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Abstract. Reinforcement learning methods, surviving the adrifficulties of the unknown environment,
are gaining more and more popularity recently mahtonomous robotics community. One of the possibl
difficulties of the reinforcement learning applicats in complex situations is the huge size of state-
value- or action-value-function representation [Zhe case of continuous environment (continuous
valued) reinforcement learning could be even corapdid, as the state-value- or action-value-funstion
are turning into continuous functions. In this pape suggest a way for tackling these difficultigsthe
application of SVD (Singular Value Decompositiongthods [3], [4], [15], [26].

1 Introduction

Reinforcement learning methods are trial-and-estie learning methods adapting dynamic environment
through incremental iteration. The principal idedgeinforcement learning methods, the dynamicatesn
state and the idea of “optimal return” or “valueinttion are inherited from optimal control and dyna
programming [1]. One common goal of the reinforcatrlearning strategies is to find an optimal polimy

building thestate-value- or action-value-function [2]. The state-value-function V”(S), is a function of the

expected return (a function of the cumulative r@icéments), related to a given st&&lSas a starting

point, following a given policysz Where the states of the learning agent are oabkrvand the
reinforcements (or rewards) are given by the emvitent. These rewards are the expression of theofdlaé
learning agent as a kind of evaluation follows teeent action (in spite of the instructive manngewor
feedback based approximation techniques, like thdignt descent training). The policy is the dgxion of
the agent behavior, in the form of mapping betwdsgnagent states and the corresponding suitahlenact

Theaction-value function Q”(S, a), is a function of the expected return, in castaking actionall A, in a

given states, and then following a given policyr Having the action-value-function, the optimalggdy)
policy, which always take the optimal (the greatsttmated value) action in every states, can bstoacted
as [2]:

m(s)= argrepmixQ”(s, a). L

Namely for estimating the optimal policy, the aotiealue function Q”(S, a) is needed to be

approximated. In discrete environment (discret¢éestand discrete actions) it means, that at I%s”ﬁg”
sbs

element must be handled. (Whew&” is the cardinality of the set of possible actiomstates.) Having a

complex task to adapt, both the number of posstates and the number of the possible actions dmailain
extremely high value.



1.1 Reinforcement Learning in Continuous Environmat

To implement reinforcement learning in continuouwieonment (continuous valued states and actions),
function approximation methods are widely used. Mahthese methods are applying tailing or pantitig
strategies to handle the continuous state andrespiaces in the similar manner as it was doneeirdtbcrete
case [2]. One of the difficulties of building anpappriate partition structure is the anonymity loé¢ taction-
value-function structure. Applying fine resolutionthe partition leads to high number of statesilevboarse
partitions could yield imprecise or unadaptabletesys Handling high number of states also leadsigh h
computational costs, which could be also unaccépiabmany real time applications.

1.2 Fuzzy Techniques in Continuos Environment Reiffcement Learning

There are many methods in the literature for apglyfuzzy techniques in reinforcement learning (€og.
“Fuzzy Q-Learning” [9], [10], [11], [12], [6]). Oneof the main reason of their application beyond the
simplicity of expressing priory knowledge in thefoof fuzzy rules, is the universal approximatoogerty
[7], [8] of the fuzzy inference. It means that dagd of function can be approximated in an accdptédvel,
even if the analytic structure of the function isknown. Despite of this useful property, the usduafzy
inference could be strictly limited in time-consugireinforcement learning by its complexity probsefh6],
because of the exponential complexity problem afzyurule bases [13], [3], [4]. Fuzzy logic inferenc
systems are suffering from exponentially growinghpaitational complexity in respect to their approation
property. This difficulty comes from two inevitablacts. The first is that the most adopted fuzAgrience
techniques do not hold the universal approximagimperty, if the numbers of antecedent sets arielimas
stated by Tikk in [17]. Furthermore, their explifiinctions are sparse in the approximation functpace.
This fact inspires to increase the density, the bmmmof antecedents in pursuit of gaining a good
approximation, which, however, may soon lead torflct with the computational capacity availabte the
implementation, since the increasing number of @attents explodes the computational requirement. The
latter is the second fact and stated by Kéczy.ehdll6]. The effect of this contradiction is gathby the lack
of a mathematical framework capable of estimatihg hecessary minimal number of antecedent sets.
Therefore a heuristic setting of the number of eedent sets is applied, which usually overestimatesrder
to be on the safe side, the necessary number efedents resulting in an unnecessarily high contiputd
cost. E.g. the structurally different Fuzzy Q-Ldag method implementations introduced [9], [1@]1]and
[12] are sharing the same concept of fixed, pregefifuzzy antecedent partitions, for state reptasen.
One possible solution for this problem is suggestefb]. By introducing “Adaptive State Partitionsan
incremental fuzzy clustering of the observed statasitions. This method can lead to a better @mtthan
the simple heuristic, by finding the best fittingeoin respect to the minimal squared error, bllttsis the
problem of limited approximation property inheritedm the limited number of antecedent fuzzy sets.
Another promising solution, as a new topic in futlzgory, is the application of fuzzy rule base ctaxipy
reduction techniques.

