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JiniJini: : an overwievan overwiev

• Jini, in Arabic word meaning „magic”, is a dynamic 
distributed network computing architecture for 
providing networking of services

• Jini provides an infrastructure to enable this dynamic 
formation of services with
– 0% installation
– 0% configuration
– 100% service interaction

• Self-diagnosing, self-configurable architecture
• Protocol-independent architecture, it can interact with 

any distr. Object using any protocol (RMI, CORBA, 
DCOM, etc.)



JiniJini: a : a dynamic networkdynamic network

Jini Community
•dynamic networking
•zero installation
•zero configuration
•self-diagnosing
•self-configuring
•Protocol independent
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Goals for JiniGoals for Jini

• To provide an infrastructure to connect
– anything
– anytime
– anywhere

• To provide an infrastructure to enable „network plug 
and play”
– 0% installation
– 0% configuration

• To support a service-based architecture by 
abstracting the hardware/software distinction

• To provide an architecture to handle partial failure



Three basic elements of Three basic elements of JiniJini
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System AssumptionsSystem Assumptions

• The existence of a network with reasonable latency
– Jini relies havily on Java’s mobile-code feature

• Each Jini-enabled device has some memory and 
processing power

• Each device should be equipped with a JVM (Java 
Virtual Machine)

• Service components are implemented using Java
– All the service components should live as Java objects to 

facilitate the service requester to download and run code 
dynamically.

– However, Java does not expect a Java service 
implementation, only a Java wrapper



Relationship Relationship 
betweenbetween Java Java and Jiniand Jini
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•Discovery&join
•Lookup
•Distr. security

•Leasing interface
•Transaction interface
•Distr. event interface

•JavaSpaces
•Transaction

manager

Jini-related 
funct

•JVM
•RMI
•Java security

•Java APIs
•JavaBeans model
•Event delegation model

Core Java 
funct

•JNDI
•EJB
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Infrastructure componentInfrastructure component

• Discovery and join protocol: defines the way how
– services discover other services
– services advertise themselves
– services become part of the federation

• RMI: enables service proxies to be downloaded
• Distributed security model
• Lookup service

– serves as a repository of services
– helps members to find each other in the Jini federation
– entries are Java-compliant byte-code objects, which can be 

written in Java or wrapped by Java



Services componentServices component

• Services component denotes the services that 
together form the Jini community

• The services are identified as Java objects
• Each service has an interface, which defines the 

operations that can be requested from the service
• The interface also reflects the service type
• Basic services of Jini:

– Lookup service
– JavaSpaces service: optional distr. Persistence mechanism
– Transaction manager service



Programming model componentProgramming model component

• The programming model supports the following 
interfaces:
– Lease interface, which extends the Java programming 

model by adding time to the notion of holding a 
reference.
Duration based model for allocating and freeing the 
resource references.

– Event notification interface, which extends the 
JavaBeans event delegation. 

– Transaction interface, which allows OO transaction 
handling.



Operation in more detailOperation in more detail

• The fundamental behaviour is defined by three protocols
– Discovery – how to locate the Lookup Service
– Join – how to register with the LS and export services
– Lookup – how to find suitable services

• Main operation steps
– Services export their services (in the form of Java objects)
– Clients locate services and download objects or execution
– Client-Service interaction (formation of a federation) is governed by 

need



Service Service provider registering provider registering 
((discovery protocoldiscovery protocol))

Jini serviceJini service Jini-
enabled 
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• The service performs a multicast discovery to find lookup 
services on the network. 

