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Abstract. Reinforcement learning methods, surviving the control difficulties of the unknown environment, 
are gaining more and more popularity recently in the autonomous robotics community. One of the possible 
difficulties of the reinforcement learning applications in complex situations is the huge size of the state-
value- or action-value-function representation [2]. The case of continuous environment (continuous 
valued) reinforcement learning could be even complicated, as the state-value- or action-value-functions 
are turning into continuous functions. In this paper we suggest a way for tackling these difficulties by the 
application of SVD (Singular Value Decomposition) methods [3], [4], [15], [26]. 

1  Introduction 

Reinforcement learning methods are trial-and-error stile learning methods adapting dynamic environment 
through incremental iteration. The principal ideas of reinforcement learning methods, the dynamical system 
state and the idea of “optimal return” or “value” function are inherited from optimal control and dynamic 
programming [1]. One common goal of the reinforcement learning strategies is to find an optimal policy by 

building the state-value- or action-value-function [2]. The state-value-function ( )sV π , is a function of the 

expected return (a function of the cumulative reinforcements), related to a given state Ss ∈ as a starting 
point, following a given policy π. Where the states of the learning agent are observable and the 
reinforcements (or rewards) are given by the environment. These rewards are the expression of the goal of the 
learning agent as a kind of evaluation follows the recent action (in spite of the instructive manner of error 
feedback based approximation techniques, like the gradient descent training). The policy is the description of 
the agent behavior, in the form of mapping between the agent states and the corresponding suitable actions. 

The action-value function ( )asQ ,π , is a function of the expected return, in case of taking action sAa ∈  in a 

given state s, and then following a given policy π. Having the action-value-function, the optimal (greedy) 
policy, which always take the optimal (the greatest estimated value) action in every states, can be constructed 
as [2]: 

( ) ( )asQs
sAa

,maxarg ππ
∈

= . (1) 

Namely for estimating the optimal policy, the action-value function ( )asQ ,π  is needed to be 

approximated. In discrete environment (discrete states and discrete actions) it means, that at least ∑
∈Ss

sA  

element must be handled. (Where sA  is the cardinality of the set of possible actions in state s.) Having a 

complex task to adapt, both the number of possible states and the number of the possible actions could be an 
extremely high value.  



1.1  Reinforcement Learning in Continuous Environment 

To implement reinforcement learning in continuous environment (continuous valued states and actions), 
function approximation methods are widely used. Many of these methods are applying tailing or partitioning 
strategies to handle the continuous state and action spaces in the similar manner as it was done in the discrete 
case [2]. One of the difficulties of building an appropriate partition structure is the anonymity of the action-
value-function structure. Applying fine resolution in the partition leads to high number of states, while coarse 
partitions could yield imprecise or unadaptable system. Handling high number of states also leads to high 
computational costs, which could be also unacceptable in many real time applications.  

1.2 Fuzzy Techniques in Continuos Environment Reinforcement Learning 

There are many methods in the literature for applying fuzzy techniques in reinforcement learning (e.g. for 
“Fuzzy Q-Learning” [9], [10], [11], [12], [6]). One of the main reason of their application beyond the 
simplicity of expressing priory knowledge in the form of fuzzy rules, is the universal approximator property 
[7], [8] of the fuzzy inference. It means that any kind of function can be approximated in an acceptable level, 
even if the analytic structure of the function is unknown. Despite of this useful property, the use of fuzzy 
inference could be strictly limited in time-consuming reinforcement learning by its complexity problems [16], 
because of the exponential complexity problem of fuzzy rule bases [13], [3], [4]. Fuzzy logic inference 
systems are suffering from exponentially growing computational complexity in respect to their approximation 
property. This difficulty comes from two inevitable facts. The first is that the most adopted fuzzy inference 
techniques do not hold the universal approximation property, if the numbers of antecedent sets are limited, as 
stated by Tikk in [17]. Furthermore, their explicit functions are sparse in the approximation function space. 
This fact inspires to increase the density, the number of antecedents in pursuit of gaining a good 
approximation, which, however, may soon lead to a conflict with the computational capacity available for the 
implementation, since the increasing number of antecedents explodes the computational requirement. The 
latter is the second fact and stated by Kóczy et al. in [16]. The effect of this contradiction is gained by the lack 
of a mathematical framework capable of estimating the necessary minimal number of antecedent sets. 
Therefore a heuristic setting of the number of antecedent sets is applied, which usually overestimates, in order 
to be on the safe side, the necessary number of antecedents resulting in an unnecessarily high computational 
cost.  E.g. the structurally different Fuzzy Q-Learning method implementations introduced [9], [10], [11] and 
[12] are sharing the same concept of fixed, predefined fuzzy antecedent partitions, for state representation. 
One possible solution for this problem is suggested in [6]. By introducing “Adaptive State Partitions”, an 
incremental fuzzy clustering of the observed state transitions. This method can lead to a better partition than 
the simple heuristic, by finding the best fitting one in respect to the minimal squared error, but still has the 
problem of limited approximation property inherited from the limited number of antecedent fuzzy sets. 