1.3 Fuzzy rule base complexity reduction

The main idea of application fuzzy rule base coxipfereduction techniques for reinforcement leagnia
enhancing the universal approximator property efftizzy inference by extending the number of amtece
sets while the computational complexity is kepatigely low.

Some reduction techniques are classified regarttiaiy concept in [14] and [4]. A fuzzy rule impantze
based technique is proposed by Song et al. in R@ther recent method proposed by Sudkamp ef3]. |
combines rule learning with a region merging stygte

Recently, several publications have applied orthagjtransformation methods for selecting importarfgs
from a given rule base, for instance, in 1999 Yed &Vang investigated various techniques in [14] for
possible fuzzy rule base simplification techniquesch as orthogonal least-squares, eigenvalue
decomposition, SVD-QR with column pivoting methadtal least square method and direct SVD method.
[21] also proposes an SVD based technique with plesn

SVD based fuzzy approximation technique was inatéad in 1997 by Yam [15], which directly finds a
minimal rule-base from sampled values. Shortlyrattéis concept was introduced as SVD fuzzy rulseba



reduction and structure decomposition in [3], [J2B]. Its key idea is conducting SVD of the conseuts
and generating proper linear combinations of thgirmal membership functions to form new ones fag th
reduced set. [3], [15] characterizes fuzzy fundioby the conditions of sum-normalization (SN),
nonnegativenes (NN) and normality (NO), and exte®d® reduction with further tools to preserve SNian
NN conditions of the new membership functions. &ynhave significant role if the purpose is not asdying
computational cost, but maintaining the fuzzy cqtand having a theoretical study of the reducde'su
features.

An extension of [14] to multi-dimensional cases nadgo be conducted in a similar fashion as thedrigh
order SVD reduction technique proposed in [3], [1@5]. Further developments of SVD based fuzzy
reduction [3] [15] are proposed in [13], [18], [1#23].

The key idea of using SVD in complexity reductigrthat the singular values can be applied to deosmp
a given system and indicate the degree of sigmifieaof the decomposed parts. Reduction is condgptua
obtained by the truncation of those parts, whickehaeak or no contribution at all to the outputading to
the assigned singular values. This advantageouasréeaf SVD is used in this paper for enhancing the
universal approximator property of the fuzzy infeze by extending the number of antecedent set® whél
computational complexity is kept relatively low. &leomplexity and its reduction is discussed in rég#
the number of rules, which result simplicity in ogting with the rules, in reinforcement learningthosls.

On the other hand, as one of the natural probleimay complexity reduction technique, the adapfivit
property of the reduced approximation algorithmdees highly restricted. Since the crucial concdphe
Fuzzy Q-learning is based on the adaptivity ofdab&on-value function this paper is aimed propasadopt
an algorithm [26] capable of embedding new apprexiom points into the reduced approximation while t
calculation cost is kept.

This paper is organized as follows. Section 2 lyrisfimmarizes the concept of Fuzzy Q-learning. iBect
3 introduces the proposed Fuzzy Q-learning and misgartition allocation method. Section 4 examines
various concepts of adaptation SVD based technjgees complexity reduction and approximation
adaptation [26], for reinforcement learning. Setttogives two simple examples for the practical ofsthe
proposed method.

2 Reinforcement Learning

For introducing a possible way of application of 3Vcomplexity reduction techniques in Fuzzy
Reinforcement Learning, a simple direct (model Yfreénforcement learning method, the Q-Learning y#&s
chosen.

