
GRAM: Grid Resource
Allocation & Management

Globus Toolkit™ Developer Tutorial

The Globus Project™
Argonne National Laboratory

USC Information Sciences Institute

http://www.globus.org/

Copyright (c) 2002 University of Chicago and The University of Southern California. All Rights Reserved.
This presentation is licensed for use under the terms of the Globus Toolkit Public License.
See http://www.globus.org/toolkit/download/license.html for the full text of this license.

http://www.globus.org/

May 9, 2003 2Globus Toolkit™ Developer Tutorial: GRAM

Components of Resource
Management

Resource Specification Language (RSL) is
used to communicate requirements
The Globus Resource Allocation Manager
(GRAM) API allows programs to be started
on remote resources
A layered architecture allows application-
specific resource brokers and co-allocators
(e.g. DUROC) to be defined in terms of
GRAM services

May 9, 2003 3Globus Toolkit™ Developer Tutorial: GRAM

GRAM is responsible for

Parsing and processing the RSL
specifications

Enabling remote monitoring and managing
of jobs

Updating MDS with information regarding
the availability of the resources it manages

May 9, 2003 4Globus Toolkit™ Developer Tutorial: GRAM

Functionalities of GRAM

GRAM allows you to run jobs remotely

Provides an API for
– Submitting

– Monitoring

– Terminating

your job

May 9, 2003 5Globus Toolkit™ Developer Tutorial: GRAM

GRAM Components

Globus
Security

Infrastructure

Job Manager/job

GRAM client API calls to
request resource allocation

and process creation.

MDS client API calls
to locate resources

Query current status
of resource

Create

RSL Library

Parse

Request
Allocate &

create processes

Process

Process

Process

Monitor &
control

Site boundary

Client MDS: Grid Index Info Server

Gatekeeper

MDS: Grid Resource Info Server

Local Resource Manager

MDS client API calls
to get resource info

GRAM client API state
change callbacks

May 9, 2003 6Globus Toolkit™ Developer Tutorial: GRAM

How GRAM works?

To run a job remotely,
– a GRAM gatekeeper server must be running on a remote

computer, listening at port 2119
– The application must be compiled on that remote

machine

The execution begins:
– When a GRAM user application runs on the client

machine
– Sending a job request to the remote site
– A job is submitted using the client API and creating an

RSL specification

Job request contains:
– Executable, stdin, stdout
– Name and port of the remote computer

May 9, 2003 7Globus Toolkit™ Developer Tutorial: GRAM

How GRAM works?

The request is sent to the GRAM gatekeeper
server of the remote computer which:
– Checks globus certificate

– Creates a job manager for the job

The job manager:
– Parses RSL

– Starts and monitors the remote program

– Communicates state changes to the client

– Terminates when the job terminates

May 9, 2003 8Globus Toolkit™ Developer Tutorial: GRAM

Components of GRAM

Job request – a request to gatekeeper to
create one or more job processes, expressed
in the RSL
This request guides:
– Resource selection (when and where to

create the job processes)
– Job process creation (what job processes to

create)
– Job control (how the processes should

execute)

May 9, 2003 9Globus Toolkit™ Developer Tutorial: GRAM

Components of GRAM

Gatekeeper – a process, running as root,
which begins the process of handling allocation
requests
Its tasks:
– Mutually authenticates with the client
– Maps the requestor to a local user
– Starts a job manager on the local host as the

local user
– Passes the allocation arguments to the newly

created job manager

May 9, 2003 10Globus Toolkit™ Developer Tutorial: GRAM

Components of GRAM

Job Manager – one process for each job, to
fulfill every request submitted to the
gatekeeper

Its tasks:
– Starts the job on the local system (e.g. by

any local resource manager like Condor,
SGE, etc.)

