
Multithreading in
Java

• What Are Threads?
• Thread Properties
• Thread Priorities
• Cooperating and Selfish Threads
• Synchronization

The Concept of Process

A process represents a sequence of actions
(statements), which are executed independently of
other actions. For example:

process A {
receive a message;
print a message;

}

process B {
read a number;
send a number;

}

Flow of
execution

Flow of
execution

Parallel and Concurrent Programs

A parallel program consists of a collection of processes
executing in parallel. These processes may be executed
on one or more physical processors.

Parallel Composition {
process A;
process B;

}

A concurrent program denotes a parallel program where
all processes are executed on one physical processor.

MultithreadingMultithreading

• Multitasking:
– the ability to have more than one program working at the same time

and
– controlled by the operating system

• Multithreading: extends the idea of multitasking by taking it one level lower:
– A single program has the ability to run multiple computations at the

same time
– Each computational unit is called a thread.
– Each thread runs in a different context. (Contexts make it seem as though

each thread has its own CPU - with registers, memory and code.)
• Difference between multiple processes and multiple threads:

– Each process has a complete set of its own variables, files, etc.
– Threads share data in the program in which they live.

Computing ElementsComputing Elements

Applications

P PP P P P..

MicrokernelMicrokernel

Multi-Processor Computing System

Threads InterfaceThreads Interface

Programming Paradigms

Operating System

Hardware

Processor ThreadPP Process

Shared Memory MIMD machineShared Memory MIMD machine

M
E
M
O
R
Y

B
U
S

Comm: Source PE writes data to GM & destination retrieves it
Easy to build, conventional OSes of SISD can be easily be ported
Limitation : reliability & expandability. A memory component or any processor
failure affects the whole system.
Increase of processors leads to memory contention.
Ex. : SGI PowerChallenge

M
E
M
O
R
Y

B
U
S

Global Memory SystemGlobal Memory System

Processor
A

Processor
A

Processor
B

Processor
B

Processor
C

Processor
C

M
E
M
O
R
Y

B
U
S

TheThe BouncingBouncing BallBall ApplicationApplication

• The program animates a bouncing ball, finding out if it bounces against a wall, and
then redrawing it. As soon as you hit the Start button, the program launches a ball
from the upper left corner, and it begins bouncing.

• The handler of the Start button calls the method bounce() of the class Ball,
which contains a loop running through 1000 moves.

• After each move, we call the static sleep method of the Thread class to pause
the ball for 5 milliseconds:

class Ball
{ . . .

public void bounce()

{ draw();
for (int i = 1; i <= 1000; i++)

{ move();
try { Thread.sleep(5); }
catch(InterruptedException e) {} }

}
}

ExerciseExercise

• Study the Bounce.java program. Is the
program deterministic?

• Run the Bounce.java program. Is the program
deterministic?

• Double the size of the canvas.
• What happens if you remove the
Thread.sleep(5) delay?

• What happens if you click on the Close button?
Is the ball immediately finished bouncing ?

Using Threads for the Bouncing Ball Application
• We realised that the Close button remains ineffective until the 1000 moves are finished. We

cannot interact with the program until the ball has finished bouncing.
• We will make the program more responsive by running the program in two threads.

– One for the bouncing ball
– another for realising the user interface (main thread)

• Since in Java each thread gets a chance to run for a little while, the main thread has the
opportunity to notice when you click on the Close button while the ball is bouncing. It can then
process the ”close” action.

• How to create a thread in Java?
– Place the code of the thread into the run method of a class derived from Thread.
– In the example: Derive Ball from Thread Rename the bounce method run.

class Ball extends Thread
{ . . .

public void run()
{ draw();

for (int i = 1; i <= 1000; i++)
{ move();
try { sleep(5); }
catch(InterruptedException e) {} }

}
}

Running and Starting Threads

• You can construct a thread as an object derived from Thread. However, Java
does not automatically starts the thread.

Ball b = new Ball(. . .); // won’t run yet
• You should call the start method in your thread object to start the thread:

b.start(); // b will be runnable

User interface
thread

move

sleep

b.start
run method

b = new Ball b instance of
Ball thread

• If a thread does not need the CPU for a certain time it can tell the other threads
explicitly that it is idle. The way to do it is through the sleep method.