The goal of the Q-learning is to find the fixed4mosolution Q of the Bellman Equation [1] through
iteration. In discrete environme@Learning [5], the action-value-function is approximatedthg following
iteration:

Ql . Q|k+1 — Ql ’ +AQ|k+l ‘ (2)
o ~ . ~\ 0Oi01,0u0u
Q Q|u+a g|u1+y|]naXQ Ql,u

where Qk ' is the k +1 iteration of the action-value taking actiody, in state S, S, is the new observed
state, g; , ; is the observed reward completing the — S; state-transition,y is the discount factor and

ai'fu D[O,l] is the step size parameter (which can change glthimiteration steps).

For applying this iteration to continuous enviromnéy adopting fuzzy inference (Fuzzy Q-Learning),
there are many solutions exist in the literatuije[[, [10], [11], [12].

Having only demonstrational purposes, in this paper of the simplest one, the order-0 Takagi-Sugeno
Fuzzy Inference based Fuzzy Q-Learning is studdedlightly modified, simplified version of the FyzQ-

Learning introduced in [9] and [6]). This case, @traracterising the value functicﬁ(s, a) in continuous



state-action space, the order-0 Takagi-Sugeno Fudfeyence System approximatidé(s, a) is adapted in
the following manner:

If sis § And ais A, Then Q(S,a)IQl’u,iDI,uDU, 3

where § is the label of the"i membership function of the dimensional state spacé, is the label of the

u™ membership function of the one dimensional a&pme,Q,yu is the singleton conclusion ar(@(s, a) is
the approximated continuous state-action-valuetfoncHaving the approximated state-action-valugfion
Q(S, a), the optimal policy can be constructed by func{ibn

7i(i)= arng%le(i u), (4)

Setting up the antecedent fuzzy partitions to bepRu partitions, the order-0 Takagi-Sugeno Fuzdgrence
forms the following approximation function:

Ji.d2,0dn N (5)
f(Xl’XQ""'XN): ) Z /'IIn )bJ1J2]N '
j1dzeein N=

where £, (X,) is the membership value of thi " antecedent fuzzy set at th" dimension of theN

dimensional antecedent universg, at the state-action observatiog, and bjljz-.-jN is the value of the

singleton conclusion of thej, j,...J ™ fuzzy rule. In this notation all combination ofettantecedents

corresponds to one consequent fuzzy set definex tfedations are expressed by rules asﬂljlfl(xl) and
Ui, o (%) and ... andy; \(Xy) THEN B, . . Singleton consequent fuzzy sef ; ; ~are defined

by their Iocationb-l- . on output universg’ .

J1i2--in
Applying the notation introduced in (3), equati@) (urns to the following:

S U N (6)

é(s,a) Z o o(s) (@ @

i)z, iy U N=

where (S(S, a) is the approximated state-action-value functign ,(s,) is the membership value of thg"

state antecedent fuzzy set at th& dimension of theN dimensional state antecedent universe at the state
observation s,, f,(a) is the membership value of the™ action antecedent fuzzy set of the one

dimensional action antecedent universe at the mstidectiona and ¢ ;

is the value of the singleton
conclusion of thei,..iyu " fuzzy rule.

Applying the approximation formula of the Q-leargi(2) for adjusting the singleton conclusions i, (5
leads to the following function:

(7)
q|1|2 iyu _quIZ inu rll'll n(%) H/ (a) lek*l

Qo = Oy i |'lﬂ. o(s) 4, (8) @, Eﬁg.uJ +yﬂnaka+1 Q" )

where qII is the k +1 iteration of the singleton conclusion of thg,..i U " fuzzy rule taking action

I u

A, instate§, Sj is the new observed statg, , ; is the observed reward completing tBe - Sj state-



transition, j is the discount factor andr, D[O,l] is the step size parameter. TheaxQ'>" and Q,
' vy '

IR%

action-values can be approximated by equation (6).