– Handles all further communication with the
client

May 9, 2003 11Globus Toolkit™ Developer Tutorial: GRAM

Two Components
of the Job Manager

Common Component
– Translates messages received from the

gatekeeper and client into an internal API
– Translates callback requests from the

machine specific components into messages
to the application manager

Machine-Specific Component
– Implements the internal API in the local

environment that includes
> Calls to the local system
> Message to the resource monitor
> Inquiries to the MDS

May 9, 2003 12Globus Toolkit™ Developer Tutorial: GRAM

Resource Management APIs

Globus Toolkit has APIs for RSL, GRAM,
and DUROC:
– globus_rsl

– globus_gram_client

– globus_gram_myjob

– globus_duroc_control

– globus_duroc_runtime

May 9, 2003 13Globus Toolkit™ Developer Tutorial: GRAM

Resource Specification Language

Much of the power of GRAM is in the RSL

Common language for specifying job
requests
– GRAM service translates this common

language into scheduler specific language

GRAM service constrains RSL to a
conjunction of (attribute=value) pairs
– E.g. &(executable=“/bin/ls”)(arguments=“-l”)

GRAM service understands a well defined set
of attributes

May 9, 2003 14Globus Toolkit™ Developer Tutorial: GRAM

globus_rsl

Module for manipulating RSL expressions
– Parse an RSL string into a data structure

– Functions to manipulate the data structure

– Unparse the data structure into a string

Can be used to assist in writing brokers or
filters which refine an RSL specification

May 9, 2003 15Globus Toolkit™ Developer Tutorial: GRAM

globus_rsl

Contains three main parts:
– Information about the application program

– Information about the remote computer

– Control information (e.g. job_state_mask)

May 9, 2003 16Globus Toolkit™ Developer Tutorial: GRAM

RSL Attributes for the Program

(executable=string)
– Program to run
– A file path (absolute or relative) or URL

(directory=string)
– Directory in which to run (default is $HOME)

(arguments=arg1 arg2 arg3...)
– List of string arguments to program

(environment=(E1 v1)(E2 v2))
– List of environment variable name/value pairs

May 9, 2003 17Globus Toolkit™ Developer Tutorial: GRAM

RSL Attributes for the Program

(stdin=string)
– Stdin for program
– A file path (absolute or relative) or URL

(stdout=string)
– Stdout for program
– A file path (absolute or relative) or URL

(stderr=string)
– Stderr for program
– A file path (absolute or relative) or URL

May 9, 2003 18Globus Toolkit™ Developer Tutorial: GRAM

RSL Attributes for Control

(count=integer)
– Number of processes to run (default is 1)

(hostCount=integer)
– On SMP multi-computers, number of nodes

to distribute the “count” processes across

(project=string)
– Project (account) against which to charge

(queue=string)
– Queue into which to submit job

May 9, 2003 19Globus Toolkit™ Developer Tutorial: GRAM

RSL Attributes for Control

(maxWallTime=integer)
– Maximum wall clock runtime in minutes

(maxCpuTime=integer)
– Maximum CPU runtime in minutes

May 9, 2003 20Globus Toolkit™ Developer Tutorial: GRAM

RSL Attributes for Control

(maxMemory=integer)
– Maximum amount of memory for each

process in megabytes

(minMemory=integer)
– Minimum amount of memory for each

process in megabytes

May 9, 2003 21Globus Toolkit™ Developer Tutorial: GRAM

RSL Attributes for Control

(jobType=value)
– Value is one of “mpi”, “single”, “multiple”,

or “condor”
> mpi: Run the program using “mpirun -np <count>”

> single: Only run a single instance of the program, and
let the program start the other count-1 processes.

> multiple: Start <count> instances of the program using
the appropriate scheduler mechanism

> condor: Start a <count> Condor processes running in
“standard universe”

May 9, 2003 22Globus Toolkit™ Developer Tutorial: GRAM

RSL Attributes for Control

(gramMyjob=value)
– Value is one of “collective”, “independent”

– Defines how the globus_gram_myjob library
will operate on the <count> processes

> collective: Treat all <count> processes as part of a
single job

> independent: Treat each of the <count> processes as
an independent uniprocessor job

(dryRun=true)
– Do not actually run job

May 9, 2003 23Globus Toolkit™ Developer Tutorial: GRAM

Constraints: “&”

For example:

“Create 5-10 instances of myprog, each
on a machine with at least 64 MB
memory that is available to me for 4
hours”

& (count>=5) (count<=10)

