
University of Miskolc

Faculty of Mechanical Engineering and Informatics

Web Front -end Full Stack Development
N13020104

VueJS advanced

Tamás Tompa, PhD
assistant professor

Department of Information Technology

University of Miskolc

2025.

Setup

 VS Code Editor
⚫ download: https://code.visualstudio.com/download

https://code.visualstudio.com/download

Setup

 VS Code Editor
⚫ VS Code "Volar" Extension

Install Node.js - NPM

 Install the Node.js to use the NPM

⚫ https://nodejs.org/en/download (use the Windows installer)

⚫ npm is the standard package manager for Node.js

⚫ if a project has a package.json file can be use the npm install command to

install/download all dependecies of the project

https://nodejs.org/en/download

Install Vue.js - NPM

 There are many ways to install VueJS

⚫ Using NPM: npm install vue

Create default example

 Create a folder for your Vue projects on your computer:

 In VS Code, open a terminal by choosing Terminal →

New Terminal from the menu:

 Use the terminal to navigate to the Vue folder (cd command):

Create default example

 After you have navigated to your Vue folder in the

terminal run the command:

npm init vue@latest

Create default example

Create default example

npm run dev

Create default example

http://localhost:5173/

Create default example

 Open the created project by the VSCode:

First SFC Web Page

 To create the first SFC web page from scratch follow

the steps:

1. Create a new clean Vue project

2. Write code in the 'App.vue' file

3. See how the web page updates automatically during

development

4. Build the page for production

First SFC Web Page

1. Create a new clean Vue project
npm init vue@latest

First SFC Web Page

2. Write code in the „App.vue” and „main.js” files

3. See how the web page updates automatically

during development

4. Build the page for production

<template>
<h1>Hello World!</h1>

</template>

<script></script>
<style></style>

import { createApp } from 'vue'
import App from './App.vue'

createApp(App).mount('#app')

First SFC Web Page2

<template>
<h1>{{ message }}</h1>

</template>

<script>
export default {
data() {
return {

message: 'This is some text'
};

}
};
</script>

<style></style>

import { createApp } from 'vue'
import App from './App.vue'

createApp(App).mount('#app')

App.vue

main.js

Components

 Components lets us decompose our web page into

smaller pieces that are easy to work with

 Components are reusable and self-contained pieces of

code that encapsulates a specific part of the user interface

 A Vue component in isolation from the rest of the web

page, with its own content and logic

 Independent and reusable pieces

Components - Example

 Create a new folder components inside the src folder

 Inside the components folder, create a new file
FoodItem.vue

 it is common to name components with CamelCase

naming convention, without spaces and where all

new words starts with a capital letter, also the first

word

Components - Example

Components - Example

<template>
<div>
<h2>{{ name }}</h2>
<p>{{ message }}</p>

</div>
</template>

<script>
export default {
data() {
return {

name: 'Apples',
message: 'I like apples'

}
}

};
</script>

<style></style>

FoodItem.vue

main.js

import { createApp } from 'vue'

import App from './App.vue'
import FoodItem from
'./components/FoodItem.vue'

const app = createApp(App)
app.component('food-item',
FoodItem)
app.mount('#app')

Components - Example

App.vue

<template>
<h1>Food</h1>
<food-item/>
<food-item/>
<food-item/>

</template>

<script></script>

<style>
#app > div {
border: dashed black 1px;
display: inline-block;
margin: 10px;
padding: 10px;
background-color: lightgreen;

}
</style>

Components - Example

Components – Example2

 A very useful and powerful property when working with

components is that can be make them behave individually,

without having to mark elements with unique IDs

 Vue automatically takes care to treat each component

individually

 CSS code added to the <style> tag in App.vue

<style>
#app > div {
border: dashed black 1px;
display: inline-block;
width: 120px;
margin: 10px;
padding: 10px;
background-color: lightgreen;

}
#app > div:hover {
cursor: pointer;

