
The Vocabulary of OOP

• The most important term is class. A class is the template from which the object is
actually made.

• To create an object you use the new keyword. It allocates memory and the built-in
garbage collector will release memory when nobody uses the object anymore.

• When you create an object from a class , you are said to have created an instance
of the class.

Car mazda626 = new Car();
creates a new instance of the Car class.

Method A
Method B
Method C

State 1

Object 1: mazda626 Object 2: opel_corsa

Method A
Method B
Method C

State 2

Method A
Method B
Method C

State

Class: Car

• Everything you write in Java is inside a class.
• Java is composed of many classes.

The Vocabulary of OOP :
Encapsulation

• Encapsulation is another key concept of OOP. It means
– combining of data and behaviour in one black box
– and hiding the implementation of the data from the user of the object

• The data in an object are called instance variables or fields.
• Functions and procedures in a Java class are called its methods.

oil

petrol

accelerate

brake

Figure: Encapsulation of data in an object
instance variables: oil, petrol (typically hidden from outside if declaired private)

methods: accelerate, brake (typically visible from outside if declaired public)

Encapsulation is the way to give the object its “black box” behaviour

The Vocabulary of OOP:
Inheritance

• Classes can be built on other classes. We say that a class that builts on another class
extends it.

• The general concept of extending a base class is called inheritance.
• When you extend a base class, the new class initially has all the properties and functions

of its parent. You can choose whether you want to modify any function of the parent.
You can also supply new functions that apply to the child class only. The same
holds for the instance fields, too.

Class Car
Method A
Method B
Method C

parent

inherit
Extend

Method B
Method C

Class Ford
Method A

child

addMethod D
modifyMethod C’

• In Java, all classes extend the “cosmic base class” called Object.

Objects

• To work with OOP, you should identify 3 key characteristics of objects:
1. What is the object’s behaviour? methods
2. What is the object’s state? instance fields
3. What is the object’s identity?

• 1. All objects that are instances of the same class share a family resemblance by supporting
similar behaviour. The behaviour of an object is defined by the methods of its class.

• 2. Each object stores information, called state, about what it currently looks like. The state of
an object is represented by the value of its instance fields. A change in the state of an object
must be the consequence of calling a method of the object.

• 3. Each object has a distinct identity. The individual objects that are instances of a class
always differ in their identity and usually differ in their state.

Method A
Method B
Method C

State

Class: Car

Method A
Method B
Method C

State 1

Object 1: mazda626 Object 2: opel_corsa

Method A
Method B
Method C

State 2

Relationship between classes

• The most common relationships between classes are:
1. use
2. containment (“has-a”)
3. inheritance (“is-a”)

• 1. A class uses another class if it manipulates objects of that class. In general, a class A
uses a class B if:

a/ a method of A sends a message to an object of class B, or
b/ a method of A creates, receives, or returns objects of class B.

• 2. Containment means that objects of class A contain objects of class B. (Containment
is a special case of use; if an A object contains a B object, then at least one method of
class A will make use of that object of class B.

• The inheritance relationship denotes specialization. If class A extends class B, class
A inherits methods from class B, but has more capabilities.

• Class diagrams show the classes and their relationships.

Traditional versus OO
programming

• In traditional structured programming
algorithms come first
data structures come second.

First, you decide how to manipulate data; then you decide what structure to impose on the data.
• In object-oriented programming

data structures come first
algorithms come second.

First, you create abstract data structures; then you look at the algorithms that operate on the
abstract data structures.

• In a traditional procedure-oriented program, you start the process at the top, with the main
program.

• In object-oriented programming there is no “top”. You first find classes and then you add
methods to each class. (A simple rule of thumb in identifying classes is to look for nouns in
the problem analysis. Methods, on the other hand, correspond to verbs.)

Object Variables

• For most classes in Java, you create objects, specify their initial state and then work with
the objects.

• To access objects, you define object variables. The statement
Car mazda626; // mazda626 does not refer to any object

defines an object variable, mazda626, that can refer to objects of type car.

