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Abstract 

Using the concept of vague environment 
described by scaling functions [2] instead of 
the linguistic terms of the fuzzy partition gives 
a simple way for fuzzy approximate reasoning. 
In most of the practical applications, the fuzzy 
partitions (used as primary sets of the fuzzy 
rulebase) can be described by vague 
environments (based on the similarity or 
indistinguishability of the elements [2]). 
Comparing a description of a universe given 
by a fuzzy partition to the way of using the 
concept of vague environment we can say, that 
the linguistic terms of the fuzzy partition are 
points in the vague environment, while the 
shape of the fuzzy sets is described by the 
scaling function. This case the primary fuzzy 
sets of the antecedent and the consequent parts 
of the fuzzy rules are points in their vague 
environments, so the fuzzy rules themselves 
are points in their vague environment too (in 
the vague environment of the fuzzy rulebase). 
It means, that the question of approximate 
fuzzy reasoning can be reduced to the problem 
of interpolation of the rule points in the vague 
environment of the fuzzy rulebase relation 
[4,5]. In other words, using the concept of 
vague environment, in most of the practical 
cases we can build approximate fuzzy 
reasoning methods simple enough to be a good 
alternative of the classical Compositional Rule 
of Inference methods in practical applications. 
In this paper two methods of approximate 
fuzzy reasoning based on interpolation in the 
vague environment of the fuzzy rulebase, and 
a comparison of these methods to the classical 
CRI will be introduced. 

1. Connection between similarity of fuzzy 
sets and vague distance of points in a 
vague environment 

The concept of vague environment is based 
on the similarity or indistinguishability of the 
elements. Two values in the vague 
environment are ε-distinguishable if their 
distance is grater then ε. The distances in 

vague environment are weighted distances. 
The weighting factor or function is called 
scaling function (factor) [2]. Two values in the 
vague environment X are ε-distinguishable if 
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where ( )δ s x x1 2,  is the vague distance of 
the values x1, x2 and s(x) is the scaling function 
on X. 

For finding connections between fuzzy sets 
and a vague environment we can introduce the 
membership function µ A x( )  as a level of 
similarity a to x, as the degree to which x is 
indistinguishable to a [2]. The α-cuts of the 
fuzzy set µ A x( )  is the set which contains the 
elements that are (1−α)-indistinguishable from 
a (see fig.1.): 
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Fig.1. The α-cuts of µ A x( )  contains the 
elements that are (1−α)-indistinguishable from 

a 

It is very easy to realise (see fig.1.), that 
this case the vague distance of points a and b 
(δ s ( , )a b ) is basically the Disconsistency 
Measure (SD) of the fuzzy sets A and B (where 
B is a singleton): 
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where A B∩  is the min t-norm, 
( ) ( ) ( )[ ]µ µ µA B A Bx x x∩ = min ,   ∀ x ∈ X. 

It means, that we can calculate the 
disconsistency measures between member 
fuzzy sets of a fuzzy partition and a singleton, 
as vague distances of points in the vague 
environment of the fuzzy partition. The main 
difference between the disconsistency measure 
and the vague distance is, that the vague 
distance is a crisp value in range of [0,∞], 
while the disconsistency measure is limited to 
[0,1]. That is why they are useful in interpolate 
reasoning with insufficient evidence. 

So if it is possible to describe all the fuzzy 
partitions of the primary fuzzy sets (the 
antecedent and consequent universes) of our 
fuzzy rulebase, and the observation is a 
singleton, we can calculate the “extended” 
disconsistency measures of the antecedent 
primary fuzzy sets of the rulebase and the 
observation, and the “extended” disconsistency 
measures of the consequent primary fuzzy sets 
and the consequence (we are looking for) as 
vague distances of points in the antecedent and 
consequent vague universes. 

2. Generating vague environments from 
the fuzzy partitions of the linguistic 
terms of the fuzzy rules 

The vague environment is described by its 
scaling function. For generating a vague 
environment we have to find an appropriate 
scaling function, which describes the shapes of 
all the terms in the fuzzy partition. 
The method proposed by Klawonn [2], for 
choosing the scaling function s(x), gives an 
exact description of the fuzzy terms after their 
reconstruction from the scaling function: 

 s x x
d
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So we always find a scaling function, if we 
have only one fuzzy set in the fuzzy partition. 
Usually the fuzzy partition contains more than 
one fuzzy set, so this method requires some 
restrictions for the membership functions of 
the terms [2]: 
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Generally the above condition is not 
fulfilling, so the question is how to describe all 

fuzzy sets of the fuzzy partition with one 
“universal” scaling function. For this reason 
we propose to use the approximate scaling 
function. 

