
Computer and Automation Research InstituteComputer and Automation Research Institute

Hungarian Academy of SciencesHungarian Academy of Sciences

Jini and the Grid

P. Kacsuk 
Laboratory of Parallel and Distributed Systems

MTA SZTAKI Research Institute

kacsuk@sztaki.hu
www.lpds.sztaki.hu



JiniJini: : an overwievan overwiev

• Jini, in Arabic word meaning „magic”, is a dynamic 
distributed network computing architecture for 
providing networking of services

• Jini provides an infrastructure to enable this dynamic 
formation of services with
– 0% installation
– 0% configuration
– 100% service interaction

• Self-diagnosing, self-configurable architecture
• Protocol-independent architecture, it can interact with 

any distr. Object using any protocol (RMI, CORBA, 
DCOM, etc.)



JiniJini: a : a dynamic networkdynamic network

Jini Community
•dynamic networking
•zero installation
•zero configuration
•self-diagnosing
•self-configuring
•Protocol independent

join

join

join

join

Leave

Leave



Goals for JiniGoals for Jini

• To provide an infrastructure to connect
– anything
– anytime
– anywhere

• To provide an infrastructure to enable „network plug 
and play”
– 0% installation
– 0% configuration

• To support a service-based architecture by 
abstracting the hardware/software distinction

• To provide an architecture to handle partial failure



Three basic elements of Three basic elements of JiniJini

RMI

Service 
provider

Lookup
service

Service 
requester



System AssumptionsSystem Assumptions

• The existence of a network with reasonable latency
– Jini relies havily on Java’s mobile-code feature

• Each Jini-enabled device has some memory and 
processing power

• Each device should be equipped with a JVM (Java 
Virtual Machine)

• Service components are implemented using Java
– All the service components should live as Java objects to 

facilitate the service requester to download and run code 
dynamically.

– However, Java does not expect a Java service 
implementation, only a Java wrapper



Relationship Relationship 
betweenbetween Java Java and Jiniand Jini

Infrastructure 
component

Programming 
model comp.

Services 
component

ions

ions

•Discovery&join
•Lookup
•Distr. security

•Leasing interface
•Transaction interface
•Distr. event interface

•JavaSpaces
•Transaction

manager

Jini-related 
funct

•JVM
•RMI
•Java security

•Java APIs
•JavaBeans model
•Event delegation model

Core Java 
funct

•JNDI
•EJB



Jini componentsJini components
Programming 

model

JVM JVM JVM JVM

Discovery/join & security

Lookup service

Jini services

Infrastructure

Event notification
Transactions
Leasing

Services

JVM federation



Infrastructure componentInfrastructure component

• Discovery and join protocol: defines the way how
– services discover other services
– services advertise themselves
– services become part of the federation

• RMI: enables service proxies to be downloaded
• Distributed security model
• Lookup service

– serves as a repository of services
– helps members to find each other in the Jini federation
– entries are Java-compliant byte-code objects, which can be 

written in Java or wrapped by Java



Services componentServices component

• Services component denotes the services that 
together form the Jini community

• The services are identified as Java objects
• Each service has an interface, which defines the 

operations that can be requested from the service
• The interface also reflects the service type
• Basic services of Jini:

– Lookup service
– JavaSpaces service: optional distr. Persistence mechanism
– Transaction manager service



Programming model componentProgramming model component

• The programming model supports the following 
interfaces:
– Lease interface, which extends the Java programming 

model by adding time to the notion of holding a 
reference.
Duration based model for allocating and freeing the 
resource references.

– Event notification interface, which extends the 
JavaBeans event delegation. 

– Transaction interface, which allows OO transaction 
handling.



Operation in more detailOperation in more detail

• The fundamental behaviour is defined by three protocols
– Discovery – how to locate the Lookup Service
– Join – how to register with the LS and export services
– Lookup – how to find suitable services

• Main operation steps
– Services export their services (in the form of Java objects)
– Clients locate services and download objects or execution
– Client-Service interaction (formation of a federation) is governed by 

need



Service Service provider registering provider registering 
((discovery protocoldiscovery protocol))

Jini serviceJini service Jini-
enabled 
network

• The service performs a multicast discovery to find lookup 
services on the network. 

• A multicast message is received by everyone on a network

Lookup 
Service

Lookup 
Service

Lookup 

Jini
Client
Jini

Client

Service
Lookup 
Service

Lookup services respond if 
alive
Service receives a proxy 
object of the LS



Service Service provider registering provider registering 2 2 
((join protocoljoin protocol))

Jini service
Lookup 
Service

Lookup 
Service

Jini
Client
Jini

Client

Lookup 
Service

Lookup 
Service

Jini-
enabled 
network

• Using the LS proxy, the service uploads its object and 

Jini service

attributes to the lookup service

ServiceItem

ServiceID serviceID

Object service

Entry[] attributeSets



ClientClient requestingrequesting service service 
((lookup protocollookup protocol))

Jini-
enabled 
network

• Finding a service
– The client (already discovered the LS(s)) specifies the interface of the 

required service
– Sends the lookup request to the LS(s)
– Receives the service object
– Executes object (if required,

it can talk back to the service)

Lookup 
Service

Lookup 
Service

Lookup 
Service

Lookup 
Service

Jini serviceJini service

Jini
Client
Jini

Client



CORBA: ProtocolCORBA: Protocol--dependent systemdependent system

Client-side stub (proxy) 
owned by the client

Server-side skeleton 
(service implementation)

Server and client are tightly coupled

Stub and skeleton communicate with 
agreed-upon protocols (IIOP)

Service requester Service provider



RMI: ProtocolRMI: Protocol--dependent systemdependent system

Server and client are not tightly coupled 
proxy can be downloaded on demand

Stub and skeleton communicate with 
agreed-upon protocols (JRMP)

Client-side stub (proxy) 
lives on the server

Server-side skeleton 
(service implementation)

Service requester Service provider



JiniJini: Protocol: Protocol--independent systemindependent system

Service requester Service provider

Server-side 
skeleton

Stub can communicate with the 
skeleton by any protocols (IIOP, 
JRMP, etc.)