Method A
Method B
Method C

State

Class: Car

Empty

mazda626

• The variable mazda626 is not an object and does not yet even refer to an object. You cannot
use any methods on the variable at this time.

mazda626.accelerate(); // not yet

Object Variables

• Use the new operator to create an object:
mazda626 = new Car(); // does create an instance

Method A
Method B
Method C

State

Class: Car

Method A
Method B
Method C

State 1

Object 1: mazda626mazda626

• Now you can start to applying car methods to mazda626.

Object Variables

• You might need to create multiple objects (instances) of a single class:
Car opel_corsa = new Car();

• Now there are two objects of type car, one attached to the object variable mazda626 and
one to the object variable opel_corsa.

Method A
Method B
Method C

State 1

Object 1: mazda626

Method A
Method B
Method C

State

Class: Car Object 2: opel_corsa

Method A
Method B
Method C

State 2

mazda626 opel_corsa

Object Variables (cont.)
• If you assign one variable to another one using the equal sign,

Car opel_corsa = mazda626;

then both variables refer to the same instance.

Method A
Method B
Method C

State 1

Object 1

Method A
Method B
Method C

State

Class: Car

mazda626 opel_corsa

• This can lead to surprising behaviour in your programs. For example, if you call
mazda626.accelerate();
opel_corsa.brake();

the car object will accelerate and then brake, since the same car object is referred to by
opel_corsa and mazda626 variables.

Object Variables (cont.)

• Many classes have a method called clone that makes a true copy. When you clone an
existing object, you get a copy that reflects the current state of the object. Now the two
objects exist independently, so they can diverge over time.

• You can explicitly set an object variable to null to indicate that it currently refers to no
objects:

opel_corsa = null;
if (opel_corsa != null) opel_corsa.brake();

• If you call a method through a null variable, a run time error occurs.

• Object variables must be initialized either by
– calling new or
– by setting them to null.

The Supplied Date Class

• The Date class comes with Java. An instance of it has a state specifying the date and
time:

Date todaysDate = new Date();
• creates an instance of class Date and initializes its state to the current date (maintained

by the operating system).
• You can also create an instance with a specific date:

Date preMillenium = new Date(99,12,31);

• You can also set the time:
Date preMillenium = new Date(99,12,31,23,59,59);

• Why is Date a class in Java rather than a built-in type, like int?
• By making Date into a class, the design task is off-loaded to a library designer. If the

class is not perfect, other programmers can easily write their own Date class.
• Notice that the Date class has encapsulated data to maintain the date. It is irrelevant to

know the internal representation of data inside the Date class.

The Supplied Date Class (cont.)

• The Date class being in the java.util library has 25 methods. Some of them are:
Given a string representing a date and time, this method parses it and converts it to a
time value.

void parse(String s)
This method returns true if the Date comes before the date when.

boolean before(Date when)
This method returns true if the Date comes after the date when.

boolean after(Date when)
This method converts the date held in the Date object to a string representing the date
using Unix date/time convention.

string toString()
This method converts the date held in the Date object to a string representing the date
using the local ordering convention.

string toLocaleString()

• Exercise: Write a Java application to print out the current date in local ordering
convention.

A very simple Java Program

public class FirstSample
{ public static void main(String[] args)
/* this is comment */

{ System.out.println("We will not use 'Hello world!' ");
// this is comment, too

}
} controls which code can use this code

everything in a Java program must be
inside a class

name of the class =>
filename = classname.java =>
compiled byte code name = classname.class

The Java interpreter always starts execution
with the code in the main method.
You must have a main method!

body of the method

We are using the System.out object and
its println method which displays a
string on the standard console

Exercise

• Write a Java application to print out the current date in local ordering
convention.

import java.util.*;
public class WhatIsToday
{ public static void main(String arg[])

{ Date today = new Date();
System.out.println(today.toLocaleString());

}
}

The Supplied Date Class (cont.)

