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Abstract– Some difficulties emerging during the construction 
of fuzzy behaviour-based control structures are inherited from 
the type of the applied fuzzy reasoning. The fuzzy rule base 
requested for many classical reasoning methods needed to be 
complete. In case of fetching fuzzy rules directly from expert 
knowledge e.g. for the behaviour coordination module, the way 
of building a complete rule base is not always straightforward. 
One simple solution for overcoming the necessity of the 
complete rule base is the application of interpolation-based 
fuzzy reasoning methods, since interpolation-based fuzzy 
reasoning methods can serve usable (interpolated) conclusion 
even if none of the existing rules is hit by the observation. These 
methods can save the expert from dealing with derivable rules 
and help to concentrate on cardinal actions only. For 
demonstrating the applicability of the interpolation-based fuzzy 
reasoning methods in behaviour-based control structures a 
simple interpolation-based fuzzy reasoning method and its 
adaptation for behaviour-based control will be introduced 
briefly in this paper. 

I. INTRODUCTION 

In behaviour-based control systems (a good overview can 
be found in [3]), the actual behaviour of the system is formed 
as one of the existing behaviours (which fits best the actual 
situation), or as a kind of fusion of the known behaviours 
appeared to be the most appropriate to handle the actual 
situation. Beyond the construction of the behaviours, this 
structure has two other important tasks. The first is the 
decision, which behaviour is needed, or in case of behaviour 
fusion the determination of the necessity levels for each 
behaviour in solving the actual situation. The second is the 
way of the behaviour fusion. The first task, the behaviour 
coordination can be viewed as an actual system state 
approximation, where the actual system state is the set of the 
necessities of the known behaviours needed for handling the 
actual situation. The second is the fusion of the known 
behaviours based on their necessities.  

In case of fuzzy behaviour based control structures both 
tasks are solved by fuzzy logic controllers. If the behaviours 
are also implemented on direct fuzzy logic controllers, the 
behaviours together with the behaviour fusion modules form 
a hierarchical fuzzy logic controller. 

Since the classical fuzzy reasoning methods (e.g. 
compositional rule of inference) are demanding complete rule 
bases, all these rule bases have to build taking care to fill all 
the possible rules. In case if there is some rules are missing, 

there are observations may exist which hit no rule in the rule 
base and therefore no conclusion is obtained. Having no 
conclusion at any level of the fuzzy behaviour based control 
structure is hard to explain. E.g. one solution could be to keep 
the last real conclusion instead of the missing one, but 
applying historical data automatically to fill undeliberately 
missing rules could cause unpredictable side effects. 

Another solution for the same problem is the application of 
the interpolation-based fuzzy reasoning methods, where the 
derivable rules are deliberately missing. Since the rule base 
of a fuzzy interpolation-based controller, is not necessarily 
complete, it could contain the most significant fuzzy rules 
only without risking the chance of having no conclusion for 
some of the observations. In other words, during the 
construction of the fuzzy rule base, it is enough to 
concentrate on the cardinal actions; the “filling” rules (rules 
could be deduced from the others) can be omitted. 

In the followings, first an approximate fuzzy reasoning 
method based on rational interpolation in the vague 
environment of the fuzzy rule base [4], [5], [6] will be 
introduced. The main benefit of the proposed method is its 
simplicity, as it could be implemented to be simple and quick 
enough to be applied in practical direct fuzzy logic control 
too. Then its adaptation to behaviour-based control structures 
together with a simple example will be discussed briefly. 

II. INTERPOLATION-BASED FUZZY REASONING 

One way of interpolative fuzzy reasoning is based on the 
concept of vague environment [2]. Applying the idea of the 
vague environment the linguistic terms of the fuzzy partitions 
can be described by scaling functions [2] and the fuzzy 
reasoning itself can be simply replaced by classical 
interpolation. 