• A multicast message is received by everyone on a network
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Service Service provider registering provider registering 2 2 
((join protocoljoin protocol))

Jini service
Lookup 
Service

Lookup 
Service

Jini
Client
Jini

Client

Lookup 
Service

Lookup 
Service

Jini-
enabled 
network

• Using the LS proxy, the service uploads its object and 

Jini service

attributes to the lookup service

ServiceItem

ServiceID serviceID

Object service

Entry[] attributeSets



ClientClient requestingrequesting service service 
((lookup protocollookup protocol))

Jini-
enabled 
network

• Finding a service
– The client (already discovered the LS(s)) specifies the interface of the 

required service
– Sends the lookup request to the LS(s)
– Receives the service object
– Executes object (if required,

it can talk back to the service)
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CORBA: ProtocolCORBA: Protocol--dependent systemdependent system

Client-side stub (proxy) 
owned by the client

Server-side skeleton 
(service implementation)

Server and client are tightly coupled

Stub and skeleton communicate with 
agreed-upon protocols (IIOP)

Service requester Service provider



RMI: ProtocolRMI: Protocol--dependent systemdependent system

Server and client are not tightly coupled 
proxy can be downloaded on demand

Stub and skeleton communicate with 
agreed-upon protocols (JRMP)

Client-side stub (proxy) 
lives on the server

Server-side skeleton 
(service implementation)

Service requester Service provider



JiniJini: Protocol: Protocol--independent systemindependent system

Service requester Service provider
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Stub can communicate with the 
skeleton by any protocols (IIOP, 
JRMP, etc.)

Server and client are not tightly coupled 
proxy can be downloaded on demand
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Comparison of Jini and Comparison of Jini and RMIRMI

• Similarity
– Both provide a mechanism for Java objects and 

applications (services) to communicate across JVMs.
• Differences 1

– RMI handles protocol level issues
• method invocation
• passing parameter values

– Jini handles higher-level issues like service interaction
• Differences 2 (Fig. 3-29):

– RMI protocol-dependent, uses the JRMP protocol
– Jini is protocol-independent, acts with any distributed 

protocol (JRMP, IIOP, ORPC)



The The role of role of RMI RMI within Jiniwithin Jini

• Jini is dependent on the RMI/Java
environment and not the RMI protocol
– Jini uses the RMI/Java environment to download 

the stub
– but once the stub is downloaded it can use any 

protocol to communicate to its remote object



Jini on Jini on top top ofof RMIRMI
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Differences between Differences between 
Jini and Jini and CORBACORBA

• CORBA provides a location- and protocol-specific
distr. Architecture (Fig. 3-29):
– client must be prewired with the naming service
– client must have relevant ORB libraries (client stubs)
– client must use the IIOP protocol

• Jini is a location- and protocol-independent distr. 
Architecture (Fig. 3-29):
– client need not know the location of a lookup service
– client need not have stub libraries
– stub can use any protocol

• CORBA can support many languages through IDL
• Jini requires Java Object wrapping



CoCo--operation between operation between 
Jini and Jini and CORBACORBA

• A Jini proxy can be written that can wrap the
CORBA client proxy and can be registered in a Jini 
lookup server

• Discovery, registration, reregistration and leasing 
can be handled by a third-party Java component.
– Any Jini client who would like to use the service can locate 

a lookup service and download the Java-wrapped CORBA 
client proxy

– The client proxy can now communicate to its CORBA 
server working in the same way as in a CORBA environment

• This design is suitable if you have an ORB running 
on the client system.

• Otherwise use a bridge scheme.



CoCo--operation between operation between 
Jini andJini and CORBACORBA
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Three levels of scalability in Three levels of scalability in JiniJini

• Jini community (or Djinn): is a group of 
– lookup services
– service providers
– service requesters

• A djinn can contain smaller subdjinns
• Djinns can be connected to form larger 

distributed Jini service networks



Structure of a Structure of a djinndjinn
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Levels of scalability in Levels of scalability in JiniJini
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Applications and literature of Applications and literature of JiniJini

• Remote access to clinical data
• Large-scale wish fulfilment support for organizing 

holidays, wedding, etc.
• Jini on wheels – the car as a mobile infrastructure
• Using Jini to enable a framework for agent-based 

systems

• Sing Li: Professional Jini, Wrox Press, 2000
• S. I. Kumaran: Jini Technology, Prentice Hall, 2002
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