• Here is the list of the most important methods for getting at or changing the state of a Date
instance:
Gets the day of the month of this date instance, a number between 1 and 31.

int getDate()

Gets the month of this date instance, a number between 0 and 11.
int getMonth()

Gets the year, with 0 denoting 1900, and so on.
int getYear()

Gets the weekday, a number between 0 and 6 (with 0 being Sunday).
int getDay()

Returns the hours, minutes, or seconds.
int getHours(), int getMinutes(), int getSeconds()

Sets the hours, minutes, or seconds.
void setHours(int), void setMinutes(int), void setSeconds(int)

Sets the current day of the month, the month and the year.
void setDate(int), void setMonth(int), void setYear(int)

• Convention in Java: use get for accessor methods and set for mutator methods.

The Day Class

• The Day class being in the corejava.util package inside the \CoreJavaBook
directory has the following methods:
Advance the date currently set by a specified number of days.

void advance(int n)

Returns the day, month, or year of this day object. Days are between 1 and 31, months
between 1 and 12, and years can be any year (such as 1996 or -333).

int getDay(), int getMonth(), int getYear()

Gets the weekday, a number between 0 and 6 (with 0 being Sunday).
int weekday()

This method is one of the main reasons to create the Day class. It calculates the number
of days between the current instance of the Day class and instance b of the Day class.

int DaysBetween(Day b)
There are two ways (two constructors) to create an instance of the Day class:

Day todaysDate = new Day();
Day preMillenium = new Day(1999,12,31);

• Exercise: Write a Java application to calculate how many days you have been alive.

Exercise

Write a Java application to calculate how many days you have been alive.
import corejava.*;
public class DaysAlive
{ public static void main(String arg[])

{ int year;
int month;

int day;

day = Console.readInt("Please, enter the day you were born.");
month = Console.readInt("Please, enter the month you were born.");
year = Console.readInt("Please, enter the year you were born.");

Day today = new Day();
Day birthday = new Day(year,month,day);
System.out.println("You have been alive " +

today.daysBetween(birthday) + "days.");
}

}

Exercise: Calendar.java

• 1. Study the application that prints out a calendar for the month and year specified in
the command line argument.

• 2. Run the application with commands:
java Calendar
java Calendar 12 1999

• 3. To write such a calendar program you have to know how many days the month has.
To solve the problem a Day object is created that starts with the first of the month:

Day d = new Day(y, m, 1); // start date of the month
• After printing each day, d is advanced by one day:

d.advance(1);

• When the month is advanced the program is stopped.

• Exercise: Modify the program to create a calendar for a whole year.

Starting to Build Your Own Classes
• So far we have written classes to run as stand-alone programs. In these classes the Java

interpreter looked for the main method and ran it. The main method called other methods of
the class as needed.

Method A

Method B

Method Main

Standalone Class Building block Class

Method A

Method B

Method C

• Now we want to write classes that do not stand alone, rather they are the building blocks for
constructing stand-alone programs.

• The simplest syntax for a class in Java:
class NameOfClass
{ // definitions of the class’s features

// includes methods and instance fields

}

• The outermost pair of braces (block) defines the code that will make up the class.
• Our convention: to use initial caps for class names.
• Example: an Employee Class that might be used by a business in writing a payroll system.

class Employee
{ public Employee(String n, double s, Day d)

{ name = n;
salary = s;
hireDay = d;

}
public void print()
{ System.out.println(name + " " + salary + " " + hireYear());
}
public void raiseSalary(double byPercent)
{ salary *= 1 + byPercent / 100;
}
public int hireYear()
{ return hireDay.getYear();
}
private String name;
private double salary;
private Day hireDay;

}

Analyzing the Employee
Class

• The Employee class has four methods:
public Employee(String n, double s, Day d)
public void print()

public void raiseSalary(double byPercent)
public int hireYear()

• The keyword public is usually called as access modifier. In Java, these access modifiers
describe who can use the method or who can use the class if a modifier is used in the name of
the class.

• The keyword public means that any method in any class that has access to an instance of the
Employee class can call the method.

• There are four possible access levels as explained later.
• There are three instance fields that hold the data to be manipulated inside an instance of the

Employee class:
private String name;
private double salary;

private Day hireDay; // instance of the Day class
• The keyword private makes sure that no outside object can access the instance fields

except the methods of our class.