(max_time=240) (memory>=64)

(executable=myprog)

May 9, 2003 24Globus Toolkit™ Developer Tutorial: GRAM

Disjunction: “|”

For example:
Create 5 instances of myprog on a
machine that has at least 64MB of
memory, or 10 instances on a machine
with at least 32MB of memory

& (executable=myprog)
(| (&(count=5)(memory>=64))

(&(count=10)(memory>=32)))

May 9, 2003 25Globus Toolkit™ Developer Tutorial: GRAM

Resource Management APIs

Globus Toolkit has APIs for RSL, GRAM,
and DUROC:
– globus_rsl

– globus_gram_client

– globus_gram_myjob

– globus_duroc_control

– globus_duroc_runtime

May 9, 2003 26Globus Toolkit™ Developer Tutorial: GRAM

globus_gram_client

globus_gram_client_job_request()
– Submit a job to a remote resource

– Input:
> Resource manager contact string

> RSL specifying the job to be run

> Callback contact string, for notification

– Output:
> Job contact string

May 9, 2003 27Globus Toolkit™ Developer Tutorial: GRAM

GRAM Components

Globus
Security

Infrastructure

Job Manager

GRAM client API calls to
request resource allocation

and process creation. Query current status
of resource

Create

RSL Library

Parse

Request
Allocate &

create processes

Process

Process

Process

Monitor &
control

Site boundary

Client

Gatekeeper

MDS: Grid Resource Info Server

Local Resource Manager

MDS client API calls
to get resource info

GRAM client API state
change callbacks

MDS client API calls
to locate resources

MDS: Grid Index Info Server

May 9, 2003 28Globus Toolkit™ Developer Tutorial: GRAM

Finding The Gatekeeper

globus_gram_client_job_request() requires a
resource manager contact string to find the
gatekeeper

hostname[:port][/service][:subject]

– hostname – host of gatekeeper
> required

– port – port on which gatekeeper is listening
> defaults to well known port = gsigatekeeper = 2119

– service – gatekeeper service to invoke
> defaults to “jobmanager”

– subject – security subject name of gatekeeper
> Defaults to standard host cert form: “…/cn=host/hostname”

May 9, 2003 29Globus Toolkit™ Developer Tutorial: GRAM

Job Contact

globus_gram_client_job_request() returns
a job contact string
– Other globus_gram_client_*() functions use

the job contact to find the right job
manager to which requests are made

– Job contact string can be passed between
processes, even on different machines

May 9, 2003 30Globus Toolkit™ Developer Tutorial: GRAM

GRAM Components

Globus
Security

Infrastructure

Job Manager

GRAM client API calls to
request resource allocation

and process creation. Query current status
of resource

Create

RSL Library

Parse

Request
Allocate &

create processes

Process

Process

Process

Monitor &
control

Site boundary

Client

Gatekeeper

MDS: Grid Resource Info Server

Local Resource Manager

MDS client API calls
to get resource info

GRAM client API state
change callbacks

MDS client API calls
to locate resources

MDS: Grid Index Info Server

May 9, 2003 31Globus Toolkit™ Developer Tutorial: GRAM

globus_gram_client

globus_gram_client_job_status()
– Check the status of the job

> UNSUBMITTED, PENDING, ACTIVE, FAILED, DONE,
SUSPENDED

– Can also get job status through callbacks
> globus_gram_client_callback_{allow,disallow,check}()

globus_gram_client_job_cancel()
– Cancel/kill a pending or active job

May 9, 2003 32Globus Toolkit™ Developer Tutorial: GRAM

globus_gram_client

globus_gram_client_job_signal()
– Controls the jobmanager

– COMMIT_REQUEST*
> submit job

– COMMIT_END*
> Cleanup job

– COMMIT_EXTEND*
> Wait additional N seconds

– * when jobs have “(two_phased=yes)”