3. The approximate scaling function 

The approximate scaling function is an 
approximation of the scaling functions 
describes the terms of the fuzzy partition 
separately. 
Supposing that the fuzzy terms are triangles, 
each fuzzy term can be characterised by two 
constant scaling functions, the scaling factor of 
the left and the right slope of the triangle. So a 
triangle shaped fuzzy term can be 
characterised by three values (by a triple), by 
the values of the left and the right scaling 
factors and the value of its core point 
(e.g.fig.2.). 

 

 
Fig.2. Two triangle shaped fuzzy set 
characterised by two triple, by the  

left and the right scaling factors and the value 
of the core point 

For generating the approximate scaling 
function we suggest to adopt the following 
non-linear function for interpolating the 
neighbouring scaling factors: 
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[ ]d x - x   i ni i+1 i= ∀ ∈ −, ,1 1 , 
s(x) is the approximate scaling function, xi  is 
the core of the ith term of the approximated 
fuzzy partition, s ,  si

L
i
R  are the left and right 

side scaling factors of the ith triangle shaped 
term of the approximated fuzzy partition, k 
constant factor of sensitivity for neighbouring 
scaling factor differences, n is the number of 
the terms in the approximated fuzzy partition 

The above function has the following 
useful properties: 

If the neighbouring scaling factors are 
equals, s(x)is linear 
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If one of the neighbouring scaling factors is 
infinite e.g. si

R →∞  (the right side of the ith 
term is crisp) then 
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Fig.3. Approximate scaling function generated 
by the proposed non-linear function (k=1), and 

the original fuzzy partition (A,B) as this 
scaling function describes it (A’,B’) 

4. Calculating the conclusion by 
approximating the vague points of the 
rulebase 

If the vague environment of a fuzzy 
partition (the scaling function or the 

approximate scaling function) exists, the 
member sets of the fuzzy partition can be 
characterised by points in the vague 
environment. (In our case the points are 
characterising the cores of the terms, while the 
shapes of the membership functions are 
described by the scaling function.) If all the 
vague environments of the antecedent and 
consequent universes of the fuzzy rulebase are 
exist, all the primary fuzzy sets (linguistic 
terms) used in the fuzzy rulebase can be 
characterised by points in their vague 
environment. So the fuzzy rules (build on the 
primary fuzzy sets) can be characterised by 
points in the vague environment of the fuzzy 
rulebase too. This case the approximate fuzzy 
reasoning can be handled as a classical 
interpolation task. Applying the concept of 
vague environment (the distances of points are 
weighted distances), any interpolation, 
extrapolation or regression methods can be 
adapted very simply for approximate fuzzy 
reasoning. 

For example we can use the Lagrange 
interpolation. The original formula is the 
following: 
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where Y(x) is the Lagrange interpolation of 
the n points (x1,y1), (x2,y2),..., (xn,yn). 

Using the concept of vague distances in the 
case of one dimensional antecedent universe: 
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y0 is the first element of the universe Y: 
 y0≤y    ∀ y∈Y 
 (as Y is a one dimensional universe) 



Another example as an adaptation of a 
simple rational interpolation is the following: 
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is a weighting factor inversely proportional 
to the vague distance of the observation 
and the kth rule antecedent, 
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s
iX  is the ith scaling function of the m 

dimensional antecedent universe, 
sY  is the scaling function of the one 

dimensional consequent universe,  
x  is the multidimensional crisp observation,  
ak  are the cores of the multidimensional fuzzy 

rule antecedents A
k
,  

bk  are the cores of the one dimensional fuzzy 
rule consequents Bk,  

Ri = Ai → Bi are the fuzzy rules,  
p  is the sensitivity of the weighting factor for 

distant rules,  
y0  is the first element of the one dimensional 

universe (Y: y0≤y  ∀ y∈Y),  
y  is the one dimensional conclusion we are 

looking for. 

Comparing the two proposed interpolation 
methods we can establish the following: 

Having only two rules, between the two 
rule antecedents the two methods give the 
same conclusion (e.g.Fig.4.). 