First Step with Constructors

• Let’s look at the first method listed in our Employee class:
public Employee(String n, double s, Day d)
{ name = n;

salary = s;
hireDay = d;

}

• This is an example of a constructor method. It is used to construct an object from the class by
initializing the instance variables.

• For example, you create an instance of the Employee class with code like this:
hireDate = new Day(1950,1,1);

Employee number007 = new Employee(”James Bond”,100000,hireDate);
• The constructor method is called when the class is created by new and the constructor

method initializes the instance fields. In the example above:
name = ”James Bond”;

salary = 100000;
hireDay = January 1, 1950;

First Step with Constructors
(Cont.)

• The new method is always used together with a constructor to create the class. This forces you
to set the initial state of your objects. In Java, you cannot create an instance without
initialization.

• Rules of using constructors:
1. A constructor has the same name as the class.
2. A constructor may take one or more (or even no) parameters.
3. A constructor is always called with the new keyword.
4. You can’t apply a constructor to an existing object to reset the instance fields.

Of course, if resetting all fields of a class is important, the class designer
can provide a mutator method such as empty or reset for that purpose.

• It is possible to have more than one constructor in a class. You have already seen it in the
Day class:

Day todaysDate = new Day();

Day preMillenium = new Day(1999,12,31);

The Methods of the Employee
Class

• Methods can access the private instance fields by name and can modify their values (these are
the mutator methods). An example of that is the raiseSalary method:

public void raiseSalary(double byPercent)
{ salary *= 1 + byPercent/100;
}

• void means that this method does not return any value.
• The most interesting method is hireYear:

public int hireYear()
{ return hireDay.getYear();
}

• This method returns an integer value, and it does this by applying a method to the hireDay
instance variable. Indeed, hireDay is an instance of the Day class, which has a getYear
method.

• Finally, the print method is an example of an accessor method: It simply accesses (prints out)
the current state of the instance variables:

public void print()
{System.out.println(name + " " + salary + " " + hireYear());
}

Use of the Employee Class

• Exercise: study the Employee Class and run the EmployeeTest program.

import java.util.*;

import corejava.*;
public class EmployeeTest

{ public static void main(String[] args)
{ Employee[] staff = new Employee[3];

staff[0] = new Employee("Harry Hacker", 35000,

new Day(1989,10,1));
staff[1] = new Employee("Carl Cracker", 75000,

new Day(1987,12,15));
staff[2] = new Employee("Tony Tester", 38000,

new Day(1990,3,15));
int i;
for (i = 0; i < 3; i++) staff[i].raiseSalary(5);

for (i = 0; i < 3; i++) staff[i].print();
}

}

Summary of method types

• When the user of a class has a legitimate interest in both reading and writing an instance field, the
class implementor should supply three items:

1. A private data field.
2. A public accessor method to access the private data field.
3. A public mutator method to modify the private data field.

• This approach has the benefits:

1. The internal implementation can be changed without affecting any code outside the
class.

2. Mutator methods can perform error-checking, whereas code that simply assigns to a
field cannot. For example, use

setDate(1999,3,31); //with internal error-checking

instead of
d.setDay(31); // problem in case of February
d.setMonth(2);

Method Access to Private Data

• There are two rules of method accesses to private data (state of object):
1. A method can access the private data of the object on which it is invoked.

hireday
Object 1

Day
Method equals

Method B
State

Class

Method equals
Method B

State 1
1

d
Method equals

Method B
State 2

Object 2

2

2. Surprise: A method can access the private data of all sibling objects in its class!

Method Access to Private Data

• There are two rules of method accesses to private data:

1. A method can access the private data of the object on which it is invoked.
2. A method can access the private data of all objects of its class.

• For example, consider the method daysBetween and its usage in the DaysAlive class:
Day today = new Day();
Day birthday = new Day(year,month,day);
System.out.println("You have been alive " +

today.daysBetween(birthday) + "days.");

The method daysBetween accesses the private fields of today (rule 1). It also accesses
the private fields of birthday (rule 2). This is legal because birthday is a sibling
object of today .