}
</style>

Components – Example2

 FoodItem.vue

<template>
<div v-on:click="countClicks">

<h2>{{ name }}</h2>
<p>{{ message }}</p>
<p id="red">You have clicked me

{{ clicks }} times.</p>
</div>

</template>

<script>
export default {

data() {
return {

name: 'Apples',
message: 'I like apples',
clicks: 0

}
},
methods: {

countClicks() {
this.clicks++;

}
}

};
</script>
…

…
<style>
#red {

font-weight: bold;
color: rgb(144, 12, 12);

}
</style>

Components – Example2

 main.js

import { createApp } from 'vue'

import App from './App.vue'
import FoodItem from
'./components/FoodItem.vue'

const app = createApp(App)

app.component('food-item',
FoodItem)

app.mount('#app')

Components – Example2

Props

 Props is a configuration option

 With props can be pass data to the components via

custom attributes to the component tag

 pass data to a component

 receive data inside a component

 boolean props, object props, interface props, props

validator

 Props attributes are written with a dash - to separate words

(kebab-case)

Props –

pass data to a component

App.vue FoodItem.vue

<template>
<h1>Food</h1>
<food-item food-name="Apples"/>
<food-item food-name="Pizza"/>
<food-item food-name="Rice"/>

</template>

<script></script>

<style>
#app > div {
border: dashed black 1px;
display: inline-block;
width: 120px;
margin: 10px;
padding: 10px;
background-color: lightgreen;

}
</style>

<template>
<div>

<h2>{{ foodName }}</h2>
</div>

</template>

<script>
export default {

props: [
'foodName'

]
};
</script>

<style></style>

import { createApp } from 'vue'

import App from './App.vue'
import FoodItem from
'./components/FoodItem.vue'

const app = createApp(App)

app.component('food-item', FoodItem)

app.mount('#app')

main.js

Props –

pass data to a component

Props – boolean

App.vue FoodItem.vue

<food-item
food-name="Apples"
food-desc="Apples are a type

of fruit that grow on trees."
v-bind:is-favorite="true"/>

<food-item
food-name="Pizza"
food-desc="Pizza has a bread

base with tomato sauce, cheese,
and toppings on top."

v-bind:is-favorite="false"/>
<food-item
food-name="Rice"
food-desc="Rice is a type of

grain that people like to eat."
v-bind:is-favorite="false"/>

<h2>
{{ foodName }}

<img src="/img_quality.svg" v-
show="isFavorite">
</h2>
 <p>{{ foodDesc }}</p>

Props – boolean

Props – object
App.vue FoodItem.vue

<food-item
food-name="Apples"
food-desc="Apples are a type

of fruit that grow on trees."
v-bind:is-favorite="true"/>

<food-item
food-name="Pizza"
food-desc="Pizza has a bread

base with tomato sauce, cheese,
and toppings on top."

v-bind:is-favorite="false"/>
<food-item
food-name="Rice"
food-desc="Rice is a type of

grain that people like to eat."
v-bind:is-favorite="false"/>

<script>
export default {
// props:

['foodName','foodDesc','isFavorite']
props: {
foodName: String,
foodDesc: String,
isFavorite: Boolean

