) + (n-1) \left(\frac{p}{b}\right)$$

Number of packages: $n = \frac{X}{p}$

$$T_{\text{átv}} = k \left(\frac{p}{b} + d\right) + (n-1)\left(\frac{p}{b}\right) \qquad T_{\text{átv}} = k \left(\frac{p}{b} + d\right) + \left(\frac{X}{p} - 1\right)\frac{p}{b} \Rightarrow k \cdot d + \frac{p}{b}\left(k - 1 + \frac{X}{p}\right)$$

first package arrives completely

the rest arrive completely

(interleaved processing, the packets follow each other directly)

Packet switched network:

$$T_{atv} = k \cdot d + (k-1)\frac{p}{b} + \frac{X}{b}$$

It is better if:

$$k \cdot d + (k-1)\frac{p}{b} < s$$

Line- connected network:

$$T_{\acute{a}tv} = s + \frac{X}{h}$$