
Chapter 5

• First Steps with Inheritence
• Casting
• Abstract Classes
• More on Object: The Cosmic Superclass
• The Class Class (Run-time Type Identification)
• Interfaces
• Protected Access
• Design Hints for Inheritance

First Steps with Inheritence

• Let us modify the Employee class whereby managers are treated in a special way:
– they have secretary
– they earn extra 1/2% bonus for every year of service

• We define a new class, Manager, and add functionality, but we can retain some methods
and all the instance fields of the Employee class.

• There is an obvious „is-a”relationship between Manager and Employee. Every
manager is an employee: this is the hallmark of inheritance.

Existing class
(Employee)

New class
(Manager)

extends

Superclass Subclass

Parent class Child class

Base class Derived class

Inheritance

• Classes can be built on other classes. We say that a class that builts on another class
extends it.

• The general concept of extending a base class is called inheritance.
• When you extend a base class, the new class initially has all the properties and functions

of its parent. You can choose whether you want to modify any function of the parent.
You can also supply new functions that apply to the child class only.

• Instance fields can only be added in inheritance.

Method A
Method B
Method C

parent

Instance I
addMethod D

inherit
Extend

Method B
Method C

Class Manager
Method A

child

Instance I

addInstance I2

modifyMethod C’

Class Employee

class Manager extends Employee
{ public Manager(String n, double s, Day d)

{ super(n, s, d);
secretaryName = "";

}
public void raiseSalary(double byPercent)
{ // add 1/2% bonus for every year of service

Day today = new Day;

double bonus = 0.5 * (today.getYear() - hireYear());
super.raiseSalary(byPercent + bonus);

}

public string getSecretaryName()
{ return secretaryName;

}
public void setSecretaryName(String name)
{ secretaryName = name;

}
private String secretaryName;

}

Analyzing the Manager Class

• The header for the Manager class is a little different:
class Manager extends Employee

The keyword extends indicates that you create a subclass.

• Next, notice the constructor for the Manager class:
public Manager(String n, double s, Day d)
{ super(n, s, d);

secretaryName = "";

}
The keyword super refers to the superclass. So the line

super(n, s, d);
is a shorthand for ”call the constructor of the Employee class”. The reason is that every
constructor of a subclass is also responsible for constructing the data fields of the
superclass.

• The call to super must be the first line in the constructor of the subclass.
• A subclass can have more instance fields than its superclass (but not less). The instance

fields of the superclass should not be written in the subclass:
private String secretaryName;

Analyzing the Manager Class (Cont.)

• Many of the methods are not repeated, they are inherited from the superclass (for example:
getName). You need to indicate only the differences between the subclass and superclass. For
example, we are adding accessor and mutator methods to handle the name of the secretary:

public string getSecretaryName()
{ return secretaryName;
}

public void setSecretaryName(String name)
{ secretaryName = name;
}

• Many times you have to redefine methods. For example:
public void raiseSalary(double byPercent)
{ // add 1/2% bonus for every year of service

Day today = new Day;

double bonus = 0.5 * (today.getYear() - hireYear());
super.raiseSalary(byPercent + bonus);

}

Use of the Employee and
Manager Classes

• Exercise: study the ManagerTest program.

import java.util.*;

import corejava.*;
public class ManagerTest

{ public static void main(String[] args)
{ Employee[] staff = new Employee[3];

staff[0] = new Employee("Harry Hacker", 35000,

new Day(1989,10,1));
staff[1] = new Manager("Carl Cracker", 75000,

new Day(1987,12,15));
staff[2] = new Employee("Tony Tester", 38000,

new Day(1990,3,15));
int i;
for (i = 0; i < 3; i++) staff[i].raiseSalary(5);

for (i = 0; i < 3; i++) staff[i].print();
}

}

Employee Inheritance Hierarchy

• Inheritance need not stop at deriving one layer of classes. We could have an Executive class
that is derived from Manager. The collection of all classes extending from a common parent is
called an inheritance hierarchy (see figure).

Employee

Manager Secretary Programmer

Executive

• The path from a particular class to its ancestors in the inheritance hierarchy is an inheritance
chain.

Working with subclasses

• There are two rules of using subclasses:
1. Any object of a subclass must be usable in place of its superclass’ objects. Put in

another way: Subclass objects are usable in any code that uses superclass.
If this is not true, do not use inheritance!

2. Subclass objects have at least as many instance fields as superclass objects have

because instance fields can only be added in inheritance.

