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Components of Resource 
Management

Resource Specification Language (RSL) is 
used to communicate requirements 
The Globus Resource Allocation Manager 
(GRAM) API allows programs to be started 
on remote resources
A layered architecture allows application-
specific resource brokers and co-allocators
(e.g. DUROC) to be defined in terms of 
GRAM services
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GRAM is responsible for

Parsing and processing the RSL
specifications

Enabling remote monitoring and managing
of jobs 

Updating MDS with information regarding 
the availability of the resources it manages
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Functionalities of GRAM

GRAM allows you to run jobs remotely

Provides an API for
– Submitting

– Monitoring

– Terminating

your job
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GRAM Components

Globus 
Security

Infrastructure

Job Manager/job

GRAM client API calls to 
request resource allocation

and process creation.

MDS client API calls
to locate resources

Query current status
of resource

Create

RSL Library

Parse

Request
Allocate &

create processes

Process

Process

Process

Monitor &
control

Site boundary

Client MDS: Grid Index Info Server

Gatekeeper

MDS: Grid Resource Info Server

Local Resource Manager

MDS client API calls
to get resource info

GRAM client API state
change callbacks
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How GRAM works?

To run a job remotely, 
– a GRAM gatekeeper server must be running on a remote 

computer, listening at port 2119
– The application must be compiled on that remote 

machine

The execution begins:
– When a GRAM user application runs on the client 

machine
– Sending a job request to the remote site
– A job is submitted using the client API and creating an

RSL specification

Job request contains:
– Executable, stdin, stdout
– Name and port of the remote computer
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How GRAM works?

The request is sent to the GRAM gatekeeper
server of the remote computer which:
– Checks globus certificate

– Creates a job manager for the job

The job manager:
– Parses RSL

– Starts and monitors the remote program

– Communicates state changes to the client

– Terminates when the job terminates
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Components of GRAM

Job request – a request to gatekeeper to 
create one or more job processes, expressed 
in the RSL
This request guides:
– Resource selection (when and where to 

create the job processes)
– Job process creation (what job processes to 

create)
– Job control (how the processes should 

execute)
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Components of GRAM

Gatekeeper – a process, running as root, 
which begins the process of handling allocation 
requests 
Its tasks:
– Mutually authenticates with the client
– Maps the requestor to a local user
– Starts a job manager on the local host as the 

local user
– Passes the allocation arguments to the newly 

created job manager
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Components of GRAM

Job Manager – one process for each job, to 
fulfill every request submitted to the 
gatekeeper 

Its tasks:
– Starts the job on the local system (e.g. by 

any local resource manager like Condor, 
SGE, etc.)

– Handles all further communication with the 
client
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Two Components 
of the Job Manager

Common Component
– Translates messages received from the 

gatekeeper and client into an internal API
– Translates callback requests from the 

machine specific components into messages 
to the application manager

Machine-Specific Component
– Implements the internal API in the local 

environment that includes
> Calls to the local system
> Message to the resource monitor
> Inquiries to the MDS
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Resource Management APIs

Globus Toolkit has APIs for RSL, GRAM, 
and DUROC:
– globus_rsl

– globus_gram_client

– globus_gram_myjob

– globus_duroc_control

– globus_duroc_runtime
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Resource Specification Language

Much of the power of GRAM is in the RSL

Common language for specifying job 
requests
– GRAM service translates this common 

language into scheduler specific language

GRAM service constrains RSL to a 
conjunction of (attribute=value) pairs
– E.g. &(executable=“/bin/ls”)(arguments=“-l”)

GRAM service understands a well defined set 
of attributes
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globus_rsl

Module for manipulating RSL expressions
– Parse an RSL string into a data structure

– Functions to manipulate the data structure

– Unparse the data structure into a string

Can be used to assist in writing brokers or 
filters which refine an RSL specification
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globus_rsl

Contains three main parts:
– Information about the application program

– Information about the remote computer

– Control information (e.g. job_state_mask)
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RSL Attributes for the Program

(executable=string)
– Program to run
– A file path (absolute or relative) or URL

(directory=string)
– Directory in which to run (default is $HOME)

(arguments=arg1 arg2 arg3...)
– List of string arguments to program

(environment=(E1 v1)(E2 v2))
– List of environment variable name/value pairs
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RSL Attributes for the Program

(stdin=string)
– Stdin for program
– A file path (absolute or relative) or URL

(stdout=string)
– Stdout for program
– A file path (absolute or relative) or URL

(stderr=string)
– Stderr for program
– A file path (absolute or relative) or URL
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RSL Attributes for Control

(count=integer)
– Number of processes to run (default is 1)