The concept of vague environment is based on the 
similarity or indistinguishability of the elements. Two values 
in the vague environment are ε-distinguishable if their 
distance is grater then ε. The distances in vague environment 
are weighted distances. The weighting factor or function is 
called scaling function (factor) [2]. Two values in the vague 
environment X are ε-distinguishable if 

( ) ( )∫=
1

2
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x

x
s dxxsxxδε ,            (1) 

where ( )21, xxsδ  is the vague distance of the values x1, x2 
and s(x) is the scaling function on X. 
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For finding connections between fuzzy sets and a vague 
environment we can introduce the membership function 

)(xAµ  as a level of similarity a to x, as the degree to which x 
is indistinguishable to a [2]. The α-cuts of the fuzzy set 

)(xAµ  is the set which contains the elements that are (1−α)-
indistinguishable from a (see fig.1.): αδ −≤1)b,a(s , 
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Fig.1. The α-cuts of )(xAµ  contains the elements that are  

(1−α)-indistinguishable from a 

It is very easy to realise (see fig.1.), that this case the vague 
distance of points a and b ( )b,a(sδ ) is basically the 
Disconsistency Measure (SD) of the fuzzy sets A and B 
(where B is a singleton): 

( ) )b,a(sup1 sBA
Xx

D xS δµ =−= ∩
∈

 if [ ]1,0)b,a( ∈sδ ,           (3) 

where BA∩  is the min t-norm, ( ) ( ) ( )[ ]xxx BABA µµµ ,min=∩
 

∀ x ∈ X. 
It means, that we can calculate the disconsistency measures 

between member fuzzy sets of a fuzzy partition and a 
singleton, as vague distances of points in the vague 
environment of the fuzzy partition. The main difference 
between the disconsistency measure and the vague distance 
is, that the vague distance is a crisp value in range of [0,∞], 
while the disconsistency measure is limited to [0,1]. That is 
why they are useful in interpolate reasoning with insufficient 
evidence. 

Therefore if it is possible to describe all the fuzzy partitions 
of the primary fuzzy sets (the antecedent and consequent 
universes) of our fuzzy rule base by vague environments, and 
the observation is a singleton, we can calculate the 
“extended” disconsistency measures of the antecedent 
primary fuzzy sets of the rule base and the observation, and 
the “extended” disconsistency measures of the consequent 
primary fuzzy sets and the consequence (we are looking for) 
as vague distances of points in the antecedent and consequent 
vague environments. 

The vague environment is described by its scaling function. 
For generating a vague environment of a fuzzy partition we 
have to find an appropriate scaling function, which describes 
the shapes of all the terms in the fuzzy partition. A fuzzy 
partition can be characterised by a single vague environment 
if and only if the membership functions of the terms fulfils 
the following requirement [2]: 

dx
dxxs µµ == )(')(  exists iff             (4) 

{ } )(')('  0>)(),(min xxxx jiji µµµµ =⇒    Iji ∈∀ ,  

where s(x) is the vague environment we are looking for. 

Generally the above condition is not fulfilling, so the 
question is how to describe all fuzzy sets of the fuzzy 
partition with one “universal” scaling function. For this 
reason we propose to apply the concept of approximate 
scaling function [4], [5], [6]. 

The approximate scaling function is an approximation of 
the scaling functions describes the terms of the fuzzy 
partition separately [4], [5], [6]. 

If the vague environment of a fuzzy partition (the scaling 
function or the approximate scaling function) exists, the 
member sets of the fuzzy partition can be characterised by 
points in the vague environment. (In our case the points are 
characterising the cores of the terms, while the shapes of the 
membership functions are described by the scaling function 
itself.) If all the vague environments of the antecedent and 
consequent universes of the fuzzy rule base are exist, all the 
primary fuzzy sets (linguistic terms) used in the fuzzy rule 
base can be characterised by points in their vague 
environment. So the fuzzy rules (build on the primary fuzzy 
sets) can be characterised by points in the vague environment 
of the fuzzy rule base too. This case the approximate fuzzy 
reasoning can be handled as a classical interpolation task. 
Applying the concept of vague environment (the distances of 
points are weighted distances), any interpolation, 
extrapolation or regression methods can be adapted very 
simply for approximate fuzzy reasoning [4], [5], [6]. 