The next problematic question of the Fuzzy Reirdarent Learning, as it was introduced in section i%.2
the proper way of building the fuzzy partitions.eTmethods sharing the concept of fixed, predefinedy
partitions, like [9], [10], [11] and [12] are fa@rthe following question: More detailed partiticm® yielding
exponentially growing state spaces (rule base sizlengating the adaptation time, and dramatically
increasing the computational resource demand, vepisgse partitions could cause high approximatioor e
or unadaptable situation. One possible solutiortHim problem is suggested in [6]. By introducirgdaptive
State Partitions”, an incremental fuzzy clusterifighe observed state transitions. This methodlead to a
better partition than the simple heuristic, by firgdthe best fitting one in respect to the minirequared
error, but still has the problem of limited appmogtion property inherited from the limited numbeér o
antecedent fuzzy sets.

In this paper another dynamic partition allocatioathod is suggested, which is instead of adjusdtieg
sets of the fuzzy partition, simply increase thenbar of the fuzzy sets by inserting new sets inrdupiired
positions.

3 The Proposed Method

The reinforcement learning method proposed in phiser can be divided to two main parts. The fgghe
reinforcement method itself. It is the direct (mbfiee) Fuzzy Q-Learning method as it was introdliae
section 2 (order-0 Takagi-Sugeno Fuzzy Inferensetbamodification of the Fuzzy Q-Learning introduded
[9] and [6]).

The second is the dynamic partition allocation radthroposed in this paper. The main idea is venpka
(see Fig.1. for an example). Initially a minimatesi (e.g. 2-3 sets only) Ruspini partition builttapngular
shaped fuzzy sets on all the antecedent univessesKig.1.a.). In case if the action-value functipdate is

high (AQ > EQ), and the partition is not too dense alreadg P &,), and the actual state-action point is far

from the existing partition members (see Fig.1#han a new fuzzy state is inserted to increaseethaution
(see Fig.1.d.). If the update value is relatively I(see e.g. Fig.2.), or the actual state-actiantps close to

the existing partition members (Fig.3.), than thetiion is staying unchanged. The state inseriotone in
every state dimensions separately (in multidimeraiacase it means an insertion of a hyperplane), by
interpolating the inserted values from the neighhguones (see Fig.1l.e. and Fig.4. as a two dimeasi
example). Having the new state plane inserted émyerequired dimension, the value update is dogarding

to the Fuzzy Q-Learning method as it was introducesection 2, by the equation (7). (See e.g. gnlk,d,

or Fig.4.d.)
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Fig. 4. The proposed dynamic partition allocation in twoensional (single state and action) antecedem cas

The proposed dynamic partition allocation method thee property of local step-by-step refinemenain

manner very similar to the binary search. It cazate the radical positions of the value action fiamcwith

1
the precision ofd. "™ =2—|f in k steps (wheref, is the starting precision).
The main problem of the proposed simple dynamiditar allocation method is the nondecreasing
adaptation manner of the antecedent fuzzy parsitibm some situation, it could mean rapidly inciegs
partition sizes. Moreover, these cases also lepitllyagrowing, or at least nondecreasing compuietio
resource demand.

For retaining the benefits of the dynamic partitefocation and maintaining the overall computagion
resource demand low, in this paper, the adoptiddighfier Order SVD [13] based fuzzy rule base coxiple
reduction techniques and its fast adaptation mefbed in section 4.2 and 4.3) is suggested. Thicappn
of the fast adaptation method [26] gives a simpdg ¥or increasing the rule density of a rule baseesl in a
compressed form directly (see section 4.2 and dgBiation (9) and [26]). Providing an economic sized
structure for handling continuously increasing aadying rule bases, which is so typical in reinforent
learning.

4  SVD based Complexity Reduction

The essential idea of using SVD in complexity rdaturc is that the singular values can be applied to
decompose a given system and indicate the degreguificance of the decomposed parts. Reduction is



conceptually obtained by the truncation of thosespavhich have weak or no contribution at alllte butput,
according to the assigned singular values. Thisamtdgeous feature of SVD is used in this paper for
enhancing the universal approximator property efftizzy inference by extending the number of amtene
sets while the computational complexity is kepatigkly low. The complexity and its reduction isclissed

in regard of the number of rules, which result diaiy in operating with the rules, in reinforcentdaarning
methods.