Another promising solution, as a new topic in fuzzy theory, is the application of fuzzy rule base complexity 
reduction techniques.  

1.3 Fuzzy rule base complexity reduction 

The main idea of application fuzzy rule base complexity reduction techniques for reinforcement learning is 
enhancing the universal approximator property of the fuzzy inference by extending the number of antecedent 
sets while the computational complexity is kept relatively low. 

Some reduction techniques are classified regarding their concept in [14] and [4]. A fuzzy rule importance 
based technique is proposed by Song et al. in [20]. Another recent method proposed by Sudkamp et al. [22] 
combines rule learning with a region merging strategy.  

Recently, several publications have applied orthogonal transformation methods for selecting important rules 
from a given rule base, for instance, in 1999 Yen and Wang investigated various techniques in [14] for 
possible fuzzy rule base simplification techniques such as orthogonal least-squares, eigenvalue 
decomposition, SVD-QR with column pivoting method, total least square method and direct SVD method. 
[21] also proposes an SVD based technique with examples.  

SVD based fuzzy approximation technique was initialized in 1997 by Yam [15], which directly finds a 
minimal rule-base from sampled values. Shortly after, this concept was introduced as SVD fuzzy rule base 



reduction and structure decomposition in [3], [24], [25]. Its key idea is conducting SVD of the consequents 
and generating proper linear combinations of the original membership functions to form new ones for the 
reduced set. [3], [15] characterizes fuzzy functions by the conditions of sum-normalization (SN), 
nonnegativenes (NN) and normality (NO), and extends SVD reduction with further tools to preserve SN and 
NN conditions of the new membership functions. It may have significant role if the purpose is not only saving 
computational cost, but maintaining the fuzzy concept and having a theoretical study of the reduced rule’s 
features.  

An extension of [14] to multi-dimensional cases may also be conducted in a similar fashion as the higher 
order SVD reduction technique proposed in [3], [13], [15]. Further developments of SVD based fuzzy 
reduction [3] [15] are proposed in [13], [18], [19], [23].  

The key idea of using SVD in complexity reduction is that the singular values can be applied to decompose 
a given system and indicate the degree of significance of the decomposed parts. Reduction is conceptually 
obtained by the truncation of those parts, which have weak or no contribution at all to the output, according to 
the assigned singular values. This advantageous feature of SVD is used in this paper for enhancing the 
universal approximator property of the fuzzy inference by extending the number of antecedent sets while the 
computational complexity is kept relatively low. The complexity and its reduction is discussed in regard of 
the number of rules, which result simplicity in operating with the rules, in reinforcement learning methods. 

On the other hand, as one of the natural problems of any complexity reduction technique, the adaptivity 
property of the reduced approximation algorithm becomes highly restricted. Since the crucial concept of the 
Fuzzy Q-learning is based on the adaptivity of the action-value function this paper is aimed propose to adopt 
an algorithm [26] capable of embedding new approximation points into the reduced approximation while the 
calculation cost is kept.  

This paper is organized as follows. Section 2 briefly summarizes the concept of Fuzzy Q-learning. Section 
3 introduces the proposed Fuzzy Q-learning and dynamic partition allocation method. Section 4 examines 
various concepts of adaptation SVD based techniques, e.g. complexity reduction and approximation 
adaptation [26], for reinforcement learning. Section 5 gives two simple examples for the practical use of the 
proposed method.  

2 Reinforcement Learning 

For introducing a possible way of application of SVD complexity reduction techniques in Fuzzy 
Reinforcement Learning, a simple direct (model free) reinforcement learning method, the Q-Learning [5], was 
chosen.  

The goal of the Q-learning is to find the fixed-point solution Q of the Bellman Equation [1] through 
iteration. In discrete environment Q-Learning [5], the action-value-function is approximated by the following 
iteration: 
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where 1
,

~ +k
uiQ  is the 1+k  iteration of the action-value taking action uA  in state iS , jS  is the new observed 

state, juig ,,  is the observed reward completing the ji SS →  state-transition, γ  is the discount factor and 

[ ]1,0, ∈k
uiα  is the step size parameter (which can change during the iteration steps). 