We suggest adapting the Kóczy-Hirota interpolation [7]. 
This method generates the conclusion as a weighted sum of 
the vague consequent values, where the weighting factors are 
inversely proportional to the vague distances of the 
observation and the corresponding rule antecedents: 
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where wk is a weighting factor inversely proportional to the 
vague distance of the observation and the kth rule antecedent, 
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where s
iX  is the ith scaling function of the m dimensional 

antecedent universe, sY  is the scaling function of the one 
dimensional consequent universe, x is the multidimensional 
crisp observation, ak are the cores of the multidimensional 
fuzzy rule antecedents A

k
, bk are the cores of the one 

dimensional fuzzy rule consequents Bk, Ri = Ai → Bi are the 
fuzzy rules, p is the sensitivity of the weighting factor for 
distant rules, y0 is the first element of the one dimensional 
universe (Y: y0≤y  ∀ y∈Y), y is the one dimensional 
conclusion we are looking for.  
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Fig.2. Interpolation of two fuzzy rules (Ri:Ai→Bi) (see fig. 3. for notation). 

A simple one-dimensional example for the approximate 
scaling function and the Kóczy-Hirota interpolation (6) is 
introduced on Fig. 2 and on Fig. 3. For comparing the crisp 
conclusions of the K-H interpolation and the classical 
methods, the conclusions generated by the max-min 
compositional rule of inference (CRI) and the centre of 
gravity defuzzification for the same rule base is also 
demonstrated on the figures. More detailed description of the 
proposed approximate fuzzy reasoning method can be found 
in [4], [5], [6]. 

 
Fig.3. Interpolation of three fuzzy rules (Ri:Ai→Bi) in the approximated 

vague environment of the fuzzy rule base, using the K-H interpolation (p=1) 
(Approx.) and the min-max. CRI with the centre of gravity defuzzification 

(CRI), where µ is the membership grade, and s is the scaling function. 

III. THE APPLIED FUZZY BEHAVIOUR-BASED STRUCTURE 

The main benefit of the interpolation-based fuzzy 
reasoning method, introduced in the previous chapter, is its 
simplicity. Applying look-up tables for pre-calculating the 
vague distances, it could be implemented to be simple and 
quick enough to fit the speed requirements of practical real-
time direct fuzzy logic control systems, e.g. the requirements 
of fuzzy behaviour-based control too. The calculation efforts 
of many other interpolation-based fuzzy reasoning methods 
wasted for determining the exact membership shape of the 
interpolated fuzzy conclusion prohibits their practical 
application in real-time direct fuzzy logic control. The lack of 
the fuzziness in the conclusion is a disadvantage of the 
proposed method, but it has no influence in common 
applications where the next step after the fuzzy reasoning is 
the defuzzification. 

In the followings a pure fuzzy behaviour-based control 
structure and the adaptation of the proposed interpolation-
based fuzzy reasoning method will be discussed more 
detailed. 

In case of pure fuzzy behaviour-based control structures all 
the main tasks of the behaviour-based control – the behaviour 
coordination, the behaviour fusion, and the behaviours 
themselves – are implemented on fuzzy logic controllers. 
(Such a structure is introduced on Fig.3.) Any of these 
controllers can apply the proposed interpolation-based 
approximate fuzzy reasoning method. 

For demonstrating the main benefits of the interpolation-
based fuzzy reasoning in behaviour-based control, in this 
paper we concentrate on the many cases most heuristic part 
of the structure, on the behaviour coordination. 

The task of behaviour coordination is to determine the 
necessities of the known behaviours needed for handling the 
actual situation. In the suggested behaviour-based control 
structure, for this task the finite state fuzzy automaton is 
adapted (Fig.4.) [9]. This solution is based on the heuristic, 
that the necessities of the known behaviours for handling a 
given situation can be approximated by their suitability. And 
the suitability of a given behaviour in an actual situation can 
be approximated by the similarity of the situation and the 
prerequisites of the behaviour. (Where the prerequisites of the 
behaviour is the description of the situations where the 
behaviour is valid (suitable itself)). This case instead of 
determining the necessities of the known behaviours, the 
similarities of the actual situation to the prerequisites of all 
the known behaviours can be approximated. 



Kovács, Sz., Kóczy, L.T.: Application of Interpolation-based Fuzzy Logic Reasoning in Behaviour-based Control Structures, Proceedings of the 
FUZZIEEE, IEEE International Conference on Fuzzy Systems, 25-29 July, Budapest, Hungary, IEEE Catalog Number: 04CH37542C, ISBN: 0-7803-8354-0, 
p.6, (2004). – Draft version. 