4.1 Definitions

In this section some elementary definitions andcepts utilized in the further sections will be aduced.
With respect to the notation, to facilitate thetidistion between the types of given quantities, iogation
will be reflected by their representation: scalalues are denoted by lower-case lettgash,...;a, 5,...};

column vectors and matrices are given by bold-feters as{a,b,...} and {A,B,...} respectively, matrix

0 contains zero values only; tensors correspond paatdetters ag A, B,...}. The transpose of matril is
denoted asA " . Subscript is consistently used for a lower order given structure. E.g. and element of
matrix A is defined by row-column number j symbolized as(A); j = a;,j. Systematically, the -th
column vector ofA is denoted ag;, i.e. A=[a; ap ---].To enhance the overall readability characters
i,],... in the meaning of indices (counterd),J,... are reserved to denote the index upper boundsssinl

stated otherwise1'112%-*IN " is the vector space of real valugt x 1, x...x 1) -tensors. LetterN

serves to denote the number of variables. Léktéras special role and it ik=1...N, k#n.

xl,x. Xl y

. The N-mode
matrix A, O d = |_| I, contains all the vectors in the-th dimension of tensoA . The ordering
k

Definition 1. (n-mode matrix of tensor A) Assume anN -th order tensorACJ "

of the vectors is arbitrary, this ordering shaiwever, be consistently used later tﬁﬁ\(n))j is called anj -
th N-mode vector.

Note that any matrix of which the columns are gilbgrn-mode vectoriA(n))j can evidently be restored

to be tensorA.

Definition 2. (tensor interval) Assume N-th  order tensors A B,COO0"W2*>n
CO[AB] = A<, C< B, whereA<, B < Oiji,...iy 14, ; <h

oy

Definition 3. (n-mode sub-tensor of tensor A) Assume anN -th order tensorAQO'**'2*!v  The n-
mode sub-tensoAn:a contains elements, ;

i @i i

Definition 4. (N -mode matrix-tensor product) The N-mode product of tensoAD 0 ™2 py a matrix
uoog™r, denoted by Ax U is an (I;x1,x...x1_ xJIx|__x..x|)-tensor of which the

entries are given byAx U =B, where B, =U[A,,. Let Ax U x,U,...x Uy be noted for

N
brevityasALJ U .
n=1

There are major differences between matrices agltehiorder tensors when rank properties are coadern
These differences directly affect the way an SVDagalization could look like. As a matter of fattere is
no unique way to generalize the rank concept.iByghper the description is restrictednomode rank only.



Definition 5. (Nmode rank of tensor) The N mode rank of A, denoted byR, =rank (A), is the
dimension of the vector space spanned bynhmiode vectors asank (A) =rank(A,) .

xl,x. Xl y

Theorem (N-th Order SVD or HOSVD) Every tensor A" can be written as the product

N
A=S0OU,, in which U =[u;, U,, ... u, ] is a unitary(lXI)-matrix called n-mode
n=1 : ' '

singular matrix. TensorSOO'™2 v of which the subtensorﬁn:a have the properties of all-

orthogonality (two subtensofSnza and Sﬁﬂ are orthogonal for all possible valuesmfa and £, when

a# [)and ordering”Sn:lH > HSHZZH 2.2 HSn:,nH >0 for all possible values oft.

See detailed discussion and notation of matrix $MB Higher Order SVD (HOSVD) in [13].

4.2 SVD Based Fuzzy Rule Base Complexity Reduction

Since the state action value function is approxaudily an order-0 Takagi-Sugeno Fuzzy Inference adeth
this section is intended to provide a brief sureéyhe fundamentals in SVD based fuzzy rule badeaton
techniques, which are proposed in [3], [4], [13B]

The calculation complexity of (5) explodes withwes J;,J,,...Jy , in this regards, for comprehensive

analysis and exact theorems, see [16]. DecreaBsgpper bound of the indices in the sum operdtds)o
namely the number of antecedent sets, leads tinitied idea of calculation reduction. Formula &n be

N
equivalently written in tensor product form as:f (X,X,,...,X,)=BOm_, where tensor
n=1

J1%xJy..%xJ . . . .
BOUO™ " and vectorm  respectively contain elemer‘k}}ljz_._jN and [ . (X,) - This reduction can

be conceptually obtained by reducing the size n$de B via Higher Order SVD (HOSVD). According to
the special terms in this topic, the following nata has emerged [3], [4], [13]:

Definition 6. (Exact / non-exact reduction) Assume anN -th order tensorALl[] lxl2%-*In Exact reduced

N U x5 %, x] |,
form A=A [ U,, where “r' denotes “reduced”, is defined by tens8f (100" *'2**!% and basis
n=1

matricesU, [10J " On; |, <1, which are the result of HOSVD, where only zeragsiar values and

~ N
the corresponding singular vectors are discarbled-exactreduced formA= A" J U, , is obtained if not
n=1

only zero singular values and the correspondingusar vectors are discarded.
The above properties directly lead to the followingdamental concept of.