Because of the absolute antecedent 
distances of the proposed rational interpolation 
function, the approximate reasoning method 
based on this function can be used in case of 
multidimensional antecedent universes too 

 

 
Fig.4. Interpolation of fuzzy rules (Ri:Ai→Bi) 
in the approximated vague environment of the 
fuzzy rulebase, using the proposed rational 

interpolation (p=1) and the adopted 
Lagrange interpolation 

5. Comparing the crisp conclusion 
generated by approximate reasoning in 
the vague environment of the fuzzy 
rulebase to the crisp conclusion 
generated by the classical Compositional 
Rule of Inference 

For comparing the crisp conclusions 
generated by the proposed approximate 
reasoning method to the classical 
Compositional Rule of Inference (CRI), we are 
choosing as a representative one, the min-max. 
compositional rule of inference and the centre 
of gravity defuzzification method. Comparing 
the crisp conclusions of the proposed 
approximate fuzzy reasoning and the classical 
CRI (fig.5.), the most striking difference is, 
that the control function of the approximate 
fuzzy reasoning is always fits the points of the 
fuzzy rules. (This is a property of the 



interpolation function used for the approximate 
reasoning.) While, the control function of the 
CRI is usually not fits these points. In practical 
sense it means that, if an observation hits a 
rule antecedent exactly, than the conclusion 
generated by approximate fuzzy reasoning will 
be equal to the consequent part of the same 
fuzzy rule. The next difference is the main 
reason of the approximate fuzzy reasoning 
methods for insufficient evidence. The 
approximate fuzzy reasoning method gives 
conclusion for all the observations of the 
antecedent universe, even if the fuzzy rulebase 
is not complete, while the CRI gives no 
conclusion if there are no overlapping between 
the observation and at least one of the rule 
antecedents. (Fig.5.) The last mentioned 
difference is a kind of philosophical question. 
The wide rule consequents has more influence 
to the defuzzified crisp conclusion of the CRI, 
because of the “wide consequents” are more 
“heavy” in the fuzzy conclusion (using the 
centre of gravity defuzzification). While using 
the method based on approximation in the 
vague environment of the fuzzy rulebase, the 
situation is the opposite. (Fig.5.) The idea we 
used, that the rate of the distances of the 
observation and the rule antecedents must be 
equal to the rate of the distances between the 
conclusion and the corresponding rule 
consequents, has a special property in case of 
using the concept of vague environment for 
calculating the distances of fuzzy sets. If a rule 
consequent is “narrower than the other”, the 
scaling function is higher there, the 
surrounding vague environment is more 
“dense”. It means smaller distances in the 
consequent universe. So the narrow rule 
consequent is dominating the “wider” ones. In 
other words it means, that using the CRI, in the 
crisp conclusion those rules has dominance, 
whose consequent part is more “global” (more 
“imprecise”, “fuzzy”, “wider”), in spite of the 
approximate reasoning method, where those 
rules has the dominance, whose consequents 
are more precise (more “crisp”, “narrower”). 
Basically this is a question of the importance 
of the vagueness in the rule consequences. 
Which rule needs more attendance, those, 
whose consequences are more global, or those, 
whose consequences are more precise. 

 

 

 
Fig.5. Interpolation of two fuzzy rules 
(Ri:Ai→Bi) in the approximated vague 

environment of the fuzzy rulebase, using the 
proposed rational interpolation (p=1) and the 

min-max. CRI with the centre of gravity 
defuzzification 



Conclusion 

Using the concept of vague environment in 
most of the practical cases we can built 
approximate fuzzy reasoning methods simple 
enough to be a good alternative of the classical 
Compositional Rule of Inference methods in 
practical applications. 

The advantages (compared to CRI) of the 
methods proposed in this paper are the 
following: 

- the computational efforts needed for the 
conclusion can be reduced by reducing the 
number of the fuzzy rules (the unimportant 
“filling” rules can be eliminated) 

- the proposed method gives conclusion in 
case of insufficient evidence (sparse fuzzy 
rulebase) too 

- using the proposed approximate fuzzy 
reasoning methods, if crisp conclusion is 
needed, it can be fetched directly from the 
vague conclusion (there are no additional 
defuzzification step needed)  

The vague conclusion calculated by the 
proposed approximate fuzzy reasoning 
methods is basically one point. For 
transforming this point to a fuzzy conclusion, 
we have to examine the consequence universe. 
Supposing that the terms in the fuzzy partition 
of the consequence universe describes all the 
main properties of the consequence universe 
and the scaling function approximated from 
this terms is proper, we can calculate the 
membership function of the fuzzy conclusion 
as a level of similarity to the vague conclusion 
in the vague environment of the consequence 
universe. 
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