 

SNS1 S2

 y1 

System 

Symptom 
Evaluation

States (Z-1)
S1 S2 SN

Fuzzy Automaton

Behaviour
fusion 

FLC1 

FLC2 

FLCN 

y2 

yN 

y 

x

Fuzzy 
Reasoning 

(State-transition 
Rulebase) 

x

x

x
SS1

SSN

Behaviours

Fuzzy Reasoning 
or 

Weighted Sum 

Observations 

Conclusions

 
Fig.4. The suggested behaviour-based control structure. 

Thus the first step of this kind of behaviour coordination is 
determining the similarities of the actual situation to the 
prerequisites of all the known behaviours – applying the 
terminology of fault classification; it is the symptom 
evaluation (see e.g. Fig.4.). The task of symptom evaluation 
is basically a series of similarity checking between an actual 
symptom (observations of the actual situation) and a series of 
known symptoms (the prerequisites – symptom patterns – of 
the known behaviours). These symptom patterns are 
characterising the systems states where the corresponding 
behaviours are valid. Based on these patterns, the evaluation 
of the actual symptom is done by calculating the similarity 
values of the actual symptom (representing the actual 
situation) to all the known symptoms patterns (the 
prerequisites of the known behaviours). There are many 
methods exist for fuzzy logic symptom evaluation. For 
example fuzzy classification methods e.g. the Fuzzy c-Means 
fuzzy clustering algorithm [1] can be adopted, where the 
known symptoms patterns are the cluster centres, and the 
similarities of the actual symptom to them can be fetched 
from the fuzzy partition matrix. On the other hand, having a 
simple situation, the fuzzy logic symptom evaluation could 
be a fuzzy rule based reasoning system itself.  

One of the main difficulties of the system state 
approximation in behaviour coordination is the fact, that most 
cases the symptoms of the prerequisites of the known 
behaviours are strongly dependent on the actual behaviour of 
the system. Each behaviour has its own symptom structure. 
In other words for the proper system state approximation, the 
approximated system state is needed itself. A very simple 
way of solving this difficulty is the adaptation of fuzzy 
automaton. This case the state vector of the automaton is the 
approximated system state, and the state-transitions are 
driven by fuzzy reasoning (Fuzzy state-transition rule base on 
Fig.4.), as a decision based on the previous actual state (the 

previous iteration step of the approximation) and the results 
of the symptom evaluation. 

For demonstrating the simplicity of defining rule base for 
interpolation-based fuzzy reasoning, as an example, the state-
transition rule base of the previously introduced fuzzy 
automaton style behaviour coordination module applied for 
user adaptive information retrieval system in [10] and [11] 
will be introduced briefly in the followings.  

In our user adaptive information retrieval system example 
(introduced in [10] and [11] in more details) the user 
adaptivity is handled by combination of existing (off-line 
collected) human opinions (user models) in the function of 
the approximated similarity to the actual user opinions. As an 
analogy to the behaviour-based control applications, the 
different behaviours are the different existing user models, 
and the actual situation is the similarity of the actual user to 
the evaluators, originally gave the existing user models. 

Based on our observations (inputs), the conclusion of the 
user feedback (the symptom evaluation about the state-
transition to state i, SSi for all the possible states [ ]N,1i∈∀ ) 
and the previous state values Si, we have to somehow 
estimate the new state values, the vector of the suitability of 
the existing user models. The heuristic we would like to 
implement in our example is very simple. If we already found 
a suitable model (Si) and the user feedback is still supporting 
it (SSi), we have to keep it even if the user feedback began to 
support some other models too. If there were no suitable 
model, but the user feedback began to support one, we have 
to pick it at once.  

In case of interpolation-based fuzzy reasoning, the above 
heuristic can be simply implemented by the following state-
transition rule base [10], [11]. For the ith state variable Si, 

[ ]N,1i∈ of the state vector S: 

If Si=One  And SSi=One  Then Si=One  (7.1) 
If Si=Zero  And SSi=Zero  Then Si=Zero (7.2) 
If Si=One  And SSi=Zero 
 And SSk=Zero  Then Si=One  (7.3) 

[ ] ik,N,1k ≠∈∀  
If Si=Zero  And SSi=One 
   And Sk=Zero And SSk=Zero Then Si=One  (7.4) 

[ ] ik,N,1k ≠∈∀  
If Si=Zero  And SSi=One 
   And Sk=One  And SSk=One Then Si=Zero (7.5) 

[ ] ik,N,1k ≠∈∃  

where SSi is the conclusion of the symptom evaluation 
about the state-transition to state i, [ ]N,1i∈∀ , N is the 
number of known behaviours (state variables). The structure 
of the state-transition rules is similar for all the state 
variables. Zero and One are linguistic labels of fuzzy sets 
(linguistic terms) representing high and low similarity. The 
interpretations of the Zero and One fuzzy sets can be 
different in each Si, SSi universes. 