Method 1. (exact SVD based fuzzy rule base reduction) The SVD based fuzzy rule base reduction transforms
equation (5) to the form of:

X%, N (8)

FO0-a%) = D, [144,200)0, .,

jirdm-ain PFL

where[dn: J; < J_ is obtained as the main essence of the reduction.



N
The reduced form is obtained via HOSVD capable efotnposingB into B=B" [0 U . Having
n=1

B OO %% and its singular  vectors the reduced form is deitleed as:

N
f (X, %,...,Xy) =B Elm;, wherem; =m_U, . Equation (5) is an equivalent of (8) that is sherting

point for theoretical developments of this topic.

Remark 1. Note that, the obtained functions may not be pritable as antecedent fuzzy sets. In order to
obtain functions which can be antecedent fuzzysstetrther to haveRuspini partition, sum-normalization
(SN), nonnegativenes (NN) and normality (NO) transfation techniques are developed to HOSVD
algorithm in [3], [4], [13].

Remark 2. The error controllable advantage of the reductiechnique is conceptually obtained by the

truncation of non-zero singular values. The errourd of f(Xl,X ,...,XN) can be estimated during the

execution of the SVD reduction algorithm. Note ftae final error of f (Xl, X ,...,XN) depends on the
type of the antecedent functions applied. Typicatpcal cases are analysed in [4].

4.3 Adaptation of SVD based Approximation

One of the natural problems of any complexity reiductechnique is that the adaptivity property bé t
reduced approximation algorithm becomes highlyriesd. Since the crucial concept of the reinfoream
learning is based on the adaptivity of the actialug function, in this paper the “fast adaptatiérS¥'D
based approximation” (introduced in [26]) is sudgdsto adopt for reinforcement learning. This fast
adaptation method, directly adapts the reducedoappation by replacing, or embedding new approxiorat
points. The ability of embedding new approximatipaints provides the practical applicability of the
proposed dynamic partition allocation method.

Therefore, the application of the fast adaptatia@thod in the proposed reinforcement learning stingcis
twofold. On one side, it helps the dynamic panitallocation by increasing the rule density. On tliger
side, by the replacement of the previously fetclaed modified values serves the adaptation of the
approximated action-value function.

Consequently the key idea of the proposed reinfoec# algorithm is to insert a set of new rules, for

instance A\, into the existing rule basB . As it is already discussed, in order to avoid ptaxity problems,
the reduced form ofB (namely B") is utilised. This, hence, means that the embegddinthe new rules

contained inA should directly performed oB8' . One more important constraint should be emphasisee.
In order to fix the complexity of the rule baseythose in formation of the new rules should beited into

B which do not increase the size B . Actually this is equivalent to the key idea oétfast adaptation
introduced in [26]. More precisely in regard of tfwlowing algorithm, only those sub-tensors #f are

embedded intd3" , which are linearly dependent froB" [26]. Since the elements iB" are fixed, no SVD
is needed during embedding, which offers a chaocgetrelop a fast algorithm to adapt HOSVD. Here an
elementary step of the idea is discussed whenuteebase is being increased in an arbitrary dinoensi

Method 2. (n mode fast adaptation [26]) Assume a reduced rule base defined by tefol] (] 72>
and its corresponding matrice<Z L1 I resulted from B by HOSVD. Furthermore, let
AQ Oz deXPdna® 2 pa given, that has the same sizeBaexcept in then -th dimension wherd
may differ from J, . The localized error threshold of the adaptat®defined byl .