For applying this iteration to continuous environment by adopting fuzzy inference (Fuzzy Q-Learning), 
there are many solutions exist in the literature [6], [9], [10], [11], [12]. 

Having only demonstrational purposes, in this paper one of the simplest one, the order-0 Takagi-Sugeno 
Fuzzy Inference based Fuzzy Q-Learning is studied (a slightly modified, simplified version of the Fuzzy Q-

Learning introduced in [9] and [6]). This case, for characterising the value function ( )asQ ,  in continuous 



state-action space, the order-0 Takagi-Sugeno Fuzzy Inference System approximation ( )asQ ,
~

 is adapted in 

the following manner: 

If  s is iS  And a is uA  Then ( ) uiQasQ ,,
~ = , UuIi ∈∈ , , (3) 

where iS  is the label of the ith membership function of the n dimensional state space, uA  is the label of the 

uth membership function of the one dimensional action space, uiQ ,  is the singleton conclusion and ( )asQ ,
~

 is 

the approximated continuous state-action-value function. Having the approximated state-action-value function 

( )asQ ,
~

, the optimal policy can be constructed by function (1): 

( ) ( )uiQi
Uu

,maxarg~
∈

=π , (4) 

Setting up the antecedent fuzzy partitions to be Ruspini partitions, the order-0 Takagi-Sugeno Fuzzy Inference 
forms the following approximation function: 
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where )(, nnj x
n

µ  is the membership value of the nj
th antecedent fuzzy set at the n th dimension of the N  

dimensional antecedent universe nX  at the state-action observation nx  and 
Njjjb

K21
 is the value of the 

singleton conclusion of the Njjj ...21
th fuzzy rule. In this notation all combination of the antecedents 

corresponds to one consequent fuzzy set defined these relations are expressed by rules as: IF )( 11,1
xjµ  and 

)( 2,2
xnjµ  and … and )(, NNj x

N
µ  THEN 

Njjj K21
β . Singleton consequent fuzzy sets 

Njjj K21
β  are defined 

by their location 
Njjjb

K21
. on output universe Y . 

Applying the notation introduced in (3), equation (5) turns to the following: 
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where ( )asQ ,
~

 is the approximated state-action-value function )(, nni s
n

µ  is the membership value of the ni
th 

state antecedent fuzzy set at the n th dimension of the N  dimensional state antecedent universe at the state 

observation ns , )(auµ  is the membership value of the u th action antecedent fuzzy set of the one 

dimensional action antecedent universe at the action selection a  and uiii N
q

K21
 is the value of the singleton 

conclusion of the uiii N...21
th fuzzy rule. 

Applying the approximation formula of the Q-learning (2) for adjusting the singleton conclusions in (5), 
leads to the following function: 
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where 1
...21

+k
uiii N

q  is the 1+k  iteration of the singleton conclusion of the uiii N...21
th fuzzy rule taking action 

uA  in state iS , jS  is the new observed state, juig ,,  is the observed reward completing the ji SS →  state-



transition, γ  is the discount factor and [ ]1,0, ∈k
uiα  is the step size parameter. The 1

,

~
max +

∈

k
vj

Uv
Q  and k

uiQ ,

~
 

action-values can be approximated by equation (6). 
The next problematic question of the Fuzzy Reinforcement Learning, as it was introduced in section 1.2, is 

the proper way of building the fuzzy partitions. The methods sharing the concept of fixed, predefined fuzzy 
partitions, like [9], [10], [11] and [12] are facing the following question: More detailed partitions are yielding 
exponentially growing state spaces (rule base sizes), elongating the adaptation time, and dramatically 
increasing the computational resource demand, while sparse partitions could cause high approximation error, 
or unadaptable situation. One possible solution for this problem is suggested in [6]. By introducing “Adaptive 
State Partitions”, an incremental fuzzy clustering of the observed state transitions. This method can lead to a 
better partition than the simple heuristic, by finding the best fitting one in respect to the minimal squared 
error, but still has the problem of limited approximation property inherited from the limited number of 
antecedent fuzzy sets. 

In this paper another dynamic partition allocation method is suggested, which is instead of adjusting the 
sets of the fuzzy partition, simply increase the number of the fuzzy sets by inserting new sets in the required 
positions.  