Class Variables

• A class variable can be accessible by all the methods in the class. They are declared before
the main method using the following syntax:
class Employee
{ private static double socialSecurityRate = 7.62;

public static void main(String[] args)

{ . . . }
}

• By replacing the keyword private with the keyword public one can create true global
variables accessible by all methods in an application:
class Employee
{ public static double socialSecurityRate = 7.62;

public static void main(String[] args)
{ . . . }

}

DO NOT USE GLOBAL VARIABLES!

Pivate Methods

• When implementing a class, we make all data fields private, but what about the methods?

• Private methods are quite frequent, and they can be called only from other operations of
the same class.

• To implement a private method in Java, simply change the public keyword to private.

• In sum, choose private methods:
1. for those functions that are of no concern to the class user and
2. for those functions that could not easily be supported if the class

implementation were to change.

Static Fields (Variables)

• Classes can have both static fields and instance fields. Use the static keyword to make a field
static. Other fields are instance fields and they represent the state of the objects, i.e. they can be
different for different objects.

• Static fields (variables) do not change from one instance of a class to another, so you
should think of them as belonging to a class.

Method A
Method B

Static field = S

Object 1

I1

Method A
Method B

Static field = S

Class

Instance field Method A
Method B’’
Static field = S

Object 2

Instance field = I2Instance field =

Static Methods

• Classes can have both static variables and static methods.

• Static methods belong to a class and do not operate on any instance of a class. It means
you can use them without creating an instance (object) of a class. The static methods are
staticly available without dynamic object creation.

• For example, all of the methods in the Console class are static methods. This is why a syntax
like

x = Console.readDouble();
makes perfect sense without using new to create a console object.

• The general syntax for using a static method from a class is:
ClassName.staticMethod(parameters);

• WARNING: Because static methods can work without an object of the
class they can only access static fields.

Static Methods as Headers

• Consider the header for the main method:
public static void main(String[] args)

• Since main is static, you don’t need to create an instance of the class in order
to call it - and the Java interpreter doesn’t either.

• For example, if your main function is contained in the class Mortgage and you
start the Java interpreter with:

Java Mortgage

then the interpreter simply starts the main function without creating an object of
the Mortgage class.

RandomIntGenerator.java

• Java provides a random number generator. The random number is supplied by a call to:
java.lang.Math.random();

• We create a better random number generator with the following advantages:
1. Adds the convenience of generating random integers in a specific range.
2. It is more “random” than the one supplied with Java.

• The code is shown below:
public class RandomIntGenerator
{ /* @param l the lowest integer in the range

@param h the highest integer in the range
Used to return a random integer in the range */

public RandomIntGenerator(int l, int h) // a constructor

{ low = l;
high = h;

}

Static initialization block

• Data structures of the class RandomIntGenerator:
private static final int BUFFER_SIZE = 101;
private static double[] buffer = new double[BUFFER_SIZE];
static /* initialization block */
{ int i;

for (i = 0; i < BUFFER_SIZE; i++)
buffer[i] = java.lang.Math.random();

}
/* instance fields: */
private int low;
private int high;

• It uses a small static array which is filled up with a static initialization block. Use these blocks
whenever simple initialization statements for static members are either not possible or too
clumsy. In the example we need a loop to initialize the buffer array, and a loop cannot be coded
with a simple initializer.

• The syntax for a static initialization block is simply the keyword static followed by braces
that mark any Java code block.

• Java then executes the block before any method of the class is called.
• You can have many such blocks in a class.

RandomIntGenerator.java

• It has a public method, called draw, for drawing a random integer in the specified range.
public int draw()
{ int r = low

+ (int)((high - low + 1) * nextRandom());
if (r > high) r = high;
return r;

}

• The draw method uses a static method called nextRandom that actually implements the
algorithm. It uses the static buffer array (static method can access only static fields) and
calls the Java built-in random number generator twice:

private static double nextRandom()
{ int pos =

(int)(java.lang.Math.random() * BUFFER_SIZE);
if (pos == BUFFER_SIZE) pos = BUFFER_SIZE - 1;

double r = buffer[pos];
buffer[pos] = java.lang.Math.random();

return r;
}

• Notice that the static keyword can be omitted in the definition of nextRandom without
any problem, i.e., it could be an ordinary method.