The goal is to determine the reduced folth of extended rule basE defined by tensofE'= [B A']n,

where E' contains the selected mode sub-tensors dE according to the given error threshdld as



" N 9)
E':(Br km_lzijn u,

and A #% "N contains the selected mode sub-tensors ofA and lets the corresponding sub-

tensors T' selected from the corresponding,, For brevity let [I'=[T' T

min/ max in/ max * min max] '

U= [Zn V]D OG0 1'< | whereV is determined to fulfil (9) subject té'—E'D[ 0.
Method 2 has built-up from the following two algiis:

Algorithm: (n-mode high order d way defective projection to a given basis[26]) This algorithm defectively

1% X% I X1 X Ipp X

projects, according to threshold, a given tensorA[] 09 ~*JIN"in dimensionn to

r -~ '
basis Z,, 00" . The result isA'= AP x, z,,, where AQI2%Jd-1*T'd*Jd+- >IN \which
may be defective in the specified dimensidnJ'q < Jgq, and consists of selectedi-mode sub-tensors of

A. The projection is done by the above defined defeanatrix projection to yieIdZnA(‘?]) AL U

under the condition of projection aBnA'(ny~An) Ut U'(n), Where Py =Z, EZH. From the point of
calculation, the condition is actually checked wecby vector as:Pp(A'(n) )i —(An) )i Ut (U'(ny )i

Important step is here, in high order case, thatomy those vectors are ignored which do not atise
above condition of projection, but all vectors @néd in ad -mode sub-tensor oA, where at least one

vector exists not holding the condition of projeati The resultedA(El) projected from the remaining vectors

can be restored to be tensAP . The size ofA' may differ from A only in dimensiord. The size ofA' can
be defined by removing the cancelled sub-tensasm fiA. Pp(A'(n) )ir —(An) )it =(H'(n) )i* can be

restored to be tensdd', like in the case ofA'. Let tensorH |, with the size ofA be generated via extending
H' with zeros and be called as mode projection error.

Having the above Algorithm, the first step of Madhdis the following: Repeating the-mode high order
r . N

n-way defective projection to basisZy 00 Ty which results in A=AP O Zy, where
k=

An0IrI2%In1XI I XIN gnd n-mode sub-tensors oA’ are selected from among tire-mode
sub-tensors ofA. The cumulated error obtained by the defectiverimatrojection in eachk -th step is
k-1
Sk = Z(H '« O ZkJ . As a matter of fact, the tolerance criteria & tdondition of projection should be
k h=1,h#n

corrected in each step I8y . The last step of Method 2 is the inverse of thevipus step:

.
Algorithm: (n-mode high order defective basis [26]) Assume given tensoB' with Z, 00 Ik as the

rox.xJt

r r r [
‘Jl ><J2><...Jn_1><I X‘Jn+l N asa

reduced form ofB by HOSVD; corrected error threshold and AP 00O

" r
result of the first step of Method 2. This algonitidetermines defective basis(] 0Gn*"*In iy such a

N n 17
way that [{Br O Zk]xn U—E"]Dt 0", where E"= [B A"]n. In other wordsv 00" 0 is determined
k=1



N
here which fulfills: {(Br O Zk]an—A”]Et 0", where A" is created fror\' according to the condition of
k=1

projection likeA' is created fromA . Applying n-order defective projection OQA{n))T to basis(B(rn))T
accordingly to error off'-S', to find (A(rn))T = (B(rn))T v T leads to the solution where the rows@('%)

are selected from among the rows A(E]). ConsequentlyV is obtained that shows the linear dependence
z

between the rest oAP and B". The final step is, hence, to fit the new basis l:is{ V”} The required

antecedent sets are defined §s=5,Z, and the new basis &, =s U .

The more detailed description of the fast adaptagigorithm is given in [26]

5 Practical use of the Proposed Reinforcement Teclque

For introducing the proposed application way of Sk@sed fuzzy rule based approximation techniques in
reinforcement learning, two simple application epéen were chosen.

The first is a simple, for the sake of visualizatif the action value (Q) function, a one dimenalmtate-
space system characterized by the following statesition function (10):

=9 [ﬁsk + ak)’ (10)

wheres[]S= [— 1,1] is the one dimensional state aad] A= [— 0.2,0.2] is the action.
The reward is calculated in the following manner:

r=1iff sO[- 0101 elser=0 (1D

The second example is the well known cart-polermatey application characterized by the followingtst
transition functions (12,13):

_ f —b G+ mGin(g) ° - mCy Eodp) Sin(g) + b, [ [cogg)/| 12

X M +m-micogp)’

f —b; X)Gogg) - (M +m){g in(g) - b, [ /(I () + m Eodg) Sin(g) B> (19
micodg) - (M +m)