May 9, 2003 33Globus Toolkit™ Developer Tutorial: GRAM

globus_gram_client

globus_gram_client_job_signal(), continued
– STDIO_UPDATE

> Allows client to submit an RSL that changes some I/O
attributes of the job

stdout, stderr, stdout_position, stderr_position,
remote_io_url

– STDIO_SIZE
> verify that streamed I/O has been completely received

– STOP_MANAGER
> Tells JM to exit, but leave the job running

May 9, 2003 34Globus Toolkit™ Developer Tutorial: GRAM

State Change Callbacks

GRAM managed job can be in the states:
– Unsubmitted, Pending, Active, Failed, Done,

Suspended

GRAM client can register for asynchronous
state change callbacks
– Registration can be done either:

> during submission by

globus_gram_client_job_request()

> or later by any process, using the job contact

globus_gram_client_job_callback_register()

May 9, 2003 35Globus Toolkit™ Developer Tutorial: GRAM

globus_gram_client

globus_gram_client_callback_allow()
globus_gram_client_callback_disallow()
globus_gram_client_callback_check()
– Create/destroy a client port to listen for

asynchronous state change callbacks

– Callback to local function on state change

globus_gram_client_job_callback_register()
globus_gram_client_job_callback_unregister()
– Register with job manager to receive callbacks

May 9, 2003 36Globus Toolkit™ Developer Tutorial: GRAM

globus_gram_myjob

When a set of processes in a single job
startup, they may need to self organize
– How many processes in the job?
– What is my rank within the job?
– Simple send/receive between job processes.

This API is a minimal set of functions to allow
this self organization
This is a bootstrapping library. It is NOT
meant to be a general purpose message
passing library for use by applications

May 9, 2003 37Globus Toolkit™ Developer Tutorial: GRAM

DUROC Review

Simultaneous allocation of a resource set
– Handled via optimistic co-allocation based

on free nodes or queue prediction
– In the future, advance reservations will also

be supported

globusrun will co-allocate specific multi-
requests
– Uses a Globus component called the

Dynamically Updated Request Online
Co-allocator (DUROC)

May 9, 2003 38Globus Toolkit™ Developer Tutorial: GRAM

Multirequest: “+”

A multirequest allows us to specify multiple
resource needs, for example

+ (& (count=5)(memory>=64)

(executable=p1))

(&(network=atm) (executable=p2))
– Execute 5 instances of p1 on a machine with at least

64M of memory

– Execute p2 on a machine with an ATM connection

Multirequests are central to co-allocation

May 9, 2003 39Globus Toolkit™ Developer Tutorial: GRAM

A Co-allocation Multirequest
+(& (resourceManagerContact=

*** “flash.isi.edu:2119/jobmanager-
lsf:/O=Grid/…/CN=host/flash.isi.edu”)

(count=1)
(label="subjob A")
(executable= my_app1)

)
(& (resourceManagerContact=

***“sp139.sdsc.edu:2119:/O=Grid/…/CN=host/sp097.sdsc.edu")
(count=2)
(label="subjob B")
(executable=my_app2)

)

Different executables

Different resource
managers

Different
counts

May 9, 2003 40Globus Toolkit™ Developer Tutorial: GRAM

RSL Attributes For DUROC

(subjobStartType=value)
– Alters the startup barrier mechanism
– values are “strict-barrier”, “loose-barrier”,

“no-barrier”

(subjobCommsType=value)
– values are “blocking-join” and

“independent”
– if value is set to “independent”, the subjob

won’t be seen from the other subjobs when
doing inter-subjob communication.

May 9, 2003 41Globus Toolkit™ Developer Tutorial: GRAM

RSL Attributes For DUROC

(label=string)
– Identifier for this subjob

(resourceManagerContact=string)
(resourceManagerName=string)
– Resource manager to which to submit a

subjob

May 9, 2003 42Globus Toolkit™ Developer Tutorial: GRAM

globus_duroc_control Module

Submit a multi-request

Edit a pending request
– Add new nodes, edit out failed nodes

Commit to configuration
– Delay to last possible minute

– Barrier synchronization

Initialize computation

Monitor and control collection

May 9, 2003 43Globus Toolkit™ Developer Tutorial: GRAM

globus_duroc_runtime Module

globus_duroc_runtime_barrier()
– All processes in DUROC job must call this

– It will wait until the DUROC control module
releases all processes from the barrier