3 The Proposed Method 

The reinforcement learning method proposed in this paper can be divided to two main parts. The first is the 
reinforcement method itself. It is the direct (model free) Fuzzy Q-Learning method as it was introduced in 
section 2 (order-0 Takagi-Sugeno Fuzzy Inference based modification of the Fuzzy Q-Learning introduced in 
[9] and [6]).  

The second is the dynamic partition allocation method proposed in this paper. The main idea is very simple 
(see Fig.1. for an example). Initially a minimal sized (e.g. 2-3 sets only) Ruspini partition built up triangular 
shaped fuzzy sets on all the antecedent universes (see Fig.1.a.). In case if the action-value function update is 

high ( QQ ε>∆ ~
), and the partition is not too dense already ( ssd ε> ), and the actual state-action point is far 

from the existing partition members (see Fig.1.b.), than a new fuzzy state is inserted to increase the resolution 
(see Fig.1.d.). If the update value is relatively low (see e.g. Fig.2.), or the actual state-action point is close to 
the existing partition members (Fig.3.), than the partition is staying unchanged. The state insertion is done in 
every state dimensions separately (in multidimensional case it means an insertion of a hyperplane), by 
interpolating the inserted values from the neighbouring ones (see Fig.1.e. and Fig.4. as a two dimensional 
example). Having the new state plane inserted in every required dimension, the value update is done regarding 
to the Fuzzy Q-Learning method as it was introduced in section 2, by the equation (7). (See e.g. on Fig.1.c,d, 
or Fig.4.d.) 
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c., The next approximation, without partition modification f., The next approximation, with partition modification 

Fig. 1. The proposed dynamic partition allocation. 

k
iq

k
iq 1+

k
sQ )(

~

is 1+is sos

1
)(

~ +k
so

Q
QQ ε≤∆ ~

22
1 sii

o

dss
s <+− +

 

1+k
iq

1
1
+

+
k
iq1

)(

~ +k
so

Q1
)(

~ +k
sQ

is 1+is sos
 

Fig. 2. The action-value function update is relatively low. 
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Fig. 3. The actual state-action point is close to the existing partition members. 
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Fig. 4. The proposed dynamic partition allocation in two-dimensional (single state and action) antecedent case. 

The proposed dynamic partition allocation method has the property of local step-by-step refinement in a 
manner very similar to the binary search. It can locate the radical positions of the value action function with 

the precision of 
k

i
ski

s

d
d

2
=+  in k  steps (where i

sd  is the starting precision). 

The main problem of the proposed simple dynamic partition allocation method is the nondecreasing 
adaptation manner of the antecedent fuzzy partitions. In some situation, it could mean rapidly increasing 
partition sizes. Moreover, these cases also lead rapidly growing, or at least nondecreasing computational 
resource demand. 

For retaining the benefits of the dynamic partition allocation and maintaining the overall computational 
resource demand low, in this paper, the adoption of Higher Order SVD [13] based fuzzy rule base complexity 
reduction techniques and its fast adaptation method (see in section 4.2 and 4.3) is suggested. The application 
of the fast adaptation method [26] gives a simple way for increasing the rule density of a rule base stored in a 
compressed form directly (see section 4.2 and 4.3, equation (9) and [26]). Providing an economic sized 
structure for handling continuously increasing and varying rule bases, which is so typical in reinforcement 
learning. 

4 SVD based Complexity Reduction 

The essential idea of using SVD in complexity reduction is that the singular values can be applied to 
decompose a given system and indicate the degree of significance of the decomposed parts. Reduction is 



conceptually obtained by the truncation of those parts, which have weak or no contribution at all to the output, 
according to the assigned singular values. This advantageous feature of SVD is used in this paper for 
enhancing the universal approximator property of the fuzzy inference by extending the number of antecedent 
sets while the computational complexity is kept relatively low. The complexity and its reduction is discussed 
in regard of the number of rules, which result simplicity in operating with the rules, in reinforcement learning 
methods. 

4.1 Definitions 

In this section some elementary definitions and concepts utilized in the further sections will be introduced. 
With respect to the notation, to facilitate the distinction between the types of given quantities, the notation 
will be reflected by their representation: scalar values are denoted by lower-case letters ,...},,...;,{ βαba ; 

column vectors and matrices are given by bold-face letters as ,...},{ ba and ,...},{ BA  respectively, matrix 

0 contains zero values only; tensors correspond to capital letters as ,...},{ BA . The transpose of matrix A  is 

denoted as TA . Subscript is consistently used for a lower order of a given structure. E.g. and element of 
matrix A  is defined by row-column number ji,  symbolized as jiji a ,,)( =A . Systematically, the i -th 

column vector of A  is denoted as ia , i.e. ][ 21 LaaA = . To enhance the overall readability characters 

,..., ji  in the meaning of indices (counters), ,..., JI  are reserved to denote the index upper bounds, unless 

stated otherwise. NIII ×××ℜ K21  is the vector space of real valued )( 21 NIII ××× K -tensors. Letter N  

serves to denote the number of variables. Letter k  has special role and it is: Nk ...1= , nk ≠ .  
 

