MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR

Korszerű információs technológiák

LEGO ROBOTOK PROGRAMOZÁSA

Dr. Tompa Tamás

egyetemi adjunktus Általános Informatikai Intézeti Tanszék

Miskolc, 2023.

MENETREND

• |.

- 1. Programok írása, futtatása; saját eljárásblokk készítése
- 2. Motorvezérlés
- 3. Szenzorok
- 4. Kijelző használata
- Szünet (5 perc)

• ||.

- 1. Komplex (egyéni) feladatmegoldás
- 2. Robotok közötti kommunikáció

- Felhasznált és ajánlott irodalom:
 - Kiss Róbert: A MINDSTORMS® EV3 robotok programozásának alapjai (2014)

ELŐKÉSZÜLETEK

- Lego EV3 programozása
 - szoftver, algoritmus segítségével
 - utasítások sorozata
 - LEGO MINDSTORMS EV3 szoftver
 - Home Edition
 - Education Edition
 - blokkok egymáshoz fűzése
 - Programkörnyezetek
 - C, Java, Python programozási nyelvek
 - Matlab
 - LabView
 - RobotC
 - leJOS
 - ROS (Robot Operating System)
 - stb.

ELŐKÉSZÜLETEK

• A programozás során használt tesztrobot

ELŐKÉSZÜLETEK

• A robotvezérlő modul felépítése (brick - tégla)

GYAKORLAT I. - 1. LEGO MINDSTORMS EV3 HOME EDITION

EV3 szoftver nyitó képernyő

GYAKORLAT I. - 1. EV3 PROJEKT LÉTREHOZÁS

- Létrehozás
 - File -> New Project
- Megnyitás
 - File -> Open Project
- Az EV3 szoftveren belül több project is létrehozható
 - megadott nevekkel ellátva
- Egy projekten belül több program is lehetséges
- *.ev3 kiterjesztésű állomány (ev3 project file)

GYAKORLAT I. - 1. EV3 PROJEKT LÉTREHOZÁS

Különböző funkcióblokkok, csoportok különböző színekkel jelölve

- Zöld
- Narancs
- Sárga
- Piros
- Kék
- Cián
- Sajátblokk létrehozása
 - blokkok kijelölése
 - Tool -> My Block Builder
 - blokk elnevezése
 - ikon megadás
 - cián színű csoportban a saját blokk

My Block Builder						8
Click the button to add or edit parameters.						
Name: My Block Name	Des	scription:				
My Block Icons						
P P P	j 😽 💱	0	0		5	
	ڭ 🔊 🍯			0	I A	123
¹ ∕ _× ^{+ -} / _{× ÷} ^{0,99} +1 (T ++ (§	1		*	*	\otimes
1010						
		~ ^	· ·	_		
				F	inish	Cancel

GYAKORLAT I. - 1. EV3 PROJEKT MENTÉS, FUTTATÁS

- Mentés
 - File -> Save Project
 - a *-al jelölt projektek nincsennek elmentve! -> mindig mentsetek!
- Futtatás
 - a program robotra való áttöltése után
 - USB
 - Bluetooth
 - Wifi
 - Az áttöltött programok a projekttel azonos nevű mappába kerülnek a robot belső memóriájába, a futtatás innen is lehetséges
 - de futtatható az EV3 szoftverből is

- A robothoz 4 motor csatlakoztatható összesen
 - A, B, C, D jelölések a téglán
 - Motorvezérlő blokkok

1. Írjon programot, amelyet végrehajtva a robot 50-es sebességgel előre halad 500°-os tengelyfordulásig!

Az ábra a feladat megoldásának a programkódját mutatja be.

- kormányvezérelt (Steering Motor) blokk
- a motorok leállítása nem szükséges
 - 500 fokos tengelyelfordulás után illetve a program végeztével leállnak
 - a motor tengelye fordul 500 fokot!

2. Írjon programot, amelyet végrehajtva a robot 2 mp-ig tolat, majd balra fordul kb. 90°-ot, végül előre megy a tengely háromszoros körbefordulásig!

A program forráskódja három kormányvezérelt motor ikonból áll.

- Az első blokk a B és C motorokat –50-es sebességgel 2 mp-ig forgatja. A negatív sebességérték a hátrafelé mozgást jelenti
- A második blokk valósítja meg a kb. 90°-os balra fordulást. Ehhez az összes "nyomatékot" a C (port függő) motorra adjuk és a motorokat 50-es sebességgel 0,5 mp-ig működtetjük (nem a robot 90°-kal történő elfordulása, hanem a motor tengelyének 90°-os elfordulása)
- A harmadik modul a háromszoros tengelyfordulásig történő előre mozgást valósítja meg.

3. Írjon programot, amelyet végrehajtva a robot 50-es sebességgel körbe forog 2 mp-ig!

A feladat megoldásának a programkódja:

- kormányvezérelt (Steering Motor) blokk
- motorokat 50-es sebességgel, de különböző irányban forgatja 2 mp-ig
- a helyben forgást úgy érjük el, hogy a Steering paraméter csúszkáját a C motor irányába toltuk el.
- a Seconds paraméter beállításával adtuk meg a mozgás idejét.