(hostCount=integer)
– On SMP multi-computers, number of nodes 

to distribute the “count” processes across

(project=string)
– Project (account) against which to charge

(queue=string)
– Queue into which to submit job
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RSL Attributes for Control

(maxWallTime=integer)
– Maximum wall clock runtime in minutes

(maxCpuTime=integer)
– Maximum CPU runtime in minutes
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RSL Attributes for Control

(maxMemory=integer)
– Maximum amount of memory for each 

process in megabytes

(minMemory=integer)
– Minimum amount of memory for each 

process in megabytes
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RSL Attributes for Control

(jobType=value)
– Value is one of “mpi”, “single”, “multiple”, 

or “condor”
> mpi: Run the program using “mpirun -np <count>”

> single: Only run a single instance of the program, and 
let the program start the other count-1 processes.

> multiple: Start <count> instances of the program using 
the appropriate scheduler mechanism

> condor: Start a <count> Condor processes running in 
“standard universe”
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RSL Attributes for Control

(gramMyjob=value)
– Value is one of “collective”, “independent”

– Defines how the globus_gram_myjob library 
will operate on the <count> processes

> collective: Treat all <count> processes as part of a 
single job

> independent: Treat each of the <count> processes as 
an independent uniprocessor job 

(dryRun=true)
– Do not actually run job



May 9, 2003 23Globus Toolkit™ Developer Tutorial: GRAM

Constraints: “&”

For example:

“Create 5-10 instances of myprog, each 
on a machine with at least 64 MB 
memory that is available to me for 4 
hours”

& (count>=5) (count<=10)

(max_time=240) (memory>=64)

(executable=myprog)
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Disjunction: “|”

For example:
Create 5 instances of myprog on a 
machine that has at least 64MB of 
memory, or 10 instances on a machine 
with at least 32MB of memory

& (executable=myprog)
( | (&(count=5)(memory>=64))         

(&(count=10)(memory>=32)))
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Resource Management APIs

Globus Toolkit has APIs for RSL, GRAM, 
and DUROC:
– globus_rsl

– globus_gram_client

– globus_gram_myjob

– globus_duroc_control

– globus_duroc_runtime
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globus_gram_client

globus_gram_client_job_request()
– Submit a job to a remote resource

– Input:
> Resource manager contact string

> RSL specifying the job to be run

> Callback contact string, for notification

– Output:
> Job contact string
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GRAM Components
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Local Resource Manager

MDS client API calls
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GRAM client API state
change callbacks

MDS client API calls
to locate resources

MDS: Grid Index Info Server
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Finding The Gatekeeper

globus_gram_client_job_request() requires a 
resource manager contact string to find the 
gatekeeper

hostname[:port][/service][:subject]

– hostname – host of gatekeeper
> required

– port – port on which gatekeeper is listening
> defaults to well known port = gsigatekeeper = 2119

– service – gatekeeper service to invoke
> defaults to “jobmanager”

– subject – security subject name of gatekeeper
> Defaults to standard host cert form: “…/cn=host/hostname”
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Job Contact

globus_gram_client_job_request() returns 
a job contact string 
– Other globus_gram_client_*() functions use 

the job contact to find the right job 
manager to which requests are made

– Job contact string can be passed between 
processes, even on different machines



May 9, 2003 30Globus Toolkit™ Developer Tutorial: GRAM
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globus_gram_client

globus_gram_client_job_status()
– Check the status of the job

> UNSUBMITTED, PENDING, ACTIVE, FAILED, DONE, 
SUSPENDED

– Can also get job status through callbacks
> globus_gram_client_callback_{allow,disallow,check}()

globus_gram_client_job_cancel()
– Cancel/kill a pending or active job
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globus_gram_client

globus_gram_client_job_signal()
– Controls the jobmanager

– COMMIT_REQUEST*
> submit job

– COMMIT_END*
> Cleanup job

– COMMIT_EXTEND*
> Wait additional N seconds

– * when jobs have “(two_phased=yes)”
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globus_gram_client

globus_gram_client_job_signal(), continued
– STDIO_UPDATE

> Allows client to submit an RSL that changes some I/O 
attributes of the job

stdout, stderr, stdout_position, stderr_position, 
remote_io_url

– STDIO_SIZE
> verify that streamed I/O has been completely received

– STOP_MANAGER
> Tells JM to exit, but leave the job running
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State Change Callbacks

GRAM managed job can be in the states:
– Unsubmitted, Pending, Active, Failed, Done, 

Suspended

GRAM client can register for asynchronous 
state change callbacks
– Registration can be done either:

> during submission by

globus_gram_client_job_request()

> or later by any process, using the job contact

globus_gram_client_job_callback_register()
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globus_gram_client

globus_gram_client_callback_allow()
globus_gram_client_callback_disallow()
globus_gram_client_callback_check()
– Create/destroy a client port to listen for 

asynchronous state change callbacks

– Callback to local function on state change

globus_gram_client_job_callback_register()
globus_gram_client_job_callback_unregister()
– Register with job manager to receive callbacks
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globus_gram_myjob

When a set of processes in a single job 
startup, they may need to self organize
– How many processes in the job?
– What is my rank within the job?
– Simple send/receive between job processes.