• For example, you can assign a subclass object to a superclass variable (rule 1):
Employee[] staff = new Employee[3];
Manager boss = new Manager("Carl Cracker", 75000,

new Day(1987,12,15));

staff[0] = boss;
In this case, the variables staff[0]and boss refer to the same area of memory. However,
staff[0] is only considered to be an Employee object by the compiler.

• A subclass object can be passed as an argument to any method that expects a superclass
parameter. The converse is false in general because of rule 2. For example:

boss = staff[0]; // error, but casting is a remedy

Casting

• You occasionally need to convert an object from a parent class to a child class.
This is done by casting.

• Syntax: surround the target type with brackets and place it before the object:
Manager boss = (Manager)staff[0];

• There is only one reason for casting: to use an object in its full capacity after its
actual type has been downplayed. For example, the staff array had to be an array of
Employee objects since some of its entries were regular employees. We would need
to cast the managerial elements of the array back to Manager in order to access any of
its new fields.

• Warning: performing a cast is not a good programming practice.
In our case the only reason to perform the cast is to use a method that is unique to
managers, such as getSecretaryName. You’d better redesign the parent class and
add a getSecretaryName method, which simply returns an empty string.

• Warning: one bad cast will terminate your program.

Thumb rules for casting
• The type of an object variable describes the kind of object the variable refers to and

what it can do.
• If you assign a superclass object to a subclass variable, you are promising more, and

you must confirm that you mean what you say to the compiler by the (Subclass)
cast notation:

Manager boss = (Manager)staff[0];
• In case of incorrect casting, Java notices the broken promise, generates an exception

and the program will die.
• It is a good programing practice to check whether or not your object is an instance of

another object before doing a cast. This is accomplished by the instanceof operator:
if (staff[1] instanceof Manager)
{ boss = (Manager)staff[1];

. . . }
• The compiler will not let you make a cast if there is no chance for the cast to succeed.

For instance:
Window w = (Window)staff[0];

will not succeed because Window is not a subclass of Employee.
• Summary: You can only cast within an inheritance hierarchy. Use instanceof

to check a hierarchy before casting from a parent to a child class.

Polimorphism

• An object’s ability to decide what method to apply to itself, depending on where it is in the
inheritance hierarchy, is called polimorphism.

• Implementation of polimorphism:
When you send a message that asks a subclass to apply a method using certain parameters, the
following happens:

– The subclass checks whether or not it has a method with that name and with exactly the
same parameters. If so, it uses it.

– If not, Java moves to the parent class and looks there for a method with that name and
those parameters. If finds, it calls that method. If not, Java moves up in the parent chain.

If Java cannot find a matching method in the whole inheritance chain, you get a compile-time
error.

Employee

Manager Secretary Programmer

ExecutiveExecutiveCall hireYear Executive

ManagerCall hireYear

EmployeeCall hireYear

Manager

Polimorphism (cont.)

• The implementation of polimorphism leads to one of the fundamental rules of inheritance :
A method defined in a subclass with the same name and parameter list as a
method in one of its ancestor classes hides the method of the ancestor class
from the subclass.

For example, the raiseSalary method of the Manager class is called instead of the
raiseSalary method of the Employee class when you send a raiseSalary message
to a Manager object.

• The name and parameter list of a method is called the method’s signature.
• In Java, having methods in a superclass and a subclass with the same signature can lead to

polimorphism.
• The key to making polimorphism work is called late binding (or dynamic binding).

This means that the compiler does not generate the code to call a method at compile-time.
Instead, the compiler generates code to calculate which method to call, using type information
from the object.

• The regular function call mechanism is called static binding.
• Static binding -- depends on the method alone;
• Dynamic binding -- depends on the type of the object variable and the position of the actual

object in the inheritance hierarchy.

Polimorphism (cont.)

• In Java, having methods in a superclass and a subclass with the same signature but differing
return types will give you a compile-time error.

• For example, you cannot have a method
void raiseSalary(double) in the Employee class and a method
int raiseSalary(double) in the Manager class.

Comparison of polymorphism and name
overloading

• Polimorphism in an inheritance hierarchy is called true polimorphism, to distinguish it
from the more limited kind of name overloading.