Definition 1. (n-mode matrix of tensor A ) Assume an N -th order tensor NIIIA ×××ℜ∈ K21 . The n -mode 

matrix 
JI

n)
nA ×ℜ∈( , ∏=

k
lIJ  contains all the vectors in the n -th dimension of tensor A . The ordering 

of the vectors is arbitrary, this ordering shall, however, be consistently used later on. jn )( )(A  is called an j -

th n -mode vector. 
 

Note that any matrix of which the columns are given by n-mode vectors jn )( )(A  can evidently be restored 

to be tensor A .  
 

Definition 2. (tensor interval) Assume N -th order tensors NIIICBA ×××ℜ∈ K21,, . 

BCABAC ttt ≤≤⇔∈ ],[ , where 
NN iiiiiiNt baiiiBA

KK
K

2121
:21 ≤∀⇔≤  

 

Definition 3. (n-mode sub-tensor of tensor A ) Assume an N -th order tensor NIIIA ×××ℜ∈ K21 . The n -

mode sub-tensor α=ni
A  contains elements 

Nnn iiiiia ,,,,,,, 1121 KK +− α . 

 

Definition 4. ( n -mode matrix-tensor product) The n -mode product of tensor NIIIA ×××ℜ∈ K21  by a matrix 
nIJ×ℜ∈U , denoted by UnA×  is an )( 1121 Nnn IIJIII ××××××× +− KK -tensor of which the 

entries are given by BA n =× U , where )()( nn AB ⋅= U . Let NNA UUU ××× K2211  be noted for 

brevity as n

N

n
A U

1=
⊗ . 

There are major differences between matrices and higher-order tensors when rank properties are concerned. 
These differences directly affect the way an SVD generalization could look like. As a matter of fact, there is 
no unique way to generalize the rank concept. In this paper the description is restricted to n  mode rank only.  

 



Definition 5. ( n mode rank of tensor) The n  mode rank of A , denoted by )(ArankR nn = , is the 

dimension of the vector space spanned by the n  mode vectors as )()( )(nn ArankArank = . 

 

Theorem (N-th Order SVD or HOSVD) Every tensor NIIIA ×××ℜ∈ K21  can be written as the product 

n

N

n
SA U

1=
⊗= , in which ][ ,,2,1 nInnn N

uuuU K=  is a unitary )( NN II × -matrix called n-mode 

singular matrix. Tensor NIIIS ×××ℜ∈ K21  of which the subtensors α=ni
S  have the properties of all-

orthogonality (two subtensors α=ni
S  and β=ni

S  are orthogonal for all possible values of α,n  and β , when 

βα ≠ ) and ordering: 0...21 ≥≥≥≥ === nnnn Iiii SSS  for all possible values of n . 

 
See detailed discussion and notation of matrix SVD and Higher Order SVD (HOSVD) in [13]. 

4.2 SVD Based Fuzzy Rule Base Complexity Reduction 

Since the state action value function is approximated by an order-0 Takagi-Sugeno Fuzzy Inference method 
this section is intended to provide a brief survey of the fundamentals in SVD based fuzzy rule base reduction 
techniques, which are proposed in [3], [4], [13], [15].  

The calculation complexity of (5) explodes with values NJJJ K,, 21 , in this regards, for comprehensive 

analysis and exact theorems, see [16]. Decreasing the upper bound of the indices in the sum operator of (5), 
namely the number of antecedent sets, leads to the initial idea of calculation reduction. Formula (5) can be 

equivalently written in tensor product form as: n

N

n
N Bxxxf m

1
21 ),,,(

=
⊗=K , where tensor 

NJJJB ××ℜ∈ K21  and vector nm  respectively contain elements 
Njjjb

K21
 and )(, nnj x

n
µ . This reduction can 

be conceptually obtained by reducing the size of tensor B  via Higher Order SVD (HOSVD). According to 
the special terms in this topic, the following notation has emerged [3], [4], [13]: 

 

Definition 6. (Exact / non-exact reduction) Assume an N -th order tensor NIIIA ×××ℜ∈ K21 . Exact reduced 

form n

N

n

rAA U
1=

⊗= , where “r” denotes “reduced”, is defined by tensor 
r
N

rr IIIrA ×××ℜ∈ K21  and basis 

matrices 
r
nn II

n
×ℜ∈U , n

r
n IIn ≤∀ :  which are the result of HOSVD, where only zero singular values and 

the corresponding singular vectors are discarded. Non-exact reduced form n

N

n

rAA U
1

ˆ
=

⊗= , is obtained if not 

only zero singular values and the corresponding singular vectors are discarded. 
 