Exercise

• Study the BounceThread.java program.
• Compare the code of Bounce.java and BounceThread.java programs.

if (arg.equals("Start"))

{ Ball b = new Ball(canvas);
b.bounce(); } // call function

if (arg.equals("Start"))

{ Ball b = new Ball(canvas);
b.start(); } // start thread

• Run the BounceThread.java program.
• What happens if you click on the Close button?
• Run the BounceThread.java program and click on the Start button

several times while a ball is running. What happens? Why?

Thread States
Thread states State Transition Diagram
– new
– runnable
– blocked
– dead

new

runnable

start

dead stop

done sleeping

notify

resume

blocked
sleep

wait

suspend

Block on I/O
I/O complete

Thread States (cont.)

• New
– When you create a thread with the new operator, it is not yet running, it is in

the new state.
– The necessary bookkeeping and determining the memory allocation needed

are the tasks of the start method.
• Runnable

– Once you invoke the start/run method, the thread is runnable.
– A runnable thread may not yet be running. It is up to the operating system

to give it time to run. Time slicing is a typical way of running threads.
– When the code inside the thread begins executing, the thread is running.

• Blocked
A thread enters the blocked state when one of the four following actions occurs:
– Someone calls the sleep() method of the thread.
– Someone calls the suspend() method of the thread.
– The thread calls the wait() method.
– The thread calls an operation that is blocking on I/O.

Thread States (cont.)

• Moving Out of a Blocked State
The thread moves out of the blocked state when one of the four following actions occurs:

– If a thread has been put to sleep, the specified number of milliseconds must expire.
– Someone must call its resume() method if the thread was suspended.
– If a thread called the wait() method, then the owner monitor on whose availability

the thread is waiting must call notify or notifyAll.
– If a thread is blocked on I/O, the I/O operation must have been finished.
If you try to activate a blocked thread in a non-matching way, the thread remains blocked.
If you invoke a method on a thread that is incompatible with its state, the

illegalThreadStateException

is thrown.
• Dead Threads

A thread is dead for one of two reasons:
– It dies a natural death because the run method exits.
– It is killed because someone invoked its stop method.

• Finding out the State of a Thread
Use the isAlive method, which returns false if the thread is still new and not runnable
or if the thread is dead.

Thread Priorities

• Every thread in Java has a priority. By default, a thread inherits the
priority of its parent.

• You can modify the priority of a thread by the setPriority
method.

• The range of priority defined in the thread class:
– MIN_PRIORITY (value = 1)
– NORM_PRIORITY (value = 5)
– MAX_PRIORITY (value = 10)

• The thread scheduler always starts the highest-priority runnable
thread.

• A thread keeps running until it either:
– yields by calling the yield method,
– ceases to be runnable (dying or blocked)
– is replaced by a higher-priority thread that has become runnable.

• Threads at the same priority get a turn in round-robin fashion.

Exercise

1. Study the class java.lang.Thread API description.
(file:///C|/java/api/java.lang.Thread.html#_top_)

2. Study the code of the BounceExpress.java program which
provides a new button called Express. Clicking on the Express
button will launch a red ball whose thread runs at a higher
priority than the regular balls.

3. Show the part of the code responsible for the higher-priority
launch of red balls.

4. Try it out. Launch one regular ball and many express balls. You
will notice that the express balls run faster.

5. Explain behaviour 4.

Answers
3. Show the part of the code responsible for the higher-priority launch of red balls.

public boolean action(Event evt, Object arg)
{ if (arg.equals("Start"))

{ Ball b = new Ball(canvas, Color.black);
b.setPriority(Thread.NORM_PRIORITY);
b.start(); }

}
else if (arg.equals("Express"))
{ Ball b = new Ball(canvas, Color.red);

b.setPriority(Thread.NORM_PRIORITY + 2);
b.start();

}
else if . . .

}
6. Explain it.

5 milliseconds after an express thread is put to sleep, it is awoken. Then the
scheduler again evaluates the priorities of all threads and finds that the express
thread has the highest priority, so it gets another turn. If you launch N express
balls, they take turns and only if all are asleep, do the lower-priority thread gets a
chance to run. As the number of express balls increases, the chance that all are
asleep decreases.