• True polimorphism
– name and parameter list (signature) must be the same
– scope is the inheritance hierarchy
– resolved dynamically

• Name overloading
– name must be the same but parameter list can be different
– scope is the same class
– resolved statically

Preventing Inheritance:
Final Classes and Methods

• Occasionally, you want to prevent someone from deriving a class from one of your
classes. These classes are called final classes and you use the final modifier in the
definition of the class to indicate this. For example, in case of

final class Programmer;

The JavaProgrammer subclass cannot be defined.

JavaProgrammer

Employee

Manager Secretary Programmer

Executive

Preventing Inheritance:
Final Classes and Methods

(cont.)

• You can also make any method final in a normal class.

• There are two reasons to make a class or method final:
1. Efficiency
Dynamic binding has more overhead than static binding - thus, virtual methods run
slower.
2. Safety
The flexibility of the dynamic binding mechanism means that you have no control over
what happens when you call a method.

Abstract Classes

• As you move up the inheritance hierarchy, classes become more general and more abstract and
look like a framework for other classes.

• Consider, for example, an electronic messaging system that integrates your e-mail, faxes, and
voice mail. Following the OOP principles, the program will need 3 types of classes and a
common parent class Message as shown in the figure.

Message

TextMessage VoiceMessage FaxMessage

• All messages have a common method, called play(). It is easy to figure out how to play a voice
message, text message or fax message. But how do you implement play() in the parent class
Message?

• You can’t. In Java, you use the abstract keyword to indicate that a method cannot yet be
specified in the parent class but it also means a promise that all nonabstract descendants of
this abstract class will implement that abstract method.

Abstract Classes (cont.)

• A class with one or more abstract methods must itself be declared abstract. An abstract
class has at least one abstract method.

• Abstract classes can have concrete data and methods. For example, the Message class can
store the sender of the message and have a concrete method that returns the sender’s name:

abstract class Message
{ public Message(String from)

{ sender = from; }
public abstract void play();

public String getSender()
{ return sender; }

private String sender;

}

• Abstract methods act as placeholder methods that are implemented in the subclasses.

MailboxTest.java

• Exercise:
1. Draw the inheritance hierarchy diagram of the program
2. Analyse the OOP aspects of the code of MailboxTest.java
3. Explain the data structure of the mailbox
4. Run the code of MailboxTest.java

• Explanation:
– The user interface is kept simple and ugly to allow you to focus on the OOP aspects

instead of being distracted by GUI.
– Do not worry too much about the code

• for playing the wave file
• the undocumented feature of Java that lets you play audio clips from within an

application
– When you run the program, you are supplied with two sample audio files, or you can use

your own. They must be in .au format.

Mailbox Test.java

• Exercise:
2. Draw the inheritance hierarchy diagram of the program

MailboxTest

Main class

Message

TextMessage VoiceMessage

Abstract class

Mailbox

Ordinary class

• Notice that no instance (object) is generated from class MailboxTest since its
main method is static. Accordingly,

System.out.println(”Current object: ” + this);
cannot be used within the method main (its usage will result in compiler error).

Analysis of MailboxTest.java

Remove mbox Returns TextMessage

Play TextMessage

Remove mbox Returns VoiceMessage

Play VoiceMessage

MailboxTest Message TextMessage VoiceMessageMailbox

Classes:
Objects: 10

Creates mbox 1
Insert to mbox Creates TextMessage 1
Insert to mbox Creates VoiceMessage 1

Creates messages
10

Mailbox Test.java

• Exercise:
3. Explain the data structure of the mailbox

• Explanation:
private final int MAXMSG = 10;
private int in = 0;

private int out = 0;
private int nmsg = 0;

private Message[] messages = new Message[MAXMSG];

– It can contain up to 10 messages in the array messages which are the instants of
the abstract class Message which has one instance field called sender

– When the main program calls
mbox.insert(new TextMessage(from, msg));

the abstract instance field becomes a concrete one with the structure:
String sender, text;

Catching Exceptions

• When an error occurs at run time, a Java program can ”throw exception”. Throwing an
exception is less violent than terminating the program, because it provides the option of
”catching” the exception and dealing with it.

• If an exception is not caught anywhere, the program will terminate, and a message will be
printed to the console giving the type of the exception.

• Syntax: To run code that might throw an exception, you have to place it inside a ”try” block.
Then you have to provide an emergency action to deal with the exception:

try
{ code that might throw exceptions }

catch(ExceptionType e) { emergency action }

• This mechanism is used in the code that plays an audio clip.
AudioPlayer ap = AudioPlayer.player;

try
{ AudioStream as

= new AudioStream(new FileInputStream(filename));
ap.start(as);

}
catch(IOException e) {} // ignore the error and do not

// play the clip

Multiple Inheritance

• Multiple inheritance means that a class can have more than one superclass.