-

wherex is the position of the cartp is the angle of the polé,is the actuating forcem is the mass of the
pole, | is the length of the polél is the mass of the cad,is the gravity acceleratior’oC is the friction

coefficient of the carthy, is the friction coefficient of the pole.
The reward in the cart-pole balancing example lisutated in the following manner:

r=1iff ¢0[-0.002507,0.002507] else r =0 (14)

The first experiment is related to the efficiendytlee proposed dynamic partition allocation metha
based on the first application example (see resultfg.5). Fig.5.b and Fig.5.c are introducing the basic
problems of fixed partition. The lack of universgdproximator property in case of rough partitiorg(en
Fig.5.b) and the difficulties of adaptivity (e.qn &ig.5.c).

The second experiment is related to the efficiemicthe proposed SVD based complexity reduction and
approximation adaptation (fast adaptation methdd)is experiment is based on the first and second
application example (see results on fig.6. and7f)g.In case of the first example application fig.6



introduces five stages of a 20000 step iteratiamfi@.6.b. the same iteration process turns the@aatalue
rule base to reduced form at the iteration stef,189 applying theéMlethod 1 of section 4.2. From this step
the iteration is continuing up to 20000 iteratiarsing the fast adaptation methddethod 2 of section 4.3.).
Fig.6.c. is the same experiment as fig.6.b., exttepturning the reduction is done at the step 5000

Performing the second experiment on the second @eaapplication gives very similar results. The mai
difference is the poor scaling of the universessiaf the reinforcements are gained in a very saraa of
the state space. Fixed partition state descriptmnmgd have difficulties in case of inappropriateiverse
scaling, while the proposed dynamic partition alban method simply overcome the situation.

As the main conclusion of the second experimerste@ms that in many cases the action-value funddion
considerably reducible. Moreover due to the fasipéation method this reduction can be performednn
early stage of the adaptation and the iteratiopsstan be continued on an economic sized structure.

6 Conclusions

One of the possible difficulties of the reinforcamhéearning applications in complex situationsthis huge
size of the state-value- or action-value-functi@presentation [2]. The case of continuous envirarime
reinforcement learning could be even complicatedcase of applying dense partitions to describe the
continuous universes, to achieve precise approiomat the basically unknown state-value- or actiaitue-
function. The fine resolution of the partitions dsato high number of states, and handling high rermna
states usually leads to high computational costéctwcould be unacceptable not only in many raakti
applications, but in case of any real (limited) putational resource. As a simple solution of thesdblems,

in this paper the adoption of Higher Order SVD [b3ked fuzzy rule base complexity reduction teakesq
and its fast adaptation method [26] is suggesté@. dpplication of the fast adaptation method [26kg a
simple way for increasing the rule density of &rohse stored in a compressed form directly. Tig &xploit
this feature, a dynamic partition allocation metlodlso suggested.

Based on the application examples, the main coioeclusf this paper is the reducibility of action-ual
function. It seems that in many cases the reprasentof the action-value function is consideratggucible.
Moreover due to the fast adaptation method thisggdn can be performed in an early stage of ttaptdion
and the iteration steps can be continued on anoeciorsized action-value function representation.
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Fig. 5. First application; dynamic and fixed partitioncadhtion (k is the iteration number, Siz84] set numbers)



k:1000; Size{1-14,1515] _

¢, Reduction at iteration step 5000
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Fig. 6. First application; the effect of SVD based comfexeduction and approximation adaptation, wheris khe
iteration number and Size is the size of the redyBEas it is stored) and the extend@&lais its used) action-value rule

base (e.g. Size:[14-126,14-15] means, that thanadid26x15 sized action value rule base is st@ed adapted in a

14x14 reduced format).



k:1000; Size:[1-12,1z-12,15-15]

a., No reduction b, Reduction at iteration step 10000 : c, Reduction at iteration step 20000

Fig. 7. Second application; the effect of SVD based corigleeduction and approximation adaptation, whierie the
iteration number and Size is the size of the reduyBEas it is stored) and the extend&las its used) action-value rule
base (e.g. Size:[12-37,11-45,15-15] means, thadtiginal 37x45x15 sized action value rule basstased and adapted in
a 12x11x15 reduced format).
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