Cooperating and Selfish Threads
• A thread should always call yield or sleep when it is executing a long loop to ensure

that it is not monopolizing the system.
– The sleep function blocks the thread for a specified time
– The yield function does not block the thread for any time but it gives a chance to

the scheduler to deschedule the thread and dispatch an other one.
• A thread that does not follow this rule and monopolizes the system is called selfish.
• The BounceSelfish.java program shows an example of a selfish thread. When you

click on the Selfish button, a blue ball is launched whose run method contains a long loop:
public void run()
{ draw();

for (int i = 1; i <= 1000; i++)
{ move();

long t = new Date().getTime();
while (new Date().getTime() < t + 5)

;
}

}
• The run procedure will last about 5 milliseconds before it returns, and never calls yield

or sleep.

Exercise

1. Study the class java.lang.Thread API description.
(file:///C|/java/api/java.lang.Thread.html#_top_)

2. Study the code of the BounceSelfish.java program which
provides a new button called Selfish.

3. Try it out. Launch a few regular, express, and selfish balls. You
will notice that the selfish ball is the fastest and the regular ball
is the slowest.

4. Explain it.
5. What happens if you modify the

while (new Date().getTime() < t + 5)
code into

while (new Date().getTime() < t + 50)
6. Explain it.

Answers

4. Explain it.
The selfish ball keeps the processor between two moves. The only way to
take the processor from a selfish ball is by the scheduler when the
allocated time-slice is over. The other balls immediately release the
processor after a move.

6. Explain it.
The selfish ball requires 50 milliseconds to move again. The scheduler
applies a time-slice scheduling technique which means each process gets a
time-slice to run and then another process can continue for a time-slice.
Since the time-slice of the scheduler is much smaller than 50 milliseconds,
the other balls can move meanwhile the selfish ball still in the same
position.

Thread Groups

• Some programs have many threads. It then becomes useful to group them by
functionality. It is handy to have a way of killing all threads in the same group.

• You construct a thread group with the constructor:
ThreadGroup g = new ThreadGroup(string)

• The string identifies the group and must be unique.
• To find out if any threads of a group are still runnable, use the activeCount

method:
if (g.activeCount() == 0)
{ // all threads in the group g have stopped

. . . }
• To kill all threads in a group, call stop on the group object:

g.stop // stops all threads in g
• Thread groups can have child subgroups. Methods like activeCount and stop

refer to all threads in their group and child groups.
• Exercise: Study the class java.lang.ThreadGroup API description.

(file:///C|/java/api/java.lang.ThreadGroup.html#_top_)

Thread Communication without
Synchronization

• Reading and writing a shared object by several threads in parallel without
synchronization will lead to serious non-deterministic errors.

• An example to illustrate the problem is the UnsynchBankTest.java
application.

• It simulates a bank with 10 accounts. Randomly generates transactions that
move money between these accounts. There are 10 threads, one for each
account.

• Each transaction will move a random amount of money from the account
serviced by the thread to another random account.

• When this simulation runs we do not know how much money is in any one bank
account at any time. But we do know that the total amount of money in all the
accounts should remain unchanged since all we do is move money from one
account to another.

• Exercise 1: study the code of the UnsynchBankTest.java program
• Exercise 2: run the code and check the total amount of money.

– Is it always the same?
– Explain what happens.

Synchronizing Access to Shared
Resources

• Problem in the previous program can occur when two threads are
simultaneously trying to update an account:

accounts[to] += amount;

• The problem is that these are not atomic operations. It represents a
series of operations that can be interrupted at any point:

1. Load accounts[to] into a register
2. Add amount
3. Move result back to accounts[to]

• One possible execution order is shown in the next slide. It results the
loss of the update of Thread 2.

Simultaneous Access by Two
Thread

5000load

5000load

Thread 1 Thread 2

accounts

accounts[to]

500add

1000add

6000store

6000

5500store

5500

The Principles of Monitors

Although semaphores provide objects to the
synchronisation of processes, they are rather “low level”
and error-prone. A slight error in the sequence of the
synchronisation primitives can lead to serious errors. It is
also easy to forget to protect shared variables!

A Monitor is a special type of shared Abstract Data Type
(ADT). “A collection of associated data and procedures is
known as a monitor” (C.A.R Hoare).

The Principles of a Monitor (Cont.)

“An ADT is a type whose internal form is hidden behind a
set of access functions. Objects of the type are created
and inspected only by calls to the access functions. This
allows the implementation of the type to be changed
without requiring any changes outside the module in which
it is defined.”

Abstract data types are central to object-oriented
programming where every class can be regarded as an
ADT.

The Definition of a Monitor

Definition: A monitor is a programming language construct
which encapsulates variables, access procedures and
initialisation code within an abstract data type.