Sortable

Tile

Rectangle

• The tile class models tiled windows on a screen desktop. Tiled windows are rectangles plus
a „z-order”. Windows with a larger z-order are displayed in front of those with a smaller z-
order. That’s why tiles should be sorted and inherit the sort method from class Sortable.

Interfaces
(Multiple Inheritance)

• Java does not support multiple inheritance.
• Instead, Java introduces the notion of interfaces to recover much of the functionality

provided by multiple inheritance.
• Reason: multiple inheritance makes compilers either very complex (see C++) or very

inefficient (see Eiffel).
• An interface is a promise that your class will implement certain methods with certain

signatures. You even use the keyword implements to indicate that your class will keep the
promise.

• For example, you want to create an interface called Sortable that could be used by any
class that will sort. The code might look like this:

public interface Sortable
{ public int compare(Sortable b);
}

• This code promises that any class that implements the Sortable interface will have a
compare method that will take a Sortable object. A Sortable object is any instance
of a class that implements Sortable (i.e. it has a compare method).

Interfaces (cont.)

• To tell Java that your class implements Sortable, you have the class header:
class Tile extends Rectangle Implements Sortable

where Tile is a class that extends the class Rectangle and models tiled windows on a
screen desktop.

Sortable

Tile

Rectangle

Interfaces (cont.)

• Then all you need to do is implement a compare method inside the class.
class Tile extends Rectangle implements Sortable
{ . . .

public int compare(Sortable b)

{ Tile tb = (Tile)b;
return z - tb.z;

}
. . .

private int z;
}

• Exercise:
1. Study the code of TileTest.java (Note that we needed to put the static shell_sort method in
a separate class, Sort. You cannot put static methods into interface classes.)
2. Draw the inheritance hierarchy of the TileTest.java program.

Properties of Interfaces

• Interfaces are not instantiated with new.
• They have certain properties similar to ordinary classes:

– Once you set up an interface you can declare that an object variable will be of
that interface type with the same notation used in case of ordinary classes:
Sortable x = new Tile(. . .);
Tile y = new Tile(. . .);

if (x.compare(y) < 0) . . .

– You can extend one interface in order to create another.
public interface Moveable

{ public void move(double x, double y);

}
public interface Powered extends Moveable
{ public String PowerSource();

}

Properties of Interfaces
(cont.)

• You cannot put instance fields in an interface.
• You can supply constants in an interface.

public interface Powered extends Moveable
{ public String PowerSource(PoweredVehicle);

public final int speedLimit = 95;

}

• Classes can implement multiple interfaces.
class Tile extends Rectangle implements Cloneable, Sortable

Pivate Methods

• A subclass cannot access the private data members of its superclass!

Class car
Method A
Method B

Private data

Parent (superclass)

Extend
Method B

Private data

Class ford
Method A

Child (subclass)

Yes
No

• Explain, why?
• Because maybe there is no object created from the parent class and hence

the private data of parent class does not exist when the child object runs.

Access Modifiers in Java

1. private: visible to the class only (their access is denied even
for subclasses)
2. public: visible to the world
3. protected: visible to the package and all subclasses
4. --: visible to the package (the default, no modifier needed)
5. abstract: Abstract methods act as placeholder methods that
are implemented in the subclasses
6. static:

- Static methods can be used without creating an instance of a class
- Static fields do not change from one instance of a class to another

7. final: prevents inheritance of the class or polimorphism of the
method

Design Hints for Inheritance

• Common operations and instance fields should be placed in the superclass.

• Use inheritance to model the ”is-a” relationship.
– The subclass should be a special case of the superclass!

• Don’t use inheritance unless all inherited methods make sense.
Suppose we want to write a Holiday class. Surely every holiday is a day, so
we can use inheritance.

class Holiday extends Day { . . . }
There is a problem with the advance method of the Day class. It can turn
holidays into non- holidays, so it is not an appropriate operation for holidays.

Design Hints for Inheritance
(cont.)

• Use polymorhism, not type information
Whenever you find the code of the form

if (x is of type1)
action1(x);

else if (x is of type2)
action2(x);

Think polymorhism.
If action1 and action2 represent a common concept, make the concept a
method of a common parent class or interface of both types. Then you can
simply call:

x.action();
Code with polymorhic methods or interface implementations is much easier to
maintain and extend than code with type tests.