Please note that rule base (7) is sparse. It contains the main 
rules for the following straightforward goals only: Rule (7.1) 
simply keeps the previously chosen state values in the case if 
the symptom evaluation also agrees. The rule (7.2) has the 
opposite meaning, if the state values were not chosen, and 
moreover the symptom evaluation is also disagrees the state 
value should be suppressed. The rule (7.3) keeps the already 
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selected state values (previous approximation), even if the 
symptom evaluation disagrees, if it has no better “idea”. 
Rules (7.4) and (7.5) have the task of ensuring the relatively 
quick convergence of the system to the sometimes unstable 
(changeable) situations, as new state variables which seem to 
be fit, can be chosen in one step, if there is no previously 
chosen state, which is still accepted by the symptom 
evaluation (7.4). (Rule (7.5) has the task to suppress this 
selection in the case if exists a still acceptable state which has 
already chosen.) The goal of this heuristic is to gain a 
relatively quick convergence for the system to fit the opinions 
of the actual user, if there is no state value high enough to be 
previously accepted. This quick convergence could be very 
important in many application areas e.g. in case of an on-line 
user adaptive selection system introduced in [10], where the 
user feed-back information needed for the state changes are 
very limited. 

Some state changes of the fuzzy automaton in the function 
of the conclusion of the symptom evaluation (SS1, SS2) for 
the two states case (applying the state-transition rule base (7)) 
are visualised on Fig.5. and Fig.6.  

If we count the rules of the classical fuzzy reasoning for the 
same strategy we find, that the complete rule base needs 16 
rules for the two state case (as we have four observation 
universes (S1, SS1, S2, SS2) each with two terms fuzzy 
partitions (Zero, One)), while the sparse rule base (7) 
contains 7 rules only in the same two state case. 

 

 
Fig.5. Do not “pick up” a new state if the previous approximation  

is still adequate. 

 

 
Fig.6. But “pick it up” if it seems better, or at least as good  

as the previous was. 

IV. CONCLUSIONS 

The goal of this paper was to introduce an interpolation-
based fuzzy reasoning method, which could be implemented 
to be simple and quick enough to fit the requirements of 
behaviour-based control structures in real-time direct fuzzy 
logic control systems.  

The suggested approximate fuzzy reasoning method based 
on K-H interpolation in the vague environment of the fuzzy 
rule base gives an efficient way for designing direct fuzzy 
logic control applications. 

The lack of the fuzziness in the conclusion is a 
disadvantage of the proposed method, but it has no influence 
in common applications where the next step after the fuzzy 
reasoning is the defuzzification. 

For demonstrating the efficiency of the interpolation-based 
fuzzy reasoning in behaviour-based control, a fuzzy 
behaviour-based control structure based on fusion of different 
known behaviours in the function of their actual necessities 
approximated by fuzzy automaton is also introduced in this 
paper briefly.  

To give some guidelines for interpolation-based fuzzy 
reasoning rule base design, some highlights of the behaviour 
coordination rule base of a user adaptive information retrieval 
system application is also introduced in this paper. 

The implementation of interpolation-based fuzzy reasoning 
methods in behaviour-based control structures simplifies the 
task of fuzzy rule base creation. Since the rule base of a fuzzy 
interpolation-based controller, is not necessarily complete, it 
could contain the most significant fuzzy rules only without 
risking the chance of having no conclusion for some of the 
observations. In other words, during the construction of the 
fuzzy rule base, it is enough to concentrate on the cardinal 
actions; the “filling” rules (rules could be deduced from the 
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others) could be deliberately omitted. Thus, compared to the 
classical fuzzy compositional rule of inference, the number of 
the fuzzy rules needed to be handled during the design 
process could be dramatically reduced. 
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