The above properties directly lead to the following fundamental concept of. 
 

Method 1. (exact SVD based fuzzy rule base reduction) The SVD based fuzzy rule base reduction transforms 
equation (5) to the form of: 

∑ ∏
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where n
r
n JJn ≤∀ :  is obtained as the main essence of the reduction. 



The reduced form is obtained via HOSVD capable of decomposing B  into n

N

n

rBB U
1=

⊗= . Having 

r
N

rr JJJrB ××ℜ∈ K21  and its singular vectors the reduced form is determined as: 

r
n

N

n

r
N Bxxxf m

1
21 ),,,(

=
⊗=K , where nn

r
n Umm = . Equation (5) is an equivalent of (8) that is the starting 

point for theoretical developments of this topic.  
 

Remark 1. Note that, the obtained functions may not be interpretable as antecedent fuzzy sets. In order to 
obtain functions which can be antecedent fuzzy stets, further to have Ruspini partition, sum-normalization 
(SN), nonnegativenes (NN) and normality (NO) transformation techniques are developed to HOSVD 
algorithm in [3], [4], [13]. 

 
Remark 2. The error controllable advantage of the reduction technique is conceptually obtained by the 

truncation of non-zero singular values. The error bound of ),,,(ˆ
21 Nxxxf K  can be estimated during the 

execution of the SVD reduction algorithm. Note that, the final error of ),,,(ˆ
21 Nxxxf K  depends on the 

type of the antecedent functions applied. Typical practical cases are analysed in [4]. 

4.3 Adaptation of SVD based Approximation  

One of the natural problems of any complexity reduction technique is that the adaptivity property of the 
reduced approximation algorithm becomes highly restricted. Since the crucial concept of the reinforcement 
learning is based on the adaptivity of the action-value function, in this paper the “fast adaptation of SVD 
based approximation” (introduced in [26]) is suggested to adopt for reinforcement learning. This fast 
adaptation method, directly adapts the reduced approximation by replacing, or embedding new approximation 
points. The ability of embedding new approximation points provides the practical applicability of the 
proposed dynamic partition allocation method.  

Therefore, the application of the fast adaptation method in the proposed reinforcement learning structure is 
twofold. On one side, it helps the dynamic partition allocation by increasing the rule density. On the other 
side, by the replacement of the previously fetched and modified values serves the adaptation of the 
approximated action-value function. 

Consequently the key idea of the proposed reinforcement algorithm is to insert a set of new rules, for 
instance A , into the existing rule base B . As it is already discussed, in order to avoid complexity problems, 

the reduced form of B  (namely rB ) is utilised. This, hence, means that the embedding of the new rules 

contained in A  should directly performed on rB . One more important constraint should be emphasised here. 
In order to fix the complexity of the rule base only those in formation of the new rules should be inserted into 

rB  which do not increase the size of rB . Actually this is equivalent to the key idea of the fast adaptation 
introduced in [26]. More precisely in regard of the following algorithm, only those sub-tensors of A  are 

embedded into rB , which are linearly dependent from rB  [26]. Since the elements in rB  are fixed, no SVD 
is needed during embedding, which offers a chance to develop a fast algorithm to adapt HOSVD. Here an 
elementary step of the idea is discussed when the rule base is being increased in an arbitrary dimension n. 

 

Method 2. ( n  mode fast adaptation [26]) Assume a reduced rule base defined by tensor 
r
N

rr JJJrB ×××ℜ∈ K21  

and its corresponding matrices 
r
nn JJ

n
×ℜ∈Z  resulted from B  by HOSVD. Furthermore, let 

Nnn JJIJJJA ×××××× +−ℜ∈ KK 1121  be given, that has the same size as B  except in the n -th dimension where I  

may differ from nJ . The localized error threshold of the adaptation is defined by ∇ . 