4. Írjon programot, amelyet végrehajtva a robot 50-es sebességgel körbe forog 2 mp-ig de sebességvezérelt blokkal!

Mit lehet észre venni ebben a sebességvezérelt módban?

- 5. Írjon programot, amelyet végrehajtva a robot szinusz pályán mozog (saját eljárás készítése)
- Szinusz blokk (Tools -> My Block Builder)

• Program

Szenzorok

- 3 alap szenzor
 - ütközésérzékelő (touch sensor)

• színérzékelő/fényérzékelő (color sensor/light sensor)

• távolságérzékelő (ultrasonic sensor)

• Giroszkóp (gyro sensor)

- robot előjeles elfordulásának mérése fokban
- előjeles elfordulás értékének viszonyítási pontja a szenzor Reset állapota
- Gyro Sensor blokk beillesztése majd Reset mód lenullázás

innentől kezdve a két irányú elfordulást előjeles értékét kaphatjuk vissza a szenzortól

 Vezérlés elfordulási szög: Angle (szög), elfordulási arány: Rate, (a fordulás szögének időbeli változása szög/másodperc mértékegységben)

1. Írjon programot, amelyet végrehajtva a robot egyenesen halad előre mindaddig, amíg a fényérzékelője az alapszíntől eltérő színt nem észlel, ekkor álljon meg!

Előkészületek

- A feladat végrehajtása során homogén fehér felületen mozog a robot.
- Az eltérő színű csíkot pl. fekete színű szigetelő szalag felragasztásával állíthatjuk elő.
- A program megírása előtt a képernyő *View* funkciójával a különböző színű felületekről visszavert fény intenzitását megmértük, fehér: 62; fekete: 26.
- 62+26 = 44 (határérték: átlag)
- Tehát ha a fényérzékelő 44-nél kisebb értéket mér, akkor a robot elérte a fekete csíkot.

- összehasonlítás módot és a fényszenzort saját fénnyel (Reflected Light)
- az előre mozgásnál a motorerőt 50-re, a működési módot On-ra állítottuk, mivel nem tudjuk előre, hogy mikor ér a robot a fekete színű vonalhoz.
- a második ikon addig várakoztatja (wait blokk!) a program utasításainak végrehajtását, amíg a fényérzékelő által mért érték kisebb nem lesz 44-nél
- így a robot a fekete csík eléréséig folyamatosan halad előre.
- elérve a fekete csíkot a mért érték kisebb lesz 44-nél, ezért a program a Wait-et követő utasítással folytatódik, és a robot megáll.

2. Írjon programot, amelyet végrehajtva a robot egyenesen halad mindaddig, amíg a távolságérzékelője 15 cm-nél kisebb távolságot nem mér! Ekkor álljon meg!

A következő ábra a feladat megoldásának programkódját mutatja:

- a távolságérzékelő a 4. portra van kötve (wait blokk!).
- a mértékegységet centiméterre, a továbblépési feltételként mért távolságot 15 cm-nél kisebbre állítsük

3. Írjon programot, amellyel ha a robot 10 cm-en belül mozgást érzékel akkor hangot ad ki.

Algoritmus:

- távolságmérés
- a mért távolság kisebb-e mint 10 cm
- Előbbi feltétel ellenőrzése
 - igaz: hang kiadás
 - hamis: semmi sem történik
- folyamat ismétlése elölről

Megoldás:

GYAKORLAT I. - 4. KIJELZŐ HASZNÁLATA

 képernyő használata az Action csoporton belüli Display modul programba illesztésével valósítható meg

> Kiíratandó szöveg, vagy fájl név, vagy piktogram neve. A megjelenítendő tartalom x (vízszintes) és y (függőleges) koordinátája. Képernyőtörlés Ha igaz (*true*), akkor törli a képernyőt a kiírás előtt, egyébként nem. Megjelenítési mód kiválasztása.

A lehetséges megjelenítési módok:

Szöveg
Pixels vagy Grid beállítással szöveget jelenít meg a képernyőn.
Alakzat
Egyenes (<i>Line</i>), kör (<i>Circle</i>), téglalap (<i>Rectangle</i>) vagy pont (<i>Point</i>)
Ке́р
rbf kiterjesztésű, kétszínű piktogram jeleníthető meg a képernyőn
A képernyő alaphelyzetbe állítása.

GYAKORLAT I. - 4. KIJELZŐ HASZNÁLATA

1. Írjon programot, amelyet végrehajtva a robot a képernyőjére folyamatosan kiírja az ultrahangos távolságérzékelője által mért értéket! A robot a programot kikapcsolásig ismételje!