Overloading

• It is possible to have more than one constructor in a class. You have already seen
it in the Day class:

Day todaysDate = new Day();
Day preMillenium = new Day(1999,12,31);

• This capability is called overloading.
• Overloading occurs if several methods have the same name but different

arguments.
• The Java interpreter has to sort out which method to call. A compile-time error

occurs if the compiler cannot match the arguments or if more than one match is
possible.

• WARNING: method overloading (sometimes called ad-hoc polymorphism) must
be distinguished from true polymorphism, which Java also does support.

Instance Field Initialization
• Instance field initialization is done by constructors.
• If your class has no constructors, Java provides a default constructor for you. A default

constructor is a constructor with no parameters. It sets all the instance variables to a default
value (numbers to zero, objects to null).

• This only applies when your class has no constructors.
• Warning: Instance variables differ from local variables in a method. Local variables

must be always initilized explicitly.
• If all constructors of a class need to set a particular instance variable to the same value,

there is a convenient syntax for doing the initialization. For example, nextOrder to 1:
class Customer
{ public Customer(String n)

{ name = n;

accountNumber = Account.getNewNumber(); }
public Customer(String n, int a)

{ name = n;
accountNumber = a; }

private String name;

private int accountNumber;
private int nextOrder = 1;

}

The “this” Object

• In a method, the keyword this refers to the object (in its entirety) on which the method
operates.

• Many Java classes (for example, date) have a method called toString() that prints out the
object. You can print out the current date by saying:

this.toString();

• More generally, provided your class implements a toString() method, you can print it out
symply by calling:

System.out.println(“Customer: “ + this);

• This is a useful strategy for debugging.
• If the first line of a constructor has the form this(...), then the constructor calls

another constructor of the same class:
class Customer

{ public Customer(String n)
{ this(n, Account.getNewNumber()); }
public Customer(String n, int a)

{ name = n;
accountNumber = a; }

...}

Exercise: CardDeck.java

• A simple card game: the program chooses two cards at random, one for you and
one for the computer. The highest card win. It repeats 10 times and then prints the
result.

• Exercise:
1. Run the code of CardDeck.java
2. Study the code of CardDeck.java
3. Study the code of Card.java
4. Is there any method in Card.java which is not used?

(yes getValue, getSuit)
5. Remove the superfluous method(s) of Card.java , compile it and run the

code of CardDeck.java again.

Class Design Hints

1. Always keep data private
2. Always initialise data (Java won’t initialise local variables for you)
3. Don’t use too many basic types in a class

The idea is to replace multiple related uses of basic types with other classes. For example,
replace the following instance fields in a Customer class

private String street;
private String city;

private String state;
with a new class called address.

4. Not all fields need individual field accessors and mutators
5. Break up classes with too many responsibilities
6. Make the names of your classes and methods reflect their responsibilities

Class Design Hints (cont.)

7. Use a standard form for class definitions
public features
package scope features
private features

Within each section, we list
constants
constructors
methods
static methods
instance variables
static variables

	The Vocabulary of OOP
	The Vocabulary of OOP : Encapsulation
	The Vocabulary of OOP: Inheritance
	Objects
	Relationship between classes
	Traditional versus OO programming
	Object Variables
	Object Variables
	Object Variables
	Object Variables (cont.)
	Object Variables (cont.)
	The Supplied Date Class
	The Supplied Date Class (cont.)
	Exercise
	The Supplied Date Class (cont.)
	The Day Class
	Exercise
	Exercise: Calendar.java
	Starting to Build Your Own Classes
	Analyzing the Employee Class
	First Step with Constructors
	First Step with Constructors (Cont.)
	The Methods of the Employee Class
	Use of the Employee Class
	Summary of method types
	Method Access to Private Data
	Method Access to Private Data
	Class Variables
	Pivate Methods
	Static Fields (Variables)
	Static Methods
	Static Methods as Headers
	RandomIntGenerator.java
	Static initialization block
	RandomIntGenerator.java
	Overloading
	Instance Field Initialization
	The “this” Object
	Exercise: CardDeck.java
	Class Design Hints
	Class Design Hints (cont.)