}
}

</script>

V-for Components

 Components can be reused with v-for to generate many

elements of the same kind

 When generating elements with v-for from a component,

it is also very helpful that props can be assigned

dynamically based on values from an array

 The 'key' Attribute

 If we modify the array after the elements are created with v-for,

errors can emerge because of the way Vue updates such elements

created with v-for

 The reason for elements being reused incorrectly is that elements

do not have a unique identifier, and that is exactly what we use

the key attribute for: to let Vue tell the elements apart

V-for Components

$emit() method

 Can be create a custom event in the child component

that can be captured in the parent element

 Props are used to send data from the parent element

to the child component, and $emit() is used to do the

opposite

 to pass information from the child component to the

parent

$emit() method

 In the FoodItem example

 the purpose of the things we will do next is to end up

with the 'favorite' status of a food item to be changed in

the parent App.vue instead of in the the FoodItem.vue

child component where the change is currently

happening

 the reason for changing the favorite status in App.vue

instead of in FoodItem.vue is that App.vue is where the

favorite status is stored in the first place, so that needs to

be updated

 in a larger project the data might come from a database

we have connection to in App.vue, and we want a change

happening from the component to make a change in the

database, so we need to communicate back to the parent

from the child component

$emit() method

Fallthrough Attributes

 It can be nice to for example control the component

styling from the parent rather than having the styling

hidden away inside the component

 Let's create a new example, a basic to-do list in Vue, and

see how the style attribute falls through to the components

representing things to do

 So, our App.vue should contain the list of things to do,

and an <input> element and a <button> to add new

things to do. Each list item is a <todo-item/> component

Fallthrough Attributes

Scoped Styling

 Styling defined inside the <style> tag in a component, or

in App.vue, is actually available globally in all

components

 To keep the styling limited locally to just the

component, can be use the scope attribute on that

component: <style scoped>

 CSS written inside the <style> tag in any *.vue file

works globally

 To avoid that the styling in one component affects the

styling of elements in other components we use the

'scoped' attribute on the <style> tag

Scoped Styling

<template>
<p>This p-tag belongs to 'CompOne.vue'</p>

</template>

<script></script>

<style scoped>
p {

background-color: pink;
width: 150px;

}
</style>

<template>
<p>This p-tag belongs to 'CompTwo.vue'</p>

</template>

<script></script>

<style></style>

<template>
<div>

<h3>Scoped Styling</h3>
<p>This p-tag belongs to 'App.vue'</p>
<comp-one />
<comp-two />

</div>
</template>

<script></script>

<style></style>

App.vue

CompOne.vue CompTwo.vue

Local vs. global components

 The way we have included components so far makes them

accessible from all *.vue files in a project (global)

 the way we have included components inside main.js so far

make the components accessible inside the <template> of

all other *.vue files in that project

 Components can be made to be local, meaning that they

are only accessible inside a specific *.vue file

 we can include a component directly in the <script> tag in

a *.vue file instead of including it in main.js

 if we include a component directly in a *.vue file, the

component becomes accessible only locally in that file

Local vs. global components

global

local

Local vs. global components

Slots

 Slots are a powerful feature in Vue that allow for more

flexible and reusable components

 We use slots in Vue to send content from the parent into

the <template> of a child component

 Slots can also be used to wrap around larger chunks of

dynamic html content to get a card-like appearance

Slots

Dynamic components

 Dynamic Components can be used to flip through

pages within your page, like tabs in your browser, with

the use of the 'is' attribute

 To make a dynamic component we use the <component>

tag to represent the active component

 The 'is' attribute is tied to a value with v-bind, and we

change that value to the name of the component we want

to have active

 All components inside the <KeepAlive> tag will be kept

alive by default

 But we can also define only some components to be kept

alive by using include or exclude attributes on the

<KeepAlive> tag

Dynamic components

Dynamic components

 All components inside the <KeepAlive> tag will be kept

alive by default

 But we can also define only some components to be kept

alive by using 'include' or 'exclude' attributes on the

<KeepAlive> tag

 If we use the 'include' or 'exclude' attributes on the

<KeepAlive> tag we also need to give the components names

with the 'name' option

Dynamic components

HTTP Requests

 The HTTP request is a part of the communication

between a client and a server

 The client sends an HTTP request to the server, which

handles the request and returns an HTTP response

 The most common kinds of HTTP requests are POST,

GET, PUT, PATCH, and DELETE

HTTP Requests

 Fetch data from txt file:

methods: {
async fetchData() {
const response = await fetch("file.txt");
this.data = await response.text();

}
}

HTTP Requests

 Fetch data from JSON file:

methods: {
async fetchData() {

const response = await fetch("bigLandMammals.json");
const data = await response.json();
const randIndex = Math.floor(Math.random()*data.results.length);
this.randomMammal = data.results[randIndex];

}
}

{
"name": "American bison",
"maxWeight": 1200,
"carnivore": false,
"countries": [

"USA",
"Canada"
]