Thank You ...Thank You ...

?

Object Wrappers

• Occasionally, you need to convert a basic type like int to an object. All basic types have class
counterparts. For example, there is a class Integer corresponding to the basic type int. These
kinds of classes are called object wrappers and they are final.

• The major reason for which wrappers were invented is generic programming. The container
classes (see Chapter 9) can store arbitrary objects but no numbers.

• Example to illustrate the concept: Suppose you want to find the index of an element in an array.
This is a generic situation and you can reuse the code for employees, dates, etc.

Static int find(Object[] a, Object key)
{ int i;

for (i = 0; i < a.length; i++)
if (a[i].equals(key)) return i;

return -1; } // not found

• For example:
Employee[] staff;
Employee harry;
. . .

int n = find(staff, harry);
• If you want to find a number in an array of integers, you must use Integer objects instead of

int variables and then you can take advantage of the generic code.

• Exercise: write the necessary code for integers.

Reading a Page in the HTML
Documents

• Organization of the API documentation pages:
– The name of the class (or interface);
– The inheritance chain for this class (starting from java.lang.Object);
– The name of the class along with the access modifiers such as public or final, the classes it

extends, and the interfaces it implements.
– A discussion of the class
– A list of all the variables, constructors and methods in the class;
– A more detailed discussion of the variables, constructors and methods .

• Exercise:
Study the class java.lang.Integer API description.
(file:///C|/java/api/java.lang.Integer.html#_top_)

More on Object: The Cosmic Superclass

• The Object class is the ultimate ancestor - every class extends Object. You don’t have to
say:

class Employee extends Objects

• Here are versions of the API descriptions of the basic parts of the Object class from
java.lang.Object (file:///C|/java/api/java.lang.Object.html#_top_)

Class getclass()

Returns the Class that contains information about the object.
boolean equals(Object obj)

Compares two objects for equality; returns true if the objects point to the same area of
memory (i.e. they are equal), and false otherwise. (Other classes in the Java hierarchy are free
to override equals for a more meaningful comparison.)

Object clone()

Creates a clone of the object. Java allocates memory for the new instance and copies the
memory of the current object to the memory allocated for the clone.

String toString()

Returns a String that represents the value of this Object.

The Class Class (Run-time Type
Identification)

• While your program is running, Java always maintains what is called run-time type identification
(RTTI) on all objects. It keeps track of the class to which each object belongs. This is used by Java
to select the correct methods at run time.

• You can also access this information. The class that holds this information is called Class. The
getClass() method in the Object class returns an instance of this class type. The
getName() method of getClass returns the name of the class. For example:

System.out.println(e.getClass().getName() + ” ” + e.getName());

prints:
Employee Harry Hacker

if e is an employee, and the code prints:
Manager Harry Hacker

if e is a manager.
• The newInstance() method can create a new instance of the class on the fly and calls the

constructor to initialize the newly created object. For example:
e.getClass().newInstance() ;

would create a new instance of the same class type as e.

The Class Class (cont.)

• The combination of newInstance() and forName() methods lets you create an object
from a class name stored in a string. For example:

String s = ”Manager” ;
Manager m = (Manager) Class.forName(s).newInstance() ;

• Exercise:
1. Study the class java.lang.Object API description.
(file:///C|/java/api/java.lang.Object.html#_top_)
2. Study the class java.lang.Class API description.
(file:///C|/java/api/java.lang.Class.html#_top_)

Exercise

• Where is the error in the code below?

class Manager extends Employee
{ public Manager(String n, double s, Day d)

{ super(n, s, d);
secretaryName = "";

}
public void raiseSalary(double byPercent)

{ // add 1/2% bonus for every year of service
Day today = new Day;
double bonus = 0.5 * (today.getYear() - hireDay.year);

super.raiseSalary(byPercent + bonus);
}

private String secretaryName;
}

Exercise Solutions

• Where is the error in the code below?
class Manager extends Employee
{ public Manager(String n, double s, Day d)

. . .

public void raiseSalary(double byPercent)
{ // add 1/2% bonus for every year of service

Day today = new Day;
double bonus = 0.5 * (today.getYear() - hireDay.year);
super.raiseSalary(byPercent + bonus);

}
}

Answer: hireDay is a private instance field in the superclass Employee and hence, it
cannot be accessed directly from the Manager subclass. Instead of

hireDay.year
you should use the hireYear() public method of Employee:

double bonus = 0.5 * (today.getYear() - hireYear());

Pivate Methods

• A subclass cannot access the private data members of its superclass!