The monitor's variables (shared data) may only be
accessed via its access procedures (methods) and only
one process may be actively accessing the monitor at
any one time. The access procedures are critical
sections.

A monitor may have a queue of processes which are
waiting to access it.

The Structure of a Monitor

Access
functions

List of waiting
processes

Shared
Data

wait

signal

Condition
Variables

List of waiting
processes

How a Monitor Works

1. Each thread calls an access function. Only one of them
is allowed to enter into the monitor at a time. Threads wait
in a queue, and when no other process is inside the
monitor, one thread of the queue has access to the
monitor.

2. Condition variables can be associated with some logical
condition on the state of the monitor (some expression
that may be either true or false). If a thread discovers
(through the access function) that some logical condition it
needs is not satisfied, it waits on the corresponding
condition variable.

How a Monitor Works (Cont.)

3. Whenever a thread makes one of these conditions true,
it signals the corresponding condition variable. When the
waiting thread wakes up, it may immediately proceed.
Thus, the signaller is blocked on another queue when it
calls the signal method and immediately wakes up the
waiter (if there are multiple threads blocked on the same
condition variable, the one waiting the longest wakes up).

4. When a thread leaves the monitor (the access functions
terminates), a sleeping signaler, if any, is allowed to
continue. Otherwise, the monitor is released, allowing a
new thread to enter the monitor. In summary, waiters
usually have precedence over signalers.

Implementing Monitors in Java

Java has a kind of built-in monitor, but with two key
differences from the general concept of monitor:

First, instead of marking a whole class as monitor,
remember to mark each method as synchronized.
Every object is potentially a monitor.

Second, there are
effect, every monitor has exactly one anonymous

c.signal()
write

no explicit condition variables. In

condition variable. Instead of writing c.wait() or
, where c is a condition variable, you simply

inside a loop, which checks the values of
the condition, and uses

wait()
notifyAll()to signal.

Example of Monitor: A Bounded Buffer

class BoundedBuffer {
private Buffer b = new Buffer(10);
private int count = 0;

synchronized public void put(int item) {
while (b.isFull()) try{wait();}catch(Exception e){}

// wait for condition
b.put(item); // uses the monitor
notifyAll(); // releases monitor

}

synchronized public int get() {
while (b.isEmpty()) try{wait();}catch(Exception e){}
int result = b.get();
notifyAll();
return result;

}
}

The Main Process

ProducerConsumerMainClass {

public static void main (String args[]) {
BoundedBuffer b = new BoundedBuffer();
{// Parallel Composition

new Consumer (b);
new Producer (b);

}
}

}

Notice: The BoundedBuffer object becomes
shared since it appears in the instance field
of both the Consumer and Producer.

Example of Monitor: The Producer

class Producer extends Thread {
private BoundedBuffer b;
private int item = 0;
public Producer (BoundedBuffer b) {

this.b = b; // the buffer monitor becomes
// part of the instance field

start(); // starts its own run method
}
public void run () {

for (int i=0; i< 4; i++) { // for test only
System.out.println("Producer: enter monitor");
b.put(++item);
System.out.println("Producer: put =" + item);
System.out.println("Producer: release” +

“monitor");
}

}
}

Example of Monitor: The Consumer

class Consumer extends Thread {
private BoundedBuffer b;
private int item = 0;
public Consumer (BoundedBuffer b) {

this.b = b; // the buffer monitor becomes
// part of the instance field

start(); // starts its own run method
}
public void run () {

for (int i=0; i< 4; i++) { // for test only
System.out.println(”Consumer: enter monitor");
System.out.println(”Consumer: get ="+ b.get());
System.out.println(”Consumer: release” +

“monitor");
}

}
}

Summary of monitors

The key of concepts such as monitor is to provide a separate
object (ADT), which maintains and controls the access to the
shared object.

A monitor is a programming language construct which
encapsulates variables, access procedures and initialisation
code within an abstract data type.

Java has a built-in monitor, but each method has to be
marked as synchronized and there are no explicit condition
variables. Simply write wait() inside a loop, which checks
the values of the condition, and use notifyAll()to signal
the waiting processes.