}

Routing

 Routing in Vue is used to navigate the Vue

application

 it happens on the client side (in the browser) without full

page reload, which results in a faster user experience

 Routing is a way to navigate

 With routing can be use the URL address to direct

someone to a specific place in our Vue application

Routing

Forms

 Radio buttons that belong to the same choice must have

the same name so that only one radio button can be

chosen, <input type="radio"> tag

 When checkbox inputs (<input type="checkbox">) are

connected to the same array with v-model, the values for

the checked checkboxes are gathered in that array

 A drop-down list consists of a <select> tag with

<option> tags inside

 With the multiple attribute in the <select> tag, the

drop-down list becomes expanded, and can be choose

more than one option

Forms

<input type="color">

<input type="date">

<input type="datetime-local">

<input type="number">

<input type="password">

<input type="range">

<input type="search">

<input type="tel">

<input type="text">

<input type="time">

<textarea>

 Different form inputs:

Forms

Animations

 The built-in <Transition> component in Vue helps us to

do animations when elements are added or removed with

v-if, v-show or with dynamic components

 There is nothing wrong with using plain CSS transitions

and animations in other cases

Animations

Animations

Example with backend

 Create new folder with the name „backend_example”

 npm init -y
 npm install express cors

 Create a server.js file

const express = require('express');
const cors = require('cors');
const app = express();

app.use(cors());

app.get('/api/message', (req, res) => {
res.json({ message: 'Hello from the backend!' });

});

const PORT = 3000;
app.listen(PORT, () => {
console.log(`Backend is running on

http://localhost:${PORT}`);
});

server.js

Example with backend

 Create VueJS app with the

name „frontend”

 Run the backend: node

server.js

 Run the VueJS frontend:
npm run dev

App.vue

<template>
<div class="app">
<h1>{{ message }}</h1>

</div>
</template>

<script>
export default {

data() {
return {

message: 'Loading...'
}

},
mounted() {
fetch('http://localhost:3000/api/message')

.then(res => res.json())

.then(data => {
this.message = data.message;

});
}

}
</script>

<style>
.app {

font-family: Arial, sans-serif;
text-align: center;
margin-top: 50px;

}
</style>

Thank you for your attention!

	1. dia
	2. dia: Setup
	3. dia: Setup
	4. dia: Install Node.js - NPM
	5. dia: Install Vue.js - NPM
	6. dia: Create default example
	7. dia: Create default example
	8. dia: Create default example
	9. dia: Create default example
	10. dia: Create default example
	11. dia: Create default example
	12. dia: First SFC Web Page
	13. dia: First SFC Web Page
	14. dia: First SFC Web Page
	15. dia: First SFC Web Page2
	16. dia: Components
	17. dia: Components - Example
	18. dia: Components - Example
	19. dia: Components - Example
	20. dia: Components - Example
	21. dia: Components - Example
	22. dia: Components – Example2
	23. dia: Components – Example2
	24. dia: Components – Example2
	25. dia: Components – Example2
	26. dia: Props
	27. dia: Props – pass data to a component
	28. dia: Props – pass data to a component
	29. dia: Props – boolean
	30. dia: Props – boolean
	31. dia: Props – object
	32. dia: V-for Components
	33. dia: V-for Components
	34. dia: $emit() method
	35. dia: $emit() method
	36. dia: $emit() method
	37. dia: Fallthrough Attributes
	38. dia: Fallthrough Attributes
	39. dia: Scoped Styling
	40. dia: Scoped Styling
	41. dia: Local vs. global components
	42. dia: Local vs. global components
	43. dia: Local vs. global components
	44. dia: Slots
	45. dia: Slots
	46. dia: Dynamic components
	47. dia: Dynamic components
	48. dia: Dynamic components
	49. dia: Dynamic components
	50. dia: HTTP Requests
	51. dia: HTTP Requests
	52. dia: HTTP Requests
	53. dia: Routing
	54. dia: Routing
	55. dia: Forms
	56. dia: Forms
	57. dia: Forms
	58. dia: Animations
	59. dia: Animations
	60. dia: Animations
	61. dia: Example with backend
	62. dia: Example with backend
	63. dia: Thank you for your attention!