The goal is to determine the reduced form rE  of extended rule base E  defined by tensor [ ]nABE ''= , 

where E′  contains the selected n  mode sub-tensors of E  according to the given error threshold ∇  as  
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
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 ⊗=
=1

'ˆ , 
(9) 

and Nnn JJIJJJA ×××××× +−ℜ∈ KK 1121 ''  contains the selected n  mode sub-tensors of A  and lets the corresponding sub-

tensors maxmin/'T  selected from the corresponding maxmin/T . For brevity let ]''[' maxmin TT=∇ . 

[ ] r
nn JIJ

n
×+ℜ∈= )'(VZU , II ≤' , where V  is determined to fulfil (9) subject to '''ˆ ∇∈− tEE . 

 
Method 2 has built-up from the following two algorithms: 

 
Algorithm: ( n -mode high order d  way defective projection to a given basis [26]) This algorithm defectively 

projects, according to threshold ∇ , a given tensor Nnn JJIJJJA ×××××× +−ℜ∈ KK 1121  in dimension n  to 

basis 
r
nJI

n
×ℜ∈Z . The result is nn

pAA Z×='ˆ , where Nddd JJJJJJA ×××××× +−ℜ∈ KK 1121 '' , which 

may be defective in the specified dimension d , dd JJ ≤' , and consists of selected d -mode sub-tensors of 

A . The projection is done by the above defined defective matrix projection to yield: '' )()( ∇∈− tn
p
nn AAZ  

under the condition of projection as )()()( ''' ntnnn AA ∇∈−P , where +⋅= nnn ZZP . From the point of 

calculation, the condition is actually checked vector by vector as: ')(')(')( )'()'()'( intininn AA ∇∈−P . 

Important step is here, in high order case, that not only those vectors are ignored which do not satisfy the 
above condition of projection, but all vectors contained in a d -mode sub-tensor of A , where at least one 

vector exists not holding the condition of projection. The resulted p
nA )(  projected from the remaining vectors 

can be restored to be tensor pA . The size of 'A  may differ from A  only in dimension d. The size of 'A  can 
be defined by removing the cancelled sub-tensors from A . ')(')(')( )'()'()'( inininn HAA =−P  can be 

restored to be tensor 'H , like in the case of 'A . Let tensor nH  with the size of A  be generated via extending 

'H  with zeros and be called as n  mode projection error.  
 
Having the above Algorithm, the first step of Method 2 is the following: Repeating the k -mode high order 

n -way defective projection to basis 
r
kk JJ

k
×ℜ∈Z  which results in k

N

k

pAA Z
1

'ˆ
=
⊗= , where 

Nnn JJIJJJA ×××××× +−ℜ∈ KK 1121 '' and n -mode sub-tensors of 'A  are selected from among the n -mode 
sub-tensors of A . The cumulated error obtained by the defective matrix projection in each k -th step is 
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'' . As a matter of fact, the tolerance criteria of the condition of projection should be 

corrected in each step by kS . The last step of Method 2 is the inverse of the previous step:  

 

Algorithm: ( n -mode high order defective basis [26]) Assume given tensor rB  with 
r
kk JJ

k
×ℜ∈Z  as the 

reduced form of B  by HOSVD; corrected error threshold ∇  and 
r
N

r
n

r
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 as a 

result of the first step of Method 2. This algorithm determines defective basis 
r
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projection like 'A  is created from A . Applying n -order defective projection of T
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T
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r
n BA  leads to the solution where the rows of r
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are selected from among the rows of PnA )( . Consequently, V  is obtained that shows the linear dependence 

between the rest of pA  and rB . The final step is, hence, to fit the new basis as: 
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antecedent sets are defined as: kk
r
k Zss =  and the new basis is Uss n

r
n = . 

 
The more detailed description of the fast adaptation algorithm is given in [26] 

5 Practical use of the Proposed Reinforcement Technique 

For introducing the proposed application way of SVD based fuzzy rule based approximation techniques in 
reinforcement learning, two simple application examples were chosen. 

The first is a simple, for the sake of visualization of the action value (Q) function, a one dimensional state-
space system characterized by the following state-transition function (10): 

( )kkk ass +⋅=+ 21 , (10) 

where [ ]1,1−=∈ Ss  is the one dimensional state and [ ]2.0,2.0−=∈ Aa  is the action. 