Returning to the bank problem:
Use of Monitors

• The whole transfer method can be made atomic by using the synchronized tag:
public synchronized void transfer(int from, int to, int amount)
{ while (accounts[from] < amount)

{ try { wait(); } catch(InterruptedException e) {}
}

accounts[from] -= amount;
accounts[to] += amount;

ntransacts++;
if (ntransacts % 5000 == 0) test();

}

• It realizes mutual exclusion: when one thread enters a synchronized method, Java
guarantees that it can finish it before another thread can execute any synchronized
method on the same object. It is the realization of Hoare’s monitor. In Java, any object
with one or more synchronized methods is a monitor.

• The second calling thread cannot continue, it is deactivated and placed in a queue
attached to the monitor object. When the first thread has completed its work with the
monitor object, the highest priority thread in the monitor’s waiting queue gets the next
turn.

Synchronization Inside the Monitor

• Problem: What do we do when there is not enough money in the account? We wait
until some other thread has added funds. But this thread has just gained exclusive
access to the bank object, so no other thread has a chance to make a deposit.

• Solution: Use the wait - notifyAll synchronization calls:

public synchronized void transfer(int from, int to, int
amount)
{ while (accounts[from] < amount)

{ try { wait(); } catch(InterruptedException e) {}
}
accounts[from] -= amount;

accounts[to] += amount;
ntransacts++;
if (ntransacts % 5000 == 0) test();

notifyAll();
}

Synchronization Inside the Monitor

• Use of wait:
When a thread calls wait inside a synchronized method, it is deactivated, and
Java puts it in the waiting queue of the monitor object.
(This lets in another thread that can, hopefully, change the account balance.)

• Use of notifyAll:
Java awakes a thread that called wait when another method calls the
notifyAll method.
(This is the signal that the state of the bank object has changed and that waiting
threads should be given another chance to inspect the object state. If the ballance is
sufficient, it performs, the transfer. If not, it calls wait again.)

• Warning:
It is important that the notifyAll method is called by some thread - otherwise,
the thread that called wait, will wait forever. The waiting threads are not
automatically reactivated when no other thread is working on the object.

• Exercise: Run the SyncBankTest.java program:
– Is it correct?
– What happens if we replace notifyAll with notify?

The Principle of a Semaphore

Synchronisation operations require direct contact between
the processes. The key of concepts such as semaphore is
to provide a separate object, where the synchronisation
takes place.

Semaphore Critical Section

Thread q

Critical Section

Thread p Shared object

The semaphore metaphor is similar to a real semaphore
(traffic light). If the light is red, the process waits, if it is
green, it can enter the critical section.

The Structure of a Semaphore

Definition: A binary semaphore is a mechanism to control
access to a critical section based on two (primitive) operations
P() and V().

Semaphore

Shared object

Critical Section

Thread p

P

V
Critical Section

Thread q

P

V

How a Semaphore Works

1. Each process, on entry into the critical section, must call
the operation P() and on exit from the critical section must
call the operation V().

2. The value is never permitted to be negative. If the value
is zero when a process calls P(), that process is forced to
wait until some other process calls V() on the semaphore.

3. The P () and V () operations are atomic. A correct
implementation must make it appear that they occur
instantaneously. In other words, two operations on the
same semaphore attempted at the same time must not be
interleaved.

Providing Atomicity in Java

Lack of atomicity can lead to race conditions.

A semaphore only works if the operations P() and V() are
atomic since the semaphore itself is a shared object.

Methods can become be executed atomically in Java by using
the keyword synchronized. So, if two threads call a
synchronized method only one of them has access to the
method. The other thread must wait.
class Semaphore {

private int value;
public Semaphore(int v) { value = v; }
public synchronized void P() { /* ... */ }
public synchronized void V() { /* ... */ };

}

Implementing Semaphores in Java

public synchronized void P() {
while (value <= 0) {

try {wait();} catch(InterruptedException e) {}
}
value --;

}

public synchronized void V() {
value ++;
notifyAll();
}

public class Semaphore {
private int value = 0;
Semaphore(int n) {

value = n;
}

}

Example of Semaphore: The Process Behaviour

public void run () {
// Attempts to enter the Critical Section
s.P();
// Enters the Critical Section
data.print();
data.update(v); // Updates the shared data
data.print();
InternalComputation();
// Reads the final shared data
data.print();

s.V();
// Leaves the Critical Section
}

}

The Main Process

class ControlledSharedObjectMain{
public static void main (String args[]) {

SharedData data = new SharedData();
Semaphore s = new Semaphore(1);

ControlledSharedThreadObject t1 = new
SharedThreadObject("t1", data, 1, s);

ControlledSharedThreadObject t2 = new
SharedThreadObject("t2", data, 2, s);

}

Summary

The key of concepts such as semaphore is to provide a
separate object, where the synchronisation takes place.