This API is a minimal set of functions to allow 
this self organization
This is a bootstrapping library.  It is NOT 
meant to be a general purpose message 
passing library for use by applications



May 9, 2003 37Globus Toolkit™ Developer Tutorial: GRAM

DUROC Review

Simultaneous allocation of a resource set
– Handled via optimistic co-allocation based 

on free nodes or queue prediction
– In the future, advance reservations will also 

be supported

globusrun will co-allocate specific multi-
requests
– Uses a Globus component called the 

Dynamically Updated Request Online
Co-allocator (DUROC)
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Multirequest: “+”

A multirequest allows us to specify multiple 
resource needs, for example

+ (& (count=5)(memory>=64)

(executable=p1))

(&(network=atm) (executable=p2))
– Execute 5 instances of p1 on a machine with at least 

64M of memory

– Execute p2 on a machine with an ATM connection

Multirequests are central to co-allocation
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A Co-allocation Multirequest
+( & (resourceManagerContact=

*** “flash.isi.edu:2119/jobmanager-
lsf:/O=Grid/…/CN=host/flash.isi.edu”)

(count=1)
(label="subjob A")
(executable= my_app1)

)
( & (resourceManagerContact= 

***“sp139.sdsc.edu:2119:/O=Grid/…/CN=host/sp097.sdsc.edu")
(count=2)
(label="subjob B")
(executable=my_app2)

)

Different executables

Different resource
managers

Different
counts
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RSL Attributes For DUROC

(subjobStartType=value)
– Alters the startup barrier mechanism
– values are “strict-barrier”, “loose-barrier”, 

“no-barrier”

(subjobCommsType=value)
– values are “blocking-join” and 

“independent”
– if value is set to “independent”, the subjob 

won’t be seen from the other subjobs when 
doing inter-subjob communication.
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RSL Attributes For DUROC

(label=string)
– Identifier for this subjob

(resourceManagerContact=string)
(resourceManagerName=string)
– Resource manager to which to submit a 

subjob
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globus_duroc_control Module

Submit a multi-request

Edit a pending request
– Add new nodes, edit out failed nodes

Commit to configuration
– Delay to last possible minute

– Barrier synchronization

Initialize computation

Monitor and control collection  
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globus_duroc_runtime Module

globus_duroc_runtime_barrier()
– All processes in DUROC job must call this

– It will wait until the DUROC control module 
releases all processes from the barrier

globus_duroc_runtime_inter_subjob_*()
– Bootstrap library between subjobs

globus_duroc_runtime_intra_subjob_*()
– Bootstrap library within a subjob
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DUROC Architecture
Controlled

Jobs

DUROC RSL 
multi-request

Job 1

RM1

Job 4

Job 5

RM4

Job 2

RM2

Job 3

RM3

Subjob status

Edit request Barrier
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Job Manager Files 

GRIS

Client

GASS_CACHE

stdout

stderr

Staged
EXE

Staged
stdin

UP

X509_USER_PROXY

Gatekeeper
Submission

Scheduler
Desc.
Exe=x
Args=y
Env=z

Job
statusmonitoring

Jobmanager JOB

UP



Using Information for
Resource Brokering

“10 GFlops, EOS data,
20 Mb/sec -- for 20 mins”

Metacomputing
Directory
Service

GRAMGRAMGRAM

Resource
Broker

Info service:
location + selection

Globus Resource
Allocation Managers

GRAM

Fork
LSF
EASYLL
Condor
etc.

“What computers?”
“What speed?”
“When available?”

“50 processors + storage
from 10:20 to 10:40 pm”

“20 Mb/sec”
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RSL

Information 
Service

RSL
specialization

Broker

Queries
& Info

Resource 
Management Architecture

Application

GRAM GRAM

Simple ground RSL

Co-allocator
Ground RSL

Local
resource
managers

GRAM

LSF EASY-LL NQE
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Resource Broker

The Globus Toolkit does not include a 
resource broker or a metascheduler!

It is the task of the user to access MDS 
(GIIS and GRIS) and select the remote site 
where the program should run
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Resource Broker

The Globus team helped many people to 
build brokers using GRAM and MDS 
services 

Several brokers now exist:
– Condor-G, DRM, PUNCH, Nimrod/G, Cactus, 

AppLeS, 
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