Algoritmus:

- távolságmérés (ultrahangos, 4es port)
- a mért **érték kiírása** (Display blokk), 10,10

koordinátára

- Minden kiírás előtt a képernyő törlése
- kiírás fekete színnel
- folyamat ismétlése elölről

A 4-es portra csatlakoztatott ultrahangos távolságérzékelő által mért értéket kapja meg az Display blokk és a nagy méretben írja a képernyő (10;10) koordinátájú helyétől kezdődően (a kiírt érték bal felső sarka kerül az adott koordinátára). Minden kiírás előtt törlődik a képernyő és a kiíratást fekete színnel végezzük.

GYAKORLAT I. - 4. KIJELZŐ HASZNÁLATA

1. Írjon programot, amelyet végrehajtva a robot a képernyőjére folyamatosan kiírja az ultrahangos távolságérzékelője által mért értéket! A robot a programot kikapcsolásig ismételje!

Szünet (5 perc)

1. Asztalon marad: A robot az asztal szélén megáll, megfordul, majd ismét az asztal széléig megy. Figyelem! A fényszenzor elhelyezésétől függően a robot lebillenhet az asztalról.

Algoritmus:

- a robot halad előre valamekkora sebességgel
- fénymérés, a visszavert fény intenzitása 0-e, azaz nincs visszavert fény -> asztal széle
- megáll
- tolat 1s-ig valamekkora sebességgel
- elfordul valamelyik irányba valamekkora sebességgel
- gyro szenzorral **elfordulás figyelése**
- majd a teljes folyamat ismétlése

1. Asztalon marad:

Megoldás

2. Mozgó tárgy követése távolságérzékelővel:

Működése: 250 cm-en belül a legközelebbi akadályhoz képest 50 cm-es távolságot tart.

Algoritmus:

- távolságmérés
- a mért érték figyelése, tartományon kívül esik-e
- az előbbi feltétel ellenőrzése, igaz-e vagy hamis
 - igaz: a robot halad előre valamekkora sebességgel
 - hamis: megáll
- majd a teljes folyamat ismétlése

2. Mozgó tárgy követése távolságérzékelővel:

Megoldás 01 J B + C30 C 1/x w m × 20 50 123 Cm 00 1/2 B+C

- Célja: több robot együttműködése valamilyen feladat megoldása érdekében kommunikáció bluetooth kapcsolaton keresztül
- Master-slave (mester-szolga) alapú kommunikáció
 - az egymással kommunikációs kapcsolatban álló robotok között alá-fölé rendeltségi viszony
 - Master a kitüntetett szerepű, amelyen keresztül az adatok továbbítása történik
 - 1 master max 7 slave -> 8 elemű BT alapú hálózat
 - a slave robotok kommunikációja csak a master-en keresztül történhet
 - · egy robot vagy master vagy slave szerepkörű lehet

Lépések:

•

bluetooth kapcsolat felépítése

 a mesternek kijelölt roboton, a villáskulccsal jelölt (beállítások) menüben a Bluetooth menüpontban (vagy a programból). Bekapcsolt állapot jele: "<" a képernyő bal felső sarkában.

kommunikációra képes eszközök keresése

a mester robot képernyőmenüjének **Beállítások – Bluetooth –** Connections – Search menüpontjában. szolgák kiválastása a listából

- az első kapcsolatépítésnél kódcsere történik, amely minden, a kapcsolatban résztvevő eszköz képernyőjén megjelenő kód beállítását és elfogadását jelenti.
- a felépült kapcsolatot a bal felső sarokban lévő ikon jelzi ("<>").

- Ha a kapcsolat felépült, akkor a rendszer megjegyzi a kódokat, és a továbbiakban a keresés helyett a Connections menüpontban is megjelenik az eszköz
- kapcsolatot programból is lehet kezdeményezni: Advanced -> Bluetooth Connections

1. Készítsünk távirányítható robotot. Az irányító robot lesz a mester, az irányított a szolga.

Megvalósítás lépései:

1. A mester robot képernyőmenüjéből felépítjük a bluetooth kapcsolatot.

- 2. Megírjuk a mester robot programját és áttöltjük a robotra.
- 3. Megírjuk a szolga robot programját és áttöltjük a robotra.
- 4. Elindítjuk a mester robot programját, majd a szolga robot programját.

A mester programja:

 A mester tégla egy nyomógombjának lenyomása esetén a szolga az adott irányba mozduljon.

2. Írjon programot, amely két robot közötti kommunikációt valósít meg! A mester robot folyamatosan küldi a szolgának az ultrahangszenzora által mért értékeket, a szolga robot pedig megjeleníti ezt a képernyőjén. A programok kikapcsolásig fussanak!

<u> Működés:</u>

A mester robot programja egy végtelen ciklusba helyezett két utasításból áll.

Az ultrahang szenzor által mért adatot küldjük át a "Slave" nevű szolgának.

Mindezt folyamatosan, tehát végtelen ciklusba illesztve.

Az adatküldés modul (Messaging) paraméterénél Number típust kell beállítatni.

Az üzenet azonosítója "Tav".

KÖSZÖNÖM A FIGYELMET!

Európai Unió Európai Szociális Alap

Magyarország Kormánya

BEFEKTETÉS A JÖVŐBE