A semaphore is based on two (primitive) operations P(),
called on entry into the critical section, and V(),called on
exit. If the value is zero when a process calls P(), that
process is forced to wait until some other process calls V().

Semaphores are implemented in Java using synchronized
methods to provide atomicity and wait and notify to provide
synchronisation.

?

The three ways of starting
threads

1. The parent starts the thread:
class PrimeThread extends Thread {

public void run() {
// compute primes...

}
}

To start this thread you need to do the following:
PrimeThread p = new PrimeThread();
p.start();
...

The three ways of starting
threads

2. The thread object starts itself by its constructor:
class PrimeThread extends Thread {

public PrimeThread() {
start();

}
public void run() {

// compute primes...

}
}

The thread object immediately starts itself when it is created:
PrimeThread p = new PrimeThread();
...

Defining a Thread Extending the Thread Class

class SimpleThread extends Thread {

String msg = null;
int n = 2;
SimpleThread (String msg) {

this.msg = msg;
this.start(); // starts thread immediately

}
public void run() {

for (int i=0; i< n; i++)
System.out.println (msg); // action

}
}

The three ways of starting
threads

3. Using the Runnable interface :
class Primes implements Runnable {

public void run() {
// compute primes...

}
}

To start this thread you need to do the following:
Primes p = new Primes();
new Thread(p).start();
...

In all cases the run method plays the same role as the main method in
sequential programs.

Meanwhile the main method is called by the Java interpreter, the run method
is called by the start call. You need as many start calls as many threads
you want to start.

Defining a Thread Implementing the Runnable
Interface

class SimpleThread implements Runnable {

String msg = null;
int n = 2;
SimpleThread (String msg) {

this.msg = msg;
this.run(); // starts thread immediately

}
public void run() {

for (int i=0; i< n; i++)
System.out.println (msg); // action

}
}

Creating A Parallel Program Using Threads

import SimpleThread;
import SimpleThread1;

class SimpleThreadMain {
public static void main (String args[]) {

System.out.println("SimpleThreadMain: Start");

// Parallel Composition
{
SimpleThread p1 = new SimpleThread ("thread p1");

SimpleThread1 p2 = new SimpleThread1 ("thread p2");
}

System.out.println ("SimpleThreadMain: End ");

}
}

Observing the Execution of Parallel Processes

%java
SimpleThreadMain
SimpleThreadMain:
Start
thread p1
thread p1
thread p2
thread p2
SimpleThreadMain:
End

Combining Atomicity and Synchronisation in Java

Atomicity guarantees safe termination of the operations P()
and V() but we still need to provide synchronisation.

The notifyAll() operation (method) notifies all the
threads waiting for an object held by the current thread and
wakes them up. Typically, one of the waiting threads will
grab the object and proceed.

The operation (method) wait causes the current thread to
wait (possibly forever) until another thread notifies it of a
condition change. You use wait in conjunction with
notify() or notifyAll() to coordinate the activities of
multiple threads using the same resources.

Example of Semaphore: The Constructor

class ControlledSharedThreadObject extends
Thread {

private SharedData data;
private String name;
private int v;
private Semaphore s;

...
// Simulates the internal computation.
// Blocks for a random time
private void InternalComputation() {
try { sleep((long) Math.random()*100);}
catch (Exception e){}

}

	Multithreading in Java
	The Concept of Process
	Multithreading
	Computing Elements
	Shared Memory MIMD machine
	The Bouncing Ball Application
	Exercise
	Using Threads for the Bouncing Ball Application
	Running and Starting Threads
	Exercise
	Thread States
	Thread States (cont.)
	Thread States (cont.)
	Thread Priorities
	Exercise
	Answers
	Cooperating and Selfish Threads
	Exercise
	Answers
	Thread Groups
	Thread Communication without Synchronization
	Synchronizing Access to Shared Resources
	Simultaneous Access by Two Thread
	Returning to the bank problem: Use of Monitors
	Synchronization Inside the Monitor
	Synchronization Inside the Monitor
	
	The three ways of starting threads
	The three ways of starting threads
	Defining a Thread Extending the Thread Class
	The three ways of starting threads
	Creating A Parallel Program Using Threads
	Observing the Execution of Parallel Processes