globus_duroc_runtime_inter_subjob_*()
– Bootstrap library between subjobs

globus_duroc_runtime_intra_subjob_*()
– Bootstrap library within a subjob

May 9, 2003 44Globus Toolkit™ Developer Tutorial: GRAM

DUROC Architecture
Controlled

Jobs

DUROC RSL
multi-request

Job 1

RM1

Job 4

Job 5

RM4

Job 2

RM2

Job 3

RM3

Subjob status

Edit request Barrier

May 9, 2003 45Globus Toolkit™ Developer Tutorial: GRAM

Job Manager Files

GRIS

Client

GASS_CACHE

stdout

stderr

Staged
EXE

Staged
stdin

UP

X509_USER_PROXY

Gatekeeper
Submission

Scheduler
Desc.
Exe=x
Args=y
Env=z

Job
statusmonitoring

Jobmanager JOB

UP

Using Information for
Resource Brokering

“10 GFlops, EOS data,
20 Mb/sec -- for 20 mins”

Metacomputing
Directory
Service

GRAMGRAMGRAM

Resource
Broker

Info service:
location + selection

Globus Resource
Allocation Managers

GRAM

Fork
LSF
EASYLL
Condor
etc.

“What computers?”
“What speed?”
“When available?”

“50 processors + storage
from 10:20 to 10:40 pm”

“20 Mb/sec”

May 9, 2003 47Globus Toolkit™ Developer Tutorial: GRAM

RSL

Information
Service

RSL
specialization

Broker

Queries
& Info

Resource
Management Architecture

Application

GRAM GRAM

Simple ground RSL

Co-allocator
Ground RSL

Local
resource
managers

GRAM

LSF EASY-LL NQE

May 9, 2003 48Globus Toolkit™ Developer Tutorial: GRAM

Resource Broker

The Globus Toolkit does not include a
resource broker or a metascheduler!

It is the task of the user to access MDS
(GIIS and GRIS) and select the remote site
where the program should run

May 9, 2003 49Globus Toolkit™ Developer Tutorial: GRAM

GRAM Components

Globus
Security

Infrastructure

Job Manager

GRAM client API calls to
request resource allocation

and process creation. Query current status
of resource

Create

RSL Library

Parse

Request
Allocate &

create processes

Process

Process

Process

Monitor &
control

Site boundary

Client

Gatekeeper

MDS: Grid Resource Info Server

Local Resource Manager

MDS client API calls
to get resource info

GRAM client API state
change callbacks

MDS client API calls
to locate resources

MDS: Grid Index Info Server

May 9, 2003 50Globus Toolkit™ Developer Tutorial: GRAM

Resource Broker

The Globus team helped many people to
build brokers using GRAM and MDS
services

Several brokers now exist:
– Condor-G, DRM, PUNCH, Nimrod/G, Cactus,

AppLeS,

	GRAM: Grid Resource Allocation & Management
	Components of Resource Management
	GRAM is responsible for
	Functionalities of GRAM
	GRAM Components
	How GRAM works?
	How GRAM works?
	Components of GRAM
	Components of GRAM
	Components of GRAM
	Two Components of the Job Manager
	Resource Management APIs
	Resource Specification Language
	globus_rsl
	globus_rsl
	RSL Attributes for the Program
	RSL Attributes for the Program
	RSL Attributes for Control
	RSL Attributes for Control
	RSL Attributes for Control
	RSL Attributes for Control
	RSL Attributes for Control
	Constraints: “&”
	Disjunction: “|”
	Resource Management APIs
	globus_gram_client
	GRAM Components
	Finding The Gatekeeper
	Job Contact
	GRAM Components
	globus_gram_client
	globus_gram_client
	globus_gram_client
	State Change Callbacks
	globus_gram_client
	globus_gram_myjob
	DUROC Review
	Multirequest: “+”
	A Co-allocation Multirequest
	RSL Attributes For DUROC
	RSL Attributes For DUROC
	globus_duroc_control Module
	globus_duroc_runtime Module
	DUROC Architecture
	Job Manager Files
	Using Information forResource Brokering
	Resource Management Architecture
	Resource Broker
	GRAM Components
	Resource Broker