The reward is calculated in the following manner:  

[ ] 0    1.0,1.0    1 =−∈= relsesiffr  (11) 

The second example is the well known cart-pole balancing application characterized by the following state-
transition functions (12,13): 

( ) ( ) ( ) ( )
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⋅⋅⋅⋅+⋅⋅−⋅⋅+−⋅⋅−= 2
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ϕ
ϕϕϕϕϕϕϕ
&&&

&&  (13) 

where x is the position of the cart, ϕ  is the angle of the pole, f is the actuating force, m is the mass of the 

pole, l is the length of the pole, M is the mass of the cart, g is the gravity acceleration, Cb  is the friction 

coefficient of the cart, Pb  is the friction coefficient of the pole. 

The reward in the cart-pole balancing example is calculated in the following manner:  

[ ] 0    0025.0,0025.0    1 =⋅⋅−∈= relseiffr ππϕ  (14) 

The first experiment is related to the efficiency of the proposed dynamic partition allocation method, and 
based on the first application example (see results on fig.5). Fig.5.b and Fig.5.c are introducing the two basic 
problems of fixed partition. The lack of universal approximator property in case of rough partition (e.g. on 
Fig.5.b) and the difficulties of adaptivity (e.g. on Fig.5.c). 

The second experiment is related to the efficiency of the proposed SVD based complexity reduction and 
approximation adaptation (fast adaptation method). This experiment is based on the first and second 
application example (see results on fig.6. and fig.7.). In case of the first example application fig.6.a. 



introduces five stages of a 20000 step iteration. On fig.6.b. the same iteration process turns the action-value 
rule base to reduced form at the iteration step 1000, by applying the Method 1 of section 4.2. From this step 
the iteration is continuing up to 20000 iterations using the fast adaptation method (Method 2 of section 4.3.). 
Fig.6.c. is the same experiment as fig.6.b., except the turning the reduction is done at the step 5000. 

Performing the second experiment on the second example application gives very similar results. The main 
difference is the poor scaling of the universes. Most of the reinforcements are gained in a very small area of 
the state space. Fixed partition state descriptions could have difficulties in case of inappropriate universe 
scaling, while the proposed dynamic partition allocation method simply overcome the situation. 

As the main conclusion of the second experiment, it seems that in many cases the action-value function is 
considerably reducible. Moreover due to the fast adaptation method this reduction can be performed in an 
early stage of the adaptation and the iteration steps can be continued on an economic sized structure. 

6 Conclusions 

One of the possible difficulties of the reinforcement learning applications in complex situations, is the huge 
size of the state-value- or action-value-function representation [2]. The case of continuous environment 
reinforcement learning could be even complicated, in case of applying dense partitions to describe the 
continuous universes, to achieve precise approximation of the basically unknown state-value- or action-value-
function. The fine resolution of the partitions leads to high number of states, and handling high number of 
states usually leads to high computational costs, which could be unacceptable not only in many real time 
applications, but in case of any real (limited) computational resource. As a simple solution of these problems, 
in this paper the adoption of Higher Order SVD [13] based fuzzy rule base complexity reduction techniques 
and its fast adaptation method [26] is suggested. The application of the fast adaptation method [26] gives a 
simple way for increasing the rule density of a rule base stored in a compressed form directly. To fully exploit 
this feature, a dynamic partition allocation method is also suggested. 

Based on the application examples, the main conclusion of this paper is the reducibility of action-value 
function. It seems that in many cases the representation of the action-value function is considerably reducible. 
Moreover due to the fast adaptation method this reduction can be performed in an early stage of the adaptation 
and the iteration steps can be continued on an economic sized action-value function representation. 
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a., Dynamic partition allocation  b., Fixed, 15 equidistant set partition c., Fixed, 7 equidistant set partition 

Fig. 5. First application; dynamic and fixed partition allocation (k is the iteration number, Size: [S,A] set numbers) 
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a., No reduction b, Reduction at iteration step 1000 c, Reduction at iteration step 5000 

Fig. 6. First application; the effect of SVD based complexity reduction and approximation adaptation, where k is the 
iteration number and Size is the size of the reduced (Br as it is stored) and the extended (B as its used) action-value rule 
base (e.g. Size:[14-126,14-15] means, that the original 126x15 sized action value rule base is stored and adapted in a 
14x14 reduced format). 
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a., No reduction b, Reduction at iteration step 10000 c, Reduction at iteration step 20000 

Fig. 7. Second application; the effect of SVD based complexity reduction and approximation adaptation, where k is the 
iteration number and Size is the size of the reduced (Br as it is stored) and the extended (B as its used) action-value rule 
base (e.g. Size:[12-37,11-45,15-15] means, that the original 37x45x15 sized action value rule base is stored and adapted in 
a 12x11x15 reduced format). 
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