Class car
Method A
Method B

Private data

Parent (superclass)

Extend
Method B

Private data

Class ford
Method A

Child (subclass)

Yes
No

• Explain, why?
• Because maybe there is no object created from the parent class and hence

the private data of parent class does not exist when the child object runs.

Protected Access

• There are cases when you want a subclass to access a method or data of the superclass.
• In such case you declare the method or data as protected instead of private.
• For example, the line

double bonus = 0.5 * (today.getYear() - hireDay.year);
is correct if the hireDay object is declared as protected.

Class car
Method A
Method B

Protected data

Parent (superclass)

Extend

Child (subclass)

Yes
Method B

Private data

Class ford
Method A

Yes

• Be careful! If you use protected instance fields, you can no longer change the
implementation of your class without upsetting the other programmers using your class.

• Protected methods make more sense. This indicates that the subclasses (which presumably,
know their ancestors well) can be trusted to use the method correctly, but other classes
cannot.

• A good example is the clone method in the class Object.

Copying and Cloning

• Copying: when you make a copy of a variable, the original and the copy are references to
the same object. => A change to either variable also effects the other.

Day bday = new Day(1953, 5, 8);

Day d = bday;
d.advance(100); // oops -- also changed bday

bday

d

1953 5 8

Day

Copying

1953 5 8

Day

1953 5 8

Day

bday

d

Cloning

• Cloning: when you create a new object of a variable, that begins as identical with the
original variable. => A change to either variable does not effect the other.

Cloning

• To create a clone of bday see the example:
Day bday = new Day(1953, 5, 8);
Day d = (Day)bday.clone();

// must cast -- clone returns an object

d.advance(100); // ok -- bday unchanged

• However, cloning is not so simple, if the object contains other objects (i.e. pointers). In
such case the bitwise copy results in the sharing of the contained object:

agent007

1953 5 8

Day

Employee

new007

James Bond

Employee

100000
hireDay

Cloning in case of nested objects

• If we want to clone employees, we have to call the Object clone method to make a bitwise
copy, then clone the Day object:

public class Employee implements Cloneable
{ . . .

Public Object clone()
{ try

{ Employee e = (Employee)super.clone(); // ?
e.hireDay = hireDay.clone();
return e;

} catch(CloneNotSupportedException e)
// this shouldn’t happen, since we are cloneable

return null;
}

}

}

Thank You ...Thank You ...

?

Properties of Interfaces
(cont.)

• You cannot put instance fields in an interface.
• You can supply constants in an interface.

public interface Powered extends Moveable
{ public String PowerSource(PoweredVehicle);

public final int speedLimit = 95;

}

• Classes can implement multiple interfaces.
class Tile extends Rectangle implements Cloneable, Sortable

(Java has an important built-in interface called Cloneable. If your class implements
Cloneable, the clone method in the Object class will make a bitwise copy of your
class’s objects.)

	Chapter 5
	First Steps with Inheritence
	Inheritance
	Analyzing the Manager Class
	Analyzing the Manager Class (Cont.)
	Use of the Employee and Manager Classes
	Employee Inheritance Hierarchy
	Working with subclasses
	Casting
	Thumb rules for casting
	Polimorphism
	Polimorphism (cont.)
	Polimorphism (cont.)
	Comparison of polymorphism and name overloading
	Preventing Inheritance:Final Classes and Methods
	Preventing Inheritance:Final Classes and Methods (cont.)
	Abstract Classes
	Abstract Classes (cont.)
	MailboxTest.java
	Mailbox Test.java
	Analysis of MailboxTest.java
	Mailbox Test.java
	Catching Exceptions
	Multiple Inheritance
	Interfaces(Multiple Inheritance)
	Interfaces (cont.)
	Interfaces (cont.)
	Properties of Interfaces
	Properties of Interfaces (cont.)
	Pivate Methods
	Access Modifiers in Java
	Design Hints for Inheritance
	Design Hints for Inheritance (cont.)
	
	Object Wrappers
	Reading a Page in the HTML Documents
	More on Object: The Cosmic Superclass
	The Class Class (Run-time Type Identification)
	The Class Class (cont.)
	Exercise
	Exercise Solutions
	Pivate Methods
	Protected Access
	Copying and Cloning
	Cloning
	Cloning in case of nested objects
	
	Properties of Interfaces (cont.)