Server and client are not tightly coupled 
proxy can be downloaded on demand

Lookup service

Client-side stub 
(service proxy)

Service is published via the LS



Comparison of Jini and Comparison of Jini and RMIRMI

• Similarity
– Both provide a mechanism for Java objects and 

applications (services) to communicate across JVMs.
• Differences 1

– RMI handles protocol level issues
• method invocation
• passing parameter values

– Jini handles higher-level issues like service interaction
• Differences 2 (Fig. 3-29):

– RMI protocol-dependent, uses the JRMP protocol
– Jini is protocol-independent, acts with any distributed 

protocol (JRMP, IIOP, ORPC)



The The role of role of RMI RMI within Jiniwithin Jini

• Jini is dependent on the RMI/Java
environment and not the RMI protocol
– Jini uses the RMI/Java environment to download 

the stub
– but once the stub is downloaded it can use any 

protocol to communicate to its remote object



Jini on Jini on top top ofof RMIRMI

downloaded
stub

Jini
client

Server
skeleton

Remote 
Object

Lookup service

Code base

registers

Client JVM

Remote JVMRemote JVMGets the remote object 
location and its associated 
code base information Downloads the proxy

from the code base

RMI environment

Service method can 
use any protocol



Differences between Differences between 
Jini and Jini and CORBACORBA

• CORBA provides a location- and protocol-specific
distr. Architecture (Fig. 3-29):
– client must be prewired with the naming service
– client must have relevant ORB libraries (client stubs)
– client must use the IIOP protocol

• Jini is a location- and protocol-independent distr. 
Architecture (Fig. 3-29):
– client need not know the location of a lookup service
– client need not have stub libraries
– stub can use any protocol

• CORBA can support many languages through IDL
• Jini requires Java Object wrapping



CoCo--operation between operation between 
Jini and Jini and CORBACORBA

• A Jini proxy can be written that can wrap the
CORBA client proxy and can be registered in a Jini 
lookup server

• Discovery, registration, reregistration and leasing 
can be handled by a third-party Java component.
– Any Jini client who would like to use the service can locate 

a lookup service and download the Java-wrapped CORBA 
client proxy

– The client proxy can now communicate to its CORBA 
server working in the same way as in a CORBA environment

• This design is suitable if you have an ORB running 
on the client system.

• Otherwise use a bridge scheme.



CoCo--operation between operation between 
Jini andJini and CORBACORBA

Jini
client

server
skeleton

CORBA 
Object

Lookup service
Registers
(discovery, 
join)

Client JVM

Remote JVM

Gets the remote object 
location and its associated 
code base information
(lookup)

Object 
adapter

Code base

Jini-wrapped
CORBA stub

downloaded
stub

Download the Jini-
wrapped CORBA stub

The CORBA stub 
contacts the server 
skeleton using IIOP

CORBA server



Three levels of scalability in Three levels of scalability in JiniJini

• Jini community (or Djinn): is a group of 
– lookup services
– service providers
– service requesters

• A djinn can contain smaller subdjinns
• Djinns can be connected to form larger 

distributed Jini service networks



Structure of a Structure of a djinndjinn

RMI

Lookup
service

1

Service 
provider

1

Service 
requester

1

Djinn

Service 
provider

1

Service 
provider

1

Service 
provider

1-n

Service 
requester

1

Service 
requester

1-m

RMI

Lookup
service

1

RMI

Lookup
service

1-k



Levels of scalability in Levels of scalability in JiniJini

Subdjinn11

Djinn1

Subdjinn12

Subdjinn14 Subdjinn13

Subdjinn21

Djinn2

Subdjinn22

Subdjinn24 Subdjinn23

WAN



Applications and literature of Applications and literature of JiniJini

• Remote access to clinical data
• Large-scale wish fulfilment support for organizing 

holidays, wedding, etc.
• Jini on wheels – the car as a mobile infrastructure
• Using Jini to enable a framework for agent-based 

systems

• Sing Li: Professional Jini, Wrox Press, 2000
• S. I. Kumaran: Jini Technology, Prentice Hall, 2002



?


	Jini and the Grid
	Jini: an overwiev
	Jini: a dynamic network
	Goals for Jini
	Three basic elements of Jini
	System Assumptions
	Relationship between Java and Jini
	Jini components
	Infrastructure component
	Services component
	Programming model component
	Operation in more detail
	Service provider registering (discovery protocol)
	CORBA: Protocol-dependent system
	RMI: Protocol-dependent system
	Jini: Protocol-independent system
	Comparison of Jini and RMI
	The role of RMI within Jini
	Jini on top of RMI
	Differences between Jini and CORBA
	Co-operation between Jini and CORBA
	Co-operation between Jini and CORBA
	Three levels of scalability in Jini
	Structure of a djinn
	Levels of scalability in Jini
	Applications and literature